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Using species distribution models to
predict new occurrences for rare plants
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INTRODUCTION

Species distribution models (SDMs) have emerged as an

effective tool in spatial ecology, conservation and land

management (Raxworthy et al., 2003; Rushton et al., 2004;

Elith et al., 2006). Species with narrow geographical distribu-

tions and specialized habitat requirements represent a partic-

ular challenge for statistical range representation in these

models for three reasons. First, such species frequently have

both small distributions and small sample sizes, creating power

issues that may compromise model robustness (Stockwell &

Peterson, 2002a,b; Pearson et al., 2007; Wisz et al., 2008).

Second, SDMs model realized, not fundamental, niches

(Malanson et al., 1992; Hijmans & Graham, 2006) incorpo-

rating whatever sampling bias is inherent in the data (Wisz

et al., 2008). For narrowly distributed species, the opportunity

to identify mistakenly a narrow climatic distribution as a

fundamental niche limitation when it actually reflects other
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ABSTRACT

Aim To evaluate a suite of species distribution models for their utility as

predictors of suitable habitat and as tools for new population discovery of six rare

plant species that have both narrow geographical ranges and specialized habitat

requirements.

Location The Rattlesnake Creek Terrane (RCT) of the Shasta-Trinity National

Forest in the northern California Coast Range of the United States.

Methods We used occurrence records from 25 years of US Forest Service

botanical surveys, environmental and remotely sensed climate data to model the

distributions of the target species across the RCT. The models included

generalized linear models (GLM), artificial neural networks (ANN), random

forests (RF) and maximum entropy (ME). From the results we generated

predictive maps that were used to identify areas of high probability occurrence.

We made field visits to the top-ranked sites to search for new populations of the

target species.

Results Random forests gave the best results according to area under the curve

and Kappa statistics, although ME was in close agreement. While GLM and ANN

also gave good results, they were less restrictive and more varied than RF and ME.

Cross-model correlations were the highest for species with the most records and

declined with record numbers. Model assessment using a separate dataset

confirmed that RF provided the best predictions of appropriate habitat. Use of RF

output to prioritize search areas resulted in the discovery of 16 new populations of

the target species.

Main conclusions Species distribution models, such as RF and ME, which use

presence data and information about the background matrix where species do not

occur, may be an effective tool for new population discovery of rare plant species,

but there does appear to be a lower threshold in the number of occurrences

required to build a good model.
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ecological constraints (e.g. dispersal barriers, biotic interac-

tions, edaphic constraints) is high (Schwartz et al., 2006; Wisz

et al., 2008). Finally, narrowly distributed species that are

habitat specialists often have patchy distributions of occur-

rences. Thus, defining a general range extent becomes less

useful from a management perspective compared with under-

standing habitat occupancy. This is a challenge for SDMs

because they are meant to identify the overall extent of a

species’ range and may perform poorly if that range is

heterogeneous or not well-sampled (Pearce et al., 2001; Seoane

et al., 2005; McPherson & Jetz, 2007).

In this study, we explored the utility and output of four

types of SDMs in predicting habitat and occurrence locales

for six rare plant species endemic to the serpentine soils of

the northern California Coastal Range. Each of our focal taxa

is narrowly endemic. The most broadly distributed is limited

to three counties in northern California (c. 26,000 km2),

while the smallest range is approximately 4 km2 (CNPS

2006). There is naturally some uncertainty in the accuracy of

these range estimates because forest inventories are frequently

conducted for specific objectives, such as timber sales or road

building (Stohlgren et al., 1995; Kadmon et al., 2004). Species

distribution models may help correct such biases because they

require the modeller to be explicit about the known and

unknown parameters for the species’ range, habitat type and

occupancy (Elith et al., 2002). Regardless of this beneficial

feature of SDMs, the limited ranges and few known

occurrences of the species in this study test the limits of

how small a sample size can be used to construct a useful

predictive model (Stockwell & Peterson, 2002b; Schwartz

et al., 2006; Pearson et al., 2007). Our goals were to: (1)

examine how limited occurrence data, model selection and

habitat characterization affect the prediction of habitat

occupancy, (2) determine which model or models are most

useful for new population discovery, and (3) provide land

managers with a strategy for biodiversity management in

terms of population discovery, prioritizing conservation sites

and identifying potential restoration sites.

Species distribution models are already used for a variety of

ecological applications such as biodiversity discovery (Rax-

worthy et al., 2003; Bourg et al., 2005; Guisan et al., 2006),

conservation management (Cabeza et al., 2004; Zacharias &

Gregr, 2005) and global warming response modelling (Iverson

et al., 2004; Ballesteros-Barrera et al., 2007; Gomez-Mendoza

& Arriaga, 2007). Methodological advances in mathematical

models, machine learning and statistical tools have resulted in

significant improvements in model performance (Scott et al.,

2002; Guisan & Thuiller, 2005; Olden et al., 2008). While no

single best approach has emerged, several more recent models

have consistently outperformed simpler, earlier models (Hirzel

et al., 2006). In particular, models that characterize the

background environment where target species do not occur

have generally performed better than those that do not

(Stockwell & Peterson, 2002a; Engler et al., 2004). This can

be done by providing the models with environmental data

gathered on true absences, i.e. places where the species is

known not to occur or by generating a set of pseudo-absences

when data on true absences are not available.

For modelling rare species without true absence data,

pseudo-absences may be particularly appropriate, given the

high probability that most points selected will be absences.

Although small, there is a risk that if a pseudo-absence is

assigned to a point occupied by the species, the negative value

could have a disproportionate effect because there are few

presence points with which to train the model. Similarly, in

cases of low habitat saturation by the target species, a pseudo-

absence occurring on appropriate habitat that is unoccupied

could disproportionately train the model away from that

habitat.

Recent research on how SDMs perform with respect to

limited occurrence data has shed some light on what is

important to make the models function with such constraints

on input (Stockwell & Peterson, 2002a,b; Edwards et al., 2004;

Engler et al., 2004; Hernandez et al., 2006; Pearson et al.,

2007). We have taken these findings to heart, using commonly

used models, adding remotely sensed data and designing our

analysis to meet the primary goal of predicting new occur-

rences. Our main concern was to identify models that

performed well given the challenging characteristics of our

focal species, particularly: (1) restricted range, for which we

might not understand all of the parameters; (2) the nature of

the specific habitat, which may reflect either a species’

environmental preferences or a suboptimal refuge that allows

the species to avoid competition or predation (Naves et al.,

2003; Sanders & McGraw, 2005); and (3) presence where, even

in optimal habitat, saturation may be low and/or a species may

be cryptic (Brose et al., 2003; Linkie et al., 2006; Hare et al.,

2007).

METHODS

Study area

The study area is the Rattlesnake Creek Terrane (RCT), a 15 by

80-km tract of land on the south-western edge of the Klamath

Mountains (Fig. 1). The RCT is characterized by a distinct

geological history (hence the geological term ‘terrane’) that has

resulted in a mélange of serpentine soils overlain by volcanic

and sedimentary rocks of the Upper Triassic and Lower

Jurassic periods (Wright & Wyld, 1994). In particular,

serpentinite and peridotite units occur as a patchwork across

the RCT and other parts of the northern coast range

(Kruckeberg, 1984). To analyse the study site spatially, we

divided the RCT polygon into roughly 50,000 grid cells, each of

which was characterized by the presence or absence of the

target species and a suite of environmental and climatic factors.

The cells measured 150 m on a side – a size selected as a

compromise between the large grain size of the climate data

(c. 1 km2) and the finer scale of soils (5–25 m), elevation

(30 m) and occurrence data (5–10 m). This grain size is on the

fine end of the SDM grain scale for landscape-level modelling,

and given there is evidence suggesting that these models are
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relatively insensitive to even a 10-fold increase in grain size

(Guisan et al., 2007), we felt that our choice of size was

reasonable.

Species

Our study focused on six plant taxa that are all endemic or

nearly so to the northern Coast Range of California (Table 1).

These taxa include two annual tarweeds (Harmonia doris-

nilesiae, Harmonia stebbinsii), three perennial herbs [Eriogo-

num libertini, Leptosiphon nuttallii subsp. howellii (hereafter

L. nuttallii) and Minuartia rosei] and a low-statured woody

perennial (Ericameria ophitidis). All taxa are known from just

one to three counties (http://www.calflora.org), are associated

with ultramafic soils (Hickman, 1993; Nakamura & Nelson,

2001) and are tracked by the California Native Plant Society as

species of special concern (CNPS 2006).

The USDA Forest Service (USFS) has occurrence data on

rare plant populations in the Shasta-Trinity National Forest of

north-western California (Fig. 1). These occurrences are based

on rare plant surveys conducted by USFS botanists over the

past 25 years, along with California Natural Diversity Database

(CNDDB) occurrences for the region (http://www.dfg.ca.gov/

biogeodata/cnddb). The number of georeferenced occurrences

for our target taxa ranges from 9 to 129.

Models

The primary inputs for all of the models were the spatial

coordinates of the known occurrences for the target species

and a suite of environmental variables characterizing those

locales. Three of the four models also required explicit

information about where a species does not occur so that the

model can discriminate between appropriate and inappropri-

ate habitat. Because absence data for the target species was not

recorded in the original field surveys, we used randomly

selected pseudo-absences in lieu of actual data.

Pseudo-absences were generated by randomly assigning

unoccupied grid cells within a polygon containing the

collective known distribution of each species within the study

region. We defined this polygon by drawing a 5-km buffer

(Jenness, 2003) around the convex hull defined by the

perimeter of known occurrences. The fourth model, Maxent,

does not use pseudo-absences per se, but distinguishes between

presences and random points from a background area using a

probability distribution (Phillips et al., 2006). For compara-

bility among models, we made the background area for Maxent

the same as the polygons from which the pseudo-absences were

drawn from the other three models. Each model therefore used

the extent of these polygons as the training region to predict

occurrences over the entirety of the larger study region.

The four statistical models we used include: generalized

linear models (GLM); artificial neural networks (ANN); a

classification and regression tree model called random forests

(RF) and a machine learning algorithm called maximum

entropy or Maxent (ME). This study was not meant to be an

Figure 1 Location of the Rattlesnake Creek Terrane (RCT) study

area.

Table 1 Names and attributes of rare plant species modelled in Rattlesnake Creek Terrane; Shasta, Tehama and Trinity counties, California.

Species

name*

Elevation (m)*,

life history

Counties of

occurrence* No. occurrences No. cells

Ericameria ophitidis (Serpentine goldenbush) ± 1600, Peren. Shasta, Tehama, Trinity� 129 688

Eriogonum libertini (Dubakella Mountain buckwheat) 1200–1600, Peren. Shasta, Tehama, Trinity 96 341

Harmonia doris-nilesiae (Niles’ harmonia) 850–1400, Ann. Trinity 28 81

Harmonia stebbinsii (Stebbins’ harmonia) 1100–1400, Ann. Shasta, Tehama, Trinity 18 100

Minuartia rosei (Peanut sandwort) 750–1350, Peren. Shasta, Tehama, Trinity� 34 249

Leptosiphon nuttallii subsp. howellii (Mount Tedoc leptosiphon) 1500–1800, Peren. Tehama� 9 49

*Information from Hickman (1993) unless otherwise cited.

�CNPS (2006).

�Shasta-Trinity National Forest records.

Distribution models for rare plant discovery
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exhaustive test of the relative merits of modelling frameworks

as others have done (e.g. Elith et al., 2006). Instead, we wanted

to evaluate how four commonly used models responded to the

particular constraints of our target species and which model or

combination of models would be most helpful for guiding new

population discovery. We used these models to generate

probability surfaces for the six target species, individually and

for all species combined.

We included GLM because of its incorporation as a building

block in many of the more sophisticated newer models and for

its continued use in species distribution modelling (Austin,

2002; Brotons et al., 2004; Austin, 2007; Gibson et al., 2007).

This method conforms well to presence–absence data given its

threshold-type response and assumes additive or linear rela-

tionships between data.

Artificial Neural Networks provides a flexible generalization

of GLM. In particular, ANN is considered to perform better

than GLM when modelling nonlinear relationships (Lek et al.,

1996). Artificial Neural Networks makes use of intermediate

nodes in what is referred to as a ‘hidden layer’, where each

node contributes differentially with respect to the variables

included in the model. It can accommodate interaction effects

that are fed into the exponent term of logistic regression. The

iterative model is constantly doing sensitivity analyses on

minute variations of the included predictor variables, looking

for optimal solutions. Our model had seven nodes in the

hidden layer and through trial and error we chose a decay term

of 0.01 to avoid over-fitting.

Recent studies have demonstrated the utility of RF

compared to other techniques for modelling rare and invasive

species, habitats and changes in species distribution under

climate change (Prasad et al., 2006; Cutler et al., 2007; Benito

Garzon et al., 2008). Random forests create a suite of models

using a classification and regression tree (CART) approach

(Breiman, 2001). A general criticism of the CART method is its

instability, especially at finer scales such as those considered

here (Thuiller et al., 2003); a small change in the data can make

a large difference in the predictions of the fitted model. The RF

method addresses this shortcoming by growing a collection of

regression trees, each trained on a bootstrap sample of the

original data. Each tree’s output selection acts like a vote in an

election and the model selects its outcome based on the

maximum vote-getter after all the trees in the forest have

voted. We populated our forest with 1000 trees for each

species.

Maxent is a general purpose, machine learning model that

searches for the target probability (predicted occurrence) based

on the probability distribution that is closest to uniform using

a set of constraints/variables imposed by the modeller (Phillips

et al., 2006). The model is flexible with respect to the types of

variables used and the form of their relationship to a species’

presence (e.g. linear, nonparametric, etc.). Maxent does not

require the user to choose pseudo-absences. A review com-

paring 16 models on over 200 taxa found that newly emerging

models, ME among them, consistently outperformed tradi-

tional linear methods (Elith et al., 2006).

Predictor variables

For each grid cell in the study area, we calculated values for

seven predictor variables: three topographic variables, two soils

variables and two summary climate variables (Table 2). We

used USGS digital ortho-quadrangles to generate the topo-

graphic variables of elevation, slope and aspect for each cell.

These are proxy measures that indirectly assess gradients in

climatic variables such as temperature, precipitation and

incident radiation (Franklin, 1995).

We used a soil survey to identify all ultramafic soils and to

classify the degree of serpentine syndrome for the soil units in

the study area (Alexander, 2002). We used two soil classifica-

tion variables: (1) a binary classification of soils as serpentine

or not, and (2) the degree of severity of serpentine syndrome

on a scale of 1–40. We then calculated distance from each grid

cell to the nearest edge of an ultramafic site to estimate whether

target species populations tended to occur near serpentine

edges where the degree of serpentine syndrome might be less

than in the centre of a unit due to mixing with non-serpentine

soils. In addition, as in some cases, occurrence maps and soils

units were mapped prior to GPS technology, incorporating the

distance to the nearest serpentine unit provided a variable that

could potentially correct for mapping or registration errors.

The climate variables were derived from worldclim,

a 30 arc-second global climate data model (http://www.

worldclim.org). worldclim provides information on 11

climatic variables that are thought to be potentially biologically

important (Table 2). We distilled the information in these

climate variables into two principal components: PC1 was

strongly correlated with precipitation (R2 = 0.932) and

Table 2 Principle components analysis (PCA) of climatic

variables (http://www.worldclim.org) used to generate summary

climatic variables 1 and 2. The PCA as run on the 49,619 cells

in the Rattlesnake Terrane using jmp 5.1 (SAS 2006).

Principal components: on correlations PC1 PC2

Eigenvalue 6.667 3.498

Per cent 60.613 31.799

Cumulative per cent 60.613 92.412

Eigenvectors

Total annual precipitation )0.363 )0.049

Isothermality )0.326 0.265

Annual mean temperature 0.055 0.517

Mean diurnal range 0.359 0.059

Precipitation of driest month )0.038 )0.512

Precipitation seasonality (CV) 0.322 0.086

Precipitation of wettest month )0.366 )0.048

Temperature annual range 0.378 )0.094

Maximum temperature of warmest month 0.311 0.314

Minimum temperature of coldest month )0.110 0.508

Temperature seasonality (SD*100) 0.373 )0.140

Correlation with total precipitation (R2) )0.932 )0.087

Correlation with elevation (R2) 0.277 )0.934

Correlation with slope (R2) )0.085 0.112

Correlation with aspect (R2) 0.020 0.009
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explained 60.6% of the climatic variation; PC2 explained

31.8% of the remaining climatic variation and correlated

strongly with elevation (R2 = 0.934).

Using the digital elevation model (DEM), we constructed

topographic roughness and aspect variables to evaluate the

impact of variable terrain and solar radiation on model

success. The roughness value (or topographic ruggedness

index) for a cell was calculated as the square root of the average

of the squared differences in elevation between the target

centre cell and the eight cells immediately surrounding it (Riley

et al., 1999). While there are a variety of ways to transform

aspect to represent incident radiation (Beers et al., 1966;

McCune & Keon, 2002), we chose a simple transformation that

uses the compass value given by the DEM (0–360�), normalizes

it between 0 and 1 and then takes the absolute value, which

serves to fold the aspect, giving equal value to aspects that are

equidistant east or west of the meridian. The calculation is

given by:

Aspect ¼
��180� X

���180:

We also included the normalized difference vegetation index

(NDVI) as a variable to highlight barren areas that are often

signs of the serpentine syndrome. Vegetation on open rocky

substrates has dried and browned by late summer. We used an

NDVI measure from September (MODIS 16-day Albers Equal

Area Conic for contiguous United States, 29-8-2006 to

13-9-2006) to get an alternate measure of low canopy cover

and low-productivity sites where the target species tend to grow.

Analysis

For each of the six target species, we ran the three SDMs

(GLM, ANN and RF) using the statistical software r (Version

2.6.0, http://www.r-project.org) and ME using Maxent (Ver-

sion 3.1.0, Phillips et al. 2006) with the same suite of predictor

variables. Each model run generated a probability of occur-

rence for each of the 49,619 RCT grid cells. Multiple model

runs (n = 30) gave a probability distribution for each cell and

the final output for a set of runs was a mean predictive cell

value ranging from 0 to 1.

To evaluate the relative performances of the models, we

compared SDM outputs using the area under the curve (AUC)

of the receiver operating characteristic (Hanley & McNeil,

1982). This technique requires the modeller to divide the

occurrence data into training and testing batches, where

the first batch is the input for the predictive cell values that the

model will generate and the second batch serves as the standard

for evaluating how well the model performs. We selected a 70–

30% training–testing mix. We then ran the models 100 times,

with the training and testing cells selected at random each time

– a variation of bootstrap resampling. Sensitivity (how often

the model predicts true presences) was plotted against one-

minus-specificity (the false-positive rate measuring how often

the model predicts presences where none occurs) for the set of

runs. The performance score is the AUC measured on a scale of

0–1, where 1 is a perfect score (no errors of omission or

commission) and 0.5 is what we would expect from random

selection.

We used Cohen’s Kappa statistic as an alternative evaluation

criterion because of its recognized value in identifying how well

models predict species presence (Fielding & Bell, 1997; Prasad

et al., 2006). To assess whether the four models used provided

consistent predictions in terms of environmental variables

identified as important, model fit and geographical distribu-

tion of favourable habitat, we performed a simple linear

correlation of predicted values for all grid cells, using pair-wise

comparisons for all models for each species (Prasad et al.,

2006; Termansen et al., 2006).

Pseudo-absence sensitivity

Because the presence-to-absence data ratio can affect model

performance, we examined model sensitivity to the number of

pseudo-absences included, looking for the point at which

model output stabilized. To determine the point at which there

were minimal or no improvements to confidence interval

values by the addition of more pseudo-absences, we examined

model results for 100 runs of each of the three presence–

absence model methods (excluding ME) using 1, 2, 4, 8 and 16

times the number of presences as pseudo-absences for each

species occurrence. We selected a 1 : 2 presence to pseudo-

absence ratio based on minimal, non-significant improvements

in AUC values (and in some cases a worsening) with increasing

pseudo-absences beyond that. Our selected ratios are consis-

tent with other studies (Kvamme, 1985; Zaniewski et al., 2002;

Olivier & Wotherspoon, 2006).

Population discovery

We estimated SDM identification of new population discovery

in two ways. First, we used data collected from the USDA

Forest Service’s Klamath-Shasta-Trinity vegetation plots (the

KST dataset) to test model specificity. These plots represent an

independent assessment of occurrences for our target species

from data not used in model development. We tested the

models using this dataset by examining what threshold value

was needed to include all occurrences.

As an additional method for evaluating model utility, we

conducted field surveys of 11 sites with high predictive scores

for multiple species using the best performing model, RF. Sites

were cruised on foot and visually inspected for species presence.

Site locations with occurrences (36 cells) were recorded using a

hand-held GPS unit (Garmin 76S). We digitized the cruised

pathways on a GIS (ArcMap 9.0, ESRI, Redlands, CA, USA),

and identified the number of cells inspected, recording their

predictive scores. For each species, we compared the predicted

values for the cells with that species to those without, but

containing one or more of the other target species.

Finally, we used the 935 KST plots to examine cell values

for species presences versus absences. To assess scores of

Distribution models for rare plant discovery
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unoccupied cells, we used the 911 cells from the KSF dataset

that contained none of the target species. We compared these

values to the 24 KSF cells that contained one or more of our

target taxa. Again, we used the AUC values from the RF model

and then calculated the percentile ranking for those cells

relative to the entire study area. The KSF plots were not

explicitly selected to survey for the target species or serpentine

soil plants, but were instead designed to characterize the plant

communities of the study region. The botanists conducting

these surveys may not have spotted the target species if

conditions were poor (e.g. non-flowering or desiccated

annuals), but were familiar with the local flora and, in

principle, could identify the target species.

RESULTS

Model fit

We evaluated the relative success of the four model methods in

predicting target species occurrences by comparing mean AUC

values and Kappa statistics (Table 3). Model fit was generally

good for all models and species, with no relationship between

the number of known occurrences (Table 1) and model fit

(Table 3). Among the models, RF yielded results with the

highest mean AUC and Kappa values for each species, followed

by ME. For the AUC comparison, RF was the most consistent

in its performance, as indicated by small standard deviations,

although ME had the smallest standard deviations with respect

to Kappa.

Important variables in creating model fit were consistent

across species (Table 4). Elevation and distance to serpentine

were the two most important variables. Distance to serpentine

was an important variable for all species except L. nuttallii.

Distance to serpentine is likely to be a better predictor of

occurrence than serpentine syndrome because of the high

probability of small registration errors in location (many

records were made prior to GIS technology and the mapping of

serpentine units, and some units were too small and

intermixed to be classified as serpentine). Climate PC1 and

PC2 were also relatively strong predictors of occurrence, and

NDVI, a measure of canopy cover, was moderately important

variable for L. nuttallii and H. doris-nilesiae.

Model comparisons

The cross model correlations were variable, depending on

species and models compared. Six of the seven correlations that

were < 0.3 involved ANN (Table 5). The highest average

correlations involved RF with ME and GLM. Through exam-

ination of maps and correlation statistics we observed that RF

and ME generated similar results, both in terms of AUC scores

and the physical locations where occurrences were predicted.

No methods correlated consistently well across all species.

Instead, correlation loosely tracked the number of occurrences,

performing best for E. libertini and E. ophitidis, followed by

moderate correlation for H. doris-nilesiae and M. rosei, and

generally poor agreement for H. stebbinsii and L. nuttallii.

Population discovery

Of the 935 KSF plots that fell within the RCT, 24 contained one

or more of our target species and only three species occurred

Table 3 Comparison of four model methods used to predict occurrences for rare serpentine-endemic plant species. The models include:

general linear models (GLM); artificial neural networks (ANN); random forests (RF); and Maxent (ME). Values presented are: (a) the

average scores for 100 runs of the area under the curve (AUC) statistic of the receiver operating characteristic; and (b) Cohen’s Kappa

statistic, which measures the proportion of presences and absences predicted correctly after accounting for chance. Numbers in parentheses

are standard deviations; bold indicates the model with the highest score.

GLM ANN RF ME Average

(a) AUC scores

Eriogonum libertini 0.927 (0.012) 0.910 (0.019) 0.949 (0.011) 0.945 (0.006) 0.933

Ericameria ophiditis 0.875 (0.012) 0.879 (0.059) 0.951 (0.009) 0.910 (0.007) 0.904

Harmonia doris-nilesiae 0.843 (0.043) 0.830 (0.051) 0.956 (0.023) 0.939 (0.020) 0.892

Harmonia stebbinsii 0.829 (0.045) 0.827 (0.066) 0.954 (0.021) 0.948 (0.012) 0.890

Leptosiphon nuttallii 0.952 (0.041) 0.891 (0.071) 0.976 (0.024) 0.968 (0.011) 0.947

Minuartia rosei 0.737 (0.031) 0.766 (0.075) 0.942 (0.015) 0.904 (0.016) 0.837

Six species 0.881 (.010) 0.888 (0.059) 0.947 (0.006) 0.901 (0.006) 0.903

Mean AUC 0.863 0.856 0.954 0.931

(b) Cohen’s Kappa

Eriogonum libertini 0.698 (0.035) 0.673 (0.074) 0.756 (0.037) 0.742 (0.014) 0.717

Ericameria ophiditis 0.568 (0.030) 0.592 (0.067) 0.761 (0.028) 0.650 (0.013) 0.643

Harmonia doris-nilesiae 0.548 (0.080) 0.576 (0.094) 0.809 (0.076) 0.808 (0.025) 0.685

Harmonia stebbinsii 0.542 (0.073) 0.586 (0.107) 0.822 (0.062) 0.765 (0.022) 0.679

Leptosiphon nuttallii 0.836 (0.094) 0.766 (0.104) 0.869 (0.072) 0.834 (0.029) 0.826

Minuartia rosei 0.370 (0.050) 0.438 (0.084) 0.753 (0.048) 0.687 (0.026) 0.562

Six species 0.587 (.022) 0.601 (0.065) 0.740 (0.020) 0.656 (0.009) 0.646

Mean Kappa 0.593 0.605 0.787 0.735
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three or more times. Results suggest that GLM was the most

discriminating model and ME the least. In total, all plot

occurrences fell within the top 8.9% of cells (cells with the

highest predicted probability of occurrence) using GLM,

compared to the top 21% of cells for ME (Table 6). The

results varied considerably according to model used and

species evaluated. Therefore, we concentrated on a more

general analysis of these data and arbitrarily selected the top

25% as a cut-off threshold to limit targeted species searches.

The second method used to assess the utility of the models

for new population discovery entailed field visits to the sites

ranked highest by the RF model. This exercise resulted in the

discovery of 16 new populations at 11 different sites in 36 cells

(a site was defined as a grouping of adjacent cells, all of which

contained individuals of at least one target species). These sites

also ranked highly according to the ME output. The cells in

which new species presences were found consistently had

Table 4 Relative variable importance for each target species plus

all species combined (RARE) using random forests. Bold indicates

relative variable importance of > 0.15; values > 0.10 are italicized.

See text for an explanation of the two climate variable principle

components and aspect. Species include: Eriogonum libertini

(ERLI); Ericameria ophiditis (EROP); Harmonia stebbinsii (HAST);

Harmonia doris-nilesiae (HADO); Leptosiphon nuttallii (LENU);

and Minuartia rosei (MIRO).

ERLI EROP HADO HAST LENU MIRO RARE

Elevation 0.21 0.23 0.12 0.21 0.35 0.10 0.18

Slope 0.04 0.03 0.05 0.04 0.02 0.04 0.04

Bioclim PC1 0.11 0.14 0.11 0.24 0.08 0.26 0.16

Bioclim PC2 0.14 0.13 0.11 0.15 0.27 0.13 0.12

Serpentine

syndrome

0.02 0.05 0.02 0.01 0.00 0.05 0.04

Degree of

serpentine

0.03 0.06 0.03 0.01 0.01 0.07 0.05

Distance to

serpentine

0.23 0.15 0.22 0.18 0.04 0.13 0.18

Incident

radiation

0.05 0.05 0.09 0.03 0.01 0.06 0.05

Aspect 0.04 0.04 0.09 0.03 0.02 0.05 0.05

Roughness 0.04 0.04 0.05 0.03 0.03 0.04 0.04

NDVI 0.10 0.08 0.11 0.07 0.17 0.08 0.10

Table 5 Cross model correlations (Method 1 compared to

Method 2) for six rare endemic plant species in the Rattlesnake

Terrane of northern California. Models include: general linear

models (GLM); artificial neural networks (ANN); random forest

(RF); and Maxent (ME). Species include: Eriogonum libertini

(ERLI); Ericameria ophiditis (EROP); Harmonia stebbensii (HAST);

Harmonia doris-nilesiae (HADO); Minuartia rosei (MIRO); and

Leptosiphon nuttallii (LENU). All pair-wise correlations > 0.7 are

bold-faced for emphasis.

Method 1 GLM GLM GLM ANN ANN RF

AverageMethod 2 ANN RF ME RF ME ME

Species

ERLI 0.861 0.900 0.805 0.827 0.761 0.816 0.828

EROP 0.512 0.794 0.755 0.495 0.489 0.762 0.635

HAST 0.361 0.519 0.383 0.288 0.208 0.650 0.402

HADO 0.504 0.725 0.306 0.501 0.122 0.483 0.440

MIRO 0.611 0.380 0.659 0.344 0.495 0.342 0.472

LENU 0.140 0.426 0.206 0.225 0.245 0.719 0.327

Six species 0.939 0.808 0.884 0.826 0.860 0.812 0.855

Average 0.561 0.650 0.571 0.501 0.454 0.655

Table 6 An assessment of model performance by examining

the minimum predicted cell values that capture all occurrences of

the target species in the Klamath-Shasta-Trinity data set. For the

three species with multiple occurrences, we recorded the

percentage of cells that would need to be surveyed to capture

all KSF plot occurrences. Models include: generalized linear

models (GLM); artificial neural networks (ANN); random

forest (RF); and maximum entropy (ME).

GLM ANN RF ME n

Eriogonum libertini 10.2 13.9 14.7 22.1 6

Ericameria ophiditis 6.40 3.30 4.09 23.2 10

Minuartia rosei 10.1 21.9 14.3 17.7 8

Mean fraction 8.9 13.0 11.0 21.0

Table 7 Two sets of data are used to ascertain differences

between cells with species occurrences and those without. (a) In a

search area covering approximately four miles, 36 grid cells were

found to be occupied by one or more target species. The average

percentile ranking (maximum = 100) for occurrences of each taxa

exceeded the average ranking for cells that were found lacking that

target species but occupied by other target species. Rankings are

based the random forests model. (b) The USFS used 935 plots

(KSF plots) to assess ecological attributes in the study region.

Among these, 24 plots contained an occurrence of at least one

species. The average cell value for the KSF presences significantly

(P < 0.001) exceeded the average cell value for the 911 cells in

which no target species was found. The target species found

include: Eriogonum libertini (ERLI); Ericameria ophiditis (EROP);

Harmonia stebbinsii (HAST); and Minuartia rosei (MIRO).

Numbers in parentheses refer to number of occurrences.

ERLI EROP HAST MIRO

(a)

Population search

presences

96.4 (10) 93.9 (11) 97.0 (2) 98.4 (11)

Population search

absences

93.2* (26) 92.4 (25) 96.3 (34) 95.8* (25)

(b)

KSF plot presences 92.8 (6) 98.4 (10) N/A 92.8 (8)

KSF plot absences 79.0� 79.1� 80.5� 72.5�

*Marginally significant difference from population search presence,

P < 0.1 using a one-tailed t-test.

�Highly significant difference (P < < 0.001) from population search

presence using single factor ANOVA.
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higher model probability values than cells where the species

were absent (Table 7). For each of the 36 cells where at least

one target species was found, we considered these to be true

absences for any target species not found in that cell. The

predictive values of those absences were not significantly

different from the values for the remaining cells where that

species was found. In contrast, the KSF plots with new

occurrences scored significantly higher for target taxa than in

the 911 cells where no occurrences were found. Our searches

did not reveal any new populations of H. doris-nilesiae or

L. nuttallii – the two most geographically restricted taxa. The

successful model-driven searches for the other species suggest

both that RF and ME can be effective tools for population

discovery and that E. libertini, E. ophiditis and M. rosei may be

less rare than previously supposed.

We used to generate the predictive map for each species

because it consistently gave the best fits (highest AUC and

Kappa statistics for each species) using the entire data set

(Fig. 2). Having assessed model fit by withholding occurrences,

we used all test occurrences to identify potential locales for

species occurrence. This was accomplished by generating AUC

probabilities for each of the grid cells in the study area. Two or

more target species were found to co-occur on forest plots

mapped for a single species on multiple occasions. We

hypothesized that there may be shared habitat preferences

among the species that are not defined explicitly, but that

could potentially wield predictive power for an anonymous

target species using the larger training and testing data set.

Therefore, we also used RF to generate a prediction map for all

of the target species together (Fig. 3).

DISCUSSION

Habitat specialist species with narrow geographical ranges test

the limits of SDMs. For our study species and for many other

restricted range plants, it is not well understood to what extent

distributions are limited by suitable habitat availability or by

barriers to movement and stochastic processes (Wiser et al.,

1998). Furthermore, while we may be able to define rough

range limits for these species at a landscape scale, conservation

management actions may require planning at the scale of

habitat occupancy within the defined range. At a conceptual

level, range and habitat occupancy are fundamentally different

concepts (Gaston, 2003) and SDMs have mostly been applied

to predict species ranges. However, the better a SDM, the more

it can distinguish between the characteristics of places where

species occur and the surrounding background matrix where

they are absent, i.e. a species’ habitat occupancy. This study

highlights some of the strengths and limitations of using SDMs

for habitat occupancy modelling. One primary utility is for

new population discovery across a geographically small but

heterogeneous landscape. Given that we lacked true absence

data for this study, we do not claim that our results provide

Eriogonum libertini Ericameria ophitidis

Harmonia doris-nilesiae Harmonia stebbinsii 

Minuartia rosei Leptosiphon nuttallii 

Figure 2 Predicted occurrence maps for six target species

based on probability of occurrence for individual grid cells of

the Rattlesnake Creek Terrane. White areas indicate higher prob-

ability of a rare species occurrence decreasing to grey then black

for low probability of occurrence. Values were calculated using

the random forests model trained with all occurrence data.

Figure 3 Predicted occurrence map for all six target species

combined using the random forests model. White areas indicate

higher probability of a rare species occurrence decreasing to grey

then black for low probability of occurrence.
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generalizable assessments of the modelling platforms for small

samples. Instead, we assert that the model performances

reported here represent a case study that may in turn be used

to inform a more general comparison under similar parameters

with true absence data.

The fact that new species occurrences were discovered at

locations where models indicated high probability is encour-

aging and suggests that SDMs can discriminate between the

background matrix and potential habitat even at fine scales.

Effective new population discovery using our SDMs also

suggests that the differential habitat values described by the

model might also be used to guide other types of conservation

management decisions. These conservation decisions include

identifying potential restoration sites or scoring aggregate

conservation values based on high densities of cells with high

habitat values for multiple species.

If a species fails to occupy many suitable sites within its

distribution (i.e. has low habitat saturation), then non-

occurrence data become less informative and a model may

give high habitat suitability scores and good AUC values

without offering much in the way of on-the-ground utility

(Gibson et al., 2007). While our model outputs led to the

discovery of new populations of some target species, our

finding in the field was that a great deal of seemingly

appropriate habitat did not contain these plants. An approach

to improving SDM output accuracy for such applications

would be to run SDMs on an iterative basis, where model

performance is monitored as inputs are updated with the

addition of new populations and real absences are determined

from field surveys after the first model outputs have been field

tested. There is a recognized need for such iterative efforts in

landscape ecology (Gardner & Urban, 2007) and its application

to rare species modelling could help refine predictions of

suitable habitat for rare species. Such iterative work could be

achieved by collaborating with resource management agencies

to develop the capacity to run SDMs with new data being

incorporated at the end of each field season.

A second issue that may reduce the ability of SDMs to

discriminate suitable habitat from background matrix relates

to the selection of non-occurrences for edaphic specialist

species, such as our focal species that are largely restricted to

ultramafic soils. If edaphic constraints are strong, but pseudo-

absences are not restricted to these edaphic features, then the

resulting model can have good fit, but may represent little

more than a soils map. Alternatively, restricting pseudo-

absences to the edaphic features may test whether variation

within soils plays a strong role in predicting occurrences, but it

is likely to result in a model with poor overall fit and could

eliminate possible occurrences not determined by soils. There

may be no clear solution to this problem. We addressed this

issue by limiting pseudo-absences to areas within 5 km of the

convex polygon defining the suite of known locations of rare

species. These areas contain, but are not exclusively composed

of, ultramafic soils.

An additional concern is that few known occurrences

make it difficult to model actual and projected population

distributions with confidence (Stockwell & Peterson, 2002b;

Schwartz et al., 2006; Wisz et al., 2008). Sparse data make it

difficult for models to distinguish important predictor

variables. Although there has been a proliferation of new

modelling techniques (Guisan & Thuiller, 2005; Elith et al.,

2006), relatively few have focused on treating very restricted

data sets (Papes & Gaubert, 2007; Pearson et al., 2007),

despite the fact that this is a common characteristic of rare

species. We found a lower bound in the utility of modelling

geographically restricted species with few occurrences. In this

study, a small number of occurrences (n = 9) in a confined

area (c. 4 km2) combined with relatively homogeneous

environmental conditions did not provide the models with

enough spatial variation to differentiate between appropriate

and inappropriate habitat for the species in question

(L. nuttallii). The models did return high AUC values for

this species, but the mapped results simply confirmed that

the species is narrowly endemic, identified few sites outside

the known range and led to the discovery of no new

populations. Although this may be an entirely accurate

portrayal of the species, our overall lack of confidence in the

robustness of the output along with its low utility encour-

aged us to discount the result.

In contrast, H. stebbinsii, with 18 occurrences and a

distribution of at least 15 km2, had sufficient environmental

and climatic variation to generate enough pseudo-absences

and get better results. The discovery of two new populations of

this species during field validation was possibly the most

impressive result of the modelling. Thus, while there is no fixed

lower-bound in occurrence number and range size, we found

an empirical difference in the contrasting results for

H. stebbinsii and L. nuttallii that may arguably be attributed

to thresholds for these variables.

For restricted-range species, it can be difficult to define

geographical boundaries. This ambiguity can make the

selection of modelling area a subjective process. We restricted

the placement of pseudo-absences to within a 5-km convex

buffer around the known occurrences for each species, based

on the average maximum distance between populations (we

found no data on the maximum dispersal distances of our

target species). There was nothing to suggest, however, that

habitat quality dropped markedly outside the buffered

boundaries. For example, the presence of serpentine soils,

environmental variables and climatic conditions in the

northern part of the RCT appear to be similar to the southern

part, yet there are no recorded occurrences in the north.

Although model output was applied to the entire region, all

of the data input for training the models came from the

buffered polygons and the model outputs predicted few

occurrences north of these boundaries. The KSF dataset

provides encouraging justification for this constraint, with

strong evidence of the lack of target populations in the north.

For modelling future climate scenarios of these species, we

would recommend a broader geographical domain, which

might identify suitable locations outside the known historic

distributions (McLachlan et al., 2007).

Distribution models for rare plant discovery
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Model selection may be important for rare species with

sparse data. Although the target species in this study are poorly

studied, their edaphic restrictions, limited ranges and low

densities make them interesting species to model. In general,

the models performed similarly and where they diverged could

be at least partially predicted by the input (fewer occurrences

generally resulted in lower correlations among models). In

contrast, the places on the map where the models did converge

in their prediction of high suitability were the places we went

and found several new populations.

Nevertheless, there were clear differences in the models. The

Kappa statistic confirmed what the AUC values indicated and

what others have also found in SDM comparisons (Hernandez

et al., 2008): namely, that RF and ME were the best performing

models and had the highest mean correlation with one another.

While GLM and ANN were similar in terms of statistics, we

found ANN to be the least useful model, giving predictive maps

that often did not match the other models evaluated or

corroborate our field experience. Although more consistent

than ANN, GLM did not perform as well as the other two

models overall, which may be an example of its inconsistent

performance with low-prevalence species that others have also

reported (Meynard & Quinn, 2007). Fitting a polynomial term

to the GLM (which we did not do) or replacing it with a

generalized additive model may have improved performance by

making it less restrictive (Yee & Mitchell, 1991; Austin et al.,

2006), yet Elith et al. (2006) still found ME to outperform both

of these variations on the linear GLM. Of the model types we

did use, we found the inclusion of pseudo-absences (by GLM,

ANN and RF) or implied absences (by ME) enhanced the ability

of the models to discriminate among habitat types.

Other than L. nuttallii, whose nine occurrences and 4-km2

range seemed to fall below the lower limits of data required for

adequate modelling, our results suggest that there are SDMs

that can effectively and accurately model species with multiple

forms of rarity to the point of leading to new population

discovery. Given sufficient resolution of predictor variables, we

recommend the development of SDMs for rare plant species,

particularly if there is an opportunity for iterative model and

search phases of future studies.
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