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Predicting the Areal Extent of Land-Cover
Types Using Classified Imagery and Geostatistics

S. de Bruin*

Remote sensing is an efficient means of obtaining large- means to obtain these data in a timely and consistent man-
ner. Yet, remotely sensed land-cover data are not error-area land-cover data. Yet, remotely sensed data are not

error-free. This paper presents a geostatistical method to free, as they rely largely on the spectral responses of land-
cover types that may not all be spectrally distinguishable.model spatial uncertainty in estimates of the areal extent

of land-cover types. The area estimates are based on exhaus- Data accuracy may further degrade as a result of errors in
the source data and imperfect image processing. If re-tive but uncertain (soft) remotely sensed data and a sample

of reference (hard) data. The method requires a set of motely sensed land-cover data are used to evaluate environ-
mental changes one should, therefore, account for the un-mutually exclusive and exhaustive land-cover classes. Land-

cover regions should be larger than the pixels’ ground reso- certainties in these data.
Foody et al. (1992), Maselli et al. (1994), Van derlution cells. Using sequential indicator simulation, a set of

equally probable maps are generated from which uncer- Wel et al. (1998), De Bruin and Gorte (2000), and others
explored how posterior probability vectors, a by-product oftainties regarding land-cover patterns are inferred. Collo-

cated indicator cokriging, the geostatistical estimation probabilistic image classification, can be used to represent
local uncertainty about class labels of individual pixels. Thismethod employed, explicitly accounts for the spatial cross-

correlation between hard and soft data using a simplified paper goes one step further and presents a geostatistical
approach to assess spatial uncertainty (Goovaerts, 1997,model of coregionalization. The method is illustrated using

a case study from southern Spain. Demonstrated uncertain- 1999; Deutsch and Journel, 1998), that is, the joint uncer-
tainty about land cover at several pixels taken together.ties concern the areal extent of a contiguous olive region

and the proportion of olive vegetation within large pixel This is particularly useful in regional analyses that require
spatially aggregated land-cover data. Examples of these areblocks. As the image-derived olive data were not very infor-

mative, conditioning on hard data had a considerable effect assessments of the areal extent of land-cover types over
spatial units with fixed geometry (e.g., political units oron the area estimates and their uncertainties. For example,

the expected areal extent of the contiguous olive region square cells) or the size of contiguous regions having one
vegetation cover. Sequential indicator simulation (SIS) en-increased from 65 ha to 217 ha when conditioning on the

reference sample. Elsevier Science Inc., 2000 ables the generation of multiple maps that honor the avail-
able data and allow spatial patterns and uncertainties in
the mapped land cover to be inferred. Because in SIS
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bility vectors. Data integration is based on a collocated
cokriging approach (Almeida and Journel, 1994; Goovaerts
and Journel, 1995) that, unlike SKlm, explicitly accounts
for the spatial cross-correlation between hard and soft data.
As a consequence, collocated cokriging estimates are po-
tentially less influenced by sharp local contrasts in the soft
data, which are very common in classified imagery
(speckling).

This paper explores the use of SIS with collocated
Figure 1. Pixel blocks showing conditionalindicator cokriging to evaluate uncertainty in area estimates
probabilities for a land-cover type sk given thederived from classified remotely sensed imagery. First, the pixels’ spectral feature vectors. In all three

consequences of spatial uncertainty on area predictions are cases the expected proportion of sk-covered pix-
explained. Next, two sections briefly outline the methods els equals 0.5. The black dots in (b) and (c) in-

dicate sample locations.of collocated cokriging of indicator data and SIS. Finally,
the approach is illustrated by predicting the areal extent
of a contiguous olive region around a given point and within

(Bernoulli distribution), where p(ui;sk|xi) is an estimate ofpixel blocks covering a study area in southern Spain.
the conditional probability for class sk to occur at location
ui given the corresponding spectral feature vector xi. The

AREA PREDICTION UNDER UNCERTAINTY expected regional proportion equals the sum of N expecta-
tions from Eq. (3) divided by N [see Eq. (5)]:An obvious way to derive area estimates over a region from

remotely sensed imagery is by counting the number of
E[F(A;sk)]5

1
N

·o
N

i51

p(ui;sk|xi) (5)pixels that have been assigned to a given land cover. Bayes’
decision rule, which is sometimes referred to as maximum
likelihood rule, assigns each pixel to the class having the Calculation of the variance of F(A;sk) is more involved
largest conditional probability of membership (Duda and though, as will be illustrated below.
Hart, 1973). It typically leads to an over-representation of Figures 1a–c represent pixel blocks of 100 pixels each.
the most frequent class and under-representation of less The pixels are shaded according to their values for
frequent categories (Goovaerts, 1997). Soares (1992) devel- p(ui;sk|xi). In all three cases the expected regional propor-
oped a classification algorithm that does not have this draw- tion E[F(A;sk)] equals 0.5. If the pixels were to be indepen-
back. However, if the only aim is to estimate class areas dent from each other, Var[F(A;sk)] would equal the sum
over regions that contain a large number of pixels, there of the variances [Eq. (4)] of the 100 individual pixels di-
is no need for class allocation altogether, provided that the vided by 100. The results are shown in the first row of
conditional probability vectors are available. Table 1. Spatial independence, however, rarely occurs in

The regional proportion of category sk over a region image scenes and would seriously restrict the usefulness
A equals the number of pixels where sk occurs divided by of remotely sensed imagery in a land resource survey.
the total number (N) of pixels in A [see Eq. (1)]: Suppose that each gray shade in Fig. 1 represents an

independent object with a homogeneous land cover (e.g.,
f(A;sk)5

1
No

N

i51

f(ui;sk), (1) an agricultural field). Figure 1b thus represents one object
(N51) corresponding to an extreme case of spatial depen-

where f(ui;sk) is defined by Eq. (2): dence of the pixels. The expectation E[F(A;sk)] still equals
0.5, but now Var[F(A;sk)] amounts to 0.25, being 100 times

f(ui;sk)551 if s(ui)5sk

0 otherwise
(2) larger than for independent pixels (cf., Goodchild et al.,

1992; Canters, 1997). This is not surprising as F(A;sk) can
only take the value zero or one. On the other hand, Varwith ui denoting the ith pixel location and s(ui) being the
[F(A;sk)] would reduce to zero if the true land cover wouldland-cover class at ui. As the true category s(ui) is unknown,
be sampled at the pixel locations indicated by black dotsit is modeled by the random variable (RV) S(ui). Conse-
in Figs. 1b and 1c. The variance reduction in the case ofquently, it is modeled by the RV F(ui;sk). The (conditional)
independent pixels would amount to only 1% and 4%,expectation (E[.]) and variance (Var[.]) of each are given
respectively (see Table 1), since knowledge of the landby Eq. (3) and Eq. (4):
cover at the sample locations would not affect the uncer-

E[F(ui;sk)]51·Prob{S(ui)5sk}10·Prob{S(ui)?sk} tainty at other locations.
The geostatistical methods presented herein after use5p(ui;sk|xi) and (3)

prior models of spatial correlation to describe spatial conti-
Var[F(ui;sk)]5Prob{S(ui)5sk}·Prob{S(ui)?sk} nuity of land-cover types. They assume the existence of an

exhaustive sample of soft data derived from the probability5p(ui;sk|xi)·(12p(ui;sk|xi)) (4)
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Table 1. Variance of the Areal Proportion of Class sk over Region A,
Var[F(A;sk)], for Different Situations Indicated in Fig. 1

Fig. 1a Fig. 1b Fig. 1c

(1) Independent pixels 0 2.531023 9.37531024

(2) Multipixel objects 0 0.25 2.34431022

(3) As (1), but with sampled ground truth 0 2.47531023 9.031024

(4) As (2), but with sampled ground truth 0 0 0

vectors from an image classification and a relatively small Collocated Indicator Cokriging
sample of hard reference data. Area predictions are condi- The ordinary collocated indicator cokriging (ocICK) esti-
tioned on both data types and on the spatial correlation mate of the posterior probability vector of a categorical
models that tie the data together. The methods not only variable is shown in Eq. (8):
deal with area proportions within spatially confined units
but also enable uncertainty in the geometry of contiguous [p(u;sk|(n))]ocICK5o

n(u)

a51
kOCK

a (u;sk)·i(ua;sk)

1kOCK
n(u)11(u;sk)·y(u;sk)

k51, . . ., K (8)
regions of a given land cover to be modeled.

where (n) denotes the nearby hard and the collocated softINDICATOR COKRIGING
data. Using models of spatial dependence, the weights

Indicator Approach kOCK
a (u;sk) and kOCK

n(u)11(u;sk) are determined by solution of an
The above example illustrates that uncertainty in area esti- ordinary cokriging (OCK) system under the unbiasedness
mates from remotely sensed imagery can be considerably condition [see Eq. (9)]:
reduced if the estimates are conditioned on sampled
ground truth (hard data). The example does not show that o

n(u)

a51

kOCK
a (u;sk)1kOCK

n(u)11(u;sk)51 (9)
such conditioning involves updating the image-derived
conditional probabilities. Indicator kriging provides a (e.g., Isaaks and Srivastava, 1989; Goovaerts, 1997). Any
framework to generate posterior conditional probabilities posterior probability outside the interval [0, 1] is reset to
by integrating hard and soft indicator data (Journel, 1986; the closest bound, zero or one. Subsequently, the estimates
Zhu and Journel, 1993; Goovaerts, 1997). p(u;sk|(n)), k51, . . ., K are standardized by their sum to

Indicator kriging of a categorical variable (e.g., land- meet the condition [see Eq. (10)]
cover class) requires that all data be coded as local prior

oK
k51p(u;sk|(n))51 (10)probability values. Precise measurements of category sk at

hard data locations ua are coded into a set of K binary (Goovaerts, 1997; Deutsch and Journel, 1998). Note that
(hard) indicator data defined as [see Eq. (6)]: condition in Eq. (9) guarantees unbiasedness only if the

hard and soft indicator variables have the same mean within
i(ua;sk)551 if s(ua)5sk

0 otherwise
k51, . . ., K (6) each search neighborhood.

Unlike full cokriging, solution of the OCK system by
These measurements are often supplemented by a large ocICK does not require a spatial-dependence model for
amount of indirect data, such as class probabilities condi- the soft indicator data, but only for the hard indicator
tioned on remotely sensed spectral responses. These are data and the cross-correlation between hard and soft data.
expressed as soft indicator data with values between 0 and Spatial dependence modeling is usually done by fitting
1, thereby indicating uncertainty about the actual category functions through sample (cross-)semivariance values. The
at the soft data location ui. For example [see Eq. (7)]: cross-variogram cIY(h;sk) for category sk between a hard

indicator, I, and soft indicator, Y, is computed from pairedy(ui;sk)5p(ui;sk|x) (7)
observations in a number of direction and distance classes

cf. Eq. (3). a vector h apart [see Eq. (11)]:
Next, local prior probabilities are updated into poste-

rior distributions using nearby hard and soft data. Collo- cIY(h;sk)5
1

2N(h)o
N(h)

a51

[i(ua;sk)2i(ua1h;sk)]
cated indicator cokriging is an updating procedure that
incorporates exhaustively sampled soft data by using only ·[y(ua;sk)2y(ua1h;sk)] (11)
the soft indicator datum that is collocated with the location

where N(h) is the number of data pairs in the class ofbeing estimated. It has important advantages over full cok-
distance and direction. Though not used in this study,riging in that it avoids instability problems caused by highly
indicator cross-variograms can also be computed betweenredundant soft information and significantly simplifies
indicators of different categories sk9?sk. The indicator vario-modeling of spatial correlation (Almeida and Journel, 1994;

Goovaerts and Journel, 1995). gram is computed by substituting i(.) for y(.) in Eq. (11).
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The value 2cI(h;sk) indicates how often two locations a neighboring hard and soft indicator data, for exam-
ple using ocICK [Eq. (8)].vector h apart belong to different categories sk9?sk (Goo-
(b) Generate a value s(l)(u)5s(l)

k via Monte Carlovaerts, 1997, 1999). The linear model of (co)regionalization
sampling of the above distribution. The simulatedis used to ensure positive definiteness of the covariance
value is added to the conditioning data set to bematrix in the kriging system (e.g., Isaaks and Srivastava,
used as a hard datum in all subsequent determi-1989; Goovaerts, 1997; but see Yao and Journel, 1998).
nations;Since ocICK requires the covariance of the soft indica-

3. Move to another node along the random path andtor data only at h50, the only constraint the linear model
repeat step 2.of coregionalization must satisfy is that [see Eq. (12)]

The realization is completed when all nodes have beenusill[cIY(h;sk)]u<√sill[cY(h;sk)]·sill[cI(h;sk)] (12)
given a simulated value.

(Goovaerts, personal communication), where sill[.] denotes The set of realizations generated by SIS provides an
the semivariance for distances larger than the range (i.e., uncertainty model of the spatial distribution of (categorical)
the distance where the variogram levels off). Modeling attribute values. Spatial features, such as contiguous nodes
can be further simplified using a Markov-type assumption, (pixels) assigned to the same category, are considered cer-
which states that dependence of the soft indicator on the tain if seen in all realizations. Conversely, features are
hard indicator is limited to the collocated hard indicator deemed uncertain if seen only on a few simulated maps.

Returning to the problem of area prediction referred todatum (Zhu and Journel, 1993; Almeida and Journel, 1994;
previously, this model of spatial uncertainty can be used toGoovaerts, 1997). The cross-variogram between hard and
assess uncertainty in area estimates derived from remotelysoft indicator data, cIY(h;sk), is then inferred directly from
sensed imagery. This will be demonstrated below.cI(h;sk), using a coefficient of proportionality obtained from

calibrating the soft data to the hard data. The validity of
this approximation must be checked (see e.g., Goovaerts CASE STUDY
and Journel, 1995). Note that ocICK with a Markov coregi-

Study Area, Data, and Methodsonalization model is equivalent to ordinary kriging of the
residuals when the drift given by the cross-correlation coef- The case study concerns part of the drainage basin of the

river Guadalhorce in the province of Malaga, southernficient between hard and soft indicator data has been sub-
Spain. The area is approximately 110 km2 in extent and istracted (Coléou, 1999).
centered around the village of Alora. The major part of
the study area is covered by digital color orthophotography

SIS derived from aerial photographs taken in 1996. The latter
were supplied by the Instituto de Cartografı́a de Andalucı́a.The posterior probability estimates p(u;sk|(n)) computed
De Bruin and Gorte (2000) did a land-cover classificationby indicator kriging model the local uncertainty about the
of the study area using 1995 Landsat Thematic Mappercategory that occurs at each interpolated location. As op-
(TM) imagery. The classification scheme distinguished 10posed to the kriging variance, which is independent of
mutually exclusive and exhaustive land-cover classes. Thedata values (e.g., Goovaerts, 1997, 1999), measures derived
per-pixel class membership probabilities conditional to thefrom these probability vectors reflect the uncertainty that
remotely sensed spectral responses were stored to enableis due to both data geometry and data values. Regional
further analyses of local classification uncertainty. Here,analyses, however, often require spatially aggregated data.
in the first instance, we will consider the three main cropThis implies that local uncertainties must be combined to
types in the area: citrus fruits, arable crops, and olive.reflect joint uncertainty at several locations taken together.
Later, attention is focused on the olive crop.Such spatial uncertainty can be modeled by stochastic sim-

Hard land-cover indicator data [Eq. (6)] were collectedulation (i.e., generating multiple equiprobable realizations
by visual interpretation of the digital color orthophotogra-of the joint distribution of attribute values in space) (Zhu
phy. First, an equilateral triangular grid with a spacing ofand Journel, 1993; Journel, 1996; Goovaerts, 1997, 1999).
420 m was laid over the area having orthophoto coverage.Simulation of multiple realizations of a categorical vari-
At each grid node the land-cover category was determinedable can be performed using SIS. Such simulation proceeds
within a square cell of 900 m2. The cells precisely matchedas follows (Gómez-Hernández and Srivastava, 1990; Goo-
ground resolution cells of the geo-referenced 1995 Landsatvaerts, 1997; Deutsch and Journel, 1998; Kyriakidis, 1999):
TM image. Only cells in which a unique land-cover cate-

1. Define a random path through all nodes (pixels) to gory could be clearly identified were retained (514 cells).
be simulated, visiting each node only once; Subsequently, the grid was densified for improved vario-

2. At each node u along this random path: gram estimation at short distances. The locations of 200
(a) Determine the posterior probability p(u;sk|(n)) additional sample points were optimized using spatial simu-

lated annealing (Van Groenigen and Stein, 1998). The ob-for each category sk, k51, . . ., K, conditional to the
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the Markov approximation was inappropriate, constraint
[Eq. (11)] was used to fit a linear model of coregionalization.

The error matrix of the 1995 classification (De Bruin
and Gorte, 2000), which was prepared from 87 homoge-
neous multipixel reference sites, illustrates the difficulty
of correctly classifying olive from remotely sensed imagery.
The class had 65% omission errors and included 39% false
commissions as a result of spectral confusion with other
land-cover classes. Therefore, the olive class was selected
to demonstrate the effect of using hard data in geostatistical
estimation and simulation.

The expanded GSLIB cokriging program newcokb3d
(Ma and Journel, 1999) was used to implement ocICK for
estimating local probabilities of the occurrence of olive.
Sequential indicator simulation with ocICK was performed
using the GSLIB program sisim. The latter program was
modified to enable the use of linear models of coregionali-
zation. Estimates of the spatial uncertainty about the pres-
ence or absence of olive vegetation were obtained from
500 SIS realizations both with and without conditioning
on the hard indicator data.

RESULTS

Figure 3 shows the indicator (cross-)variograms for the
three main crop types in the study area. The continuous
curves in the upper three plots (Figs. 3a–c) were obtained
by fitting positive linear combinations of spherical func-
tions through the sample semivariances. The indicator vari-
ogram for citrus (Fig. 3a) is anisotropic (i.e., the pattern
of spatial connectivity changes with direction; the axis of

Figure 2. Locations of the 688 land-cover samples. greatest spatial continuity being in a north–south direc-
Coordinates (m) correspond to UTM zone 30.

tion). The solid lines in Figs. 3d to 3f are Markov models
of the indicator cross-variograms cIY(h;sk), sk5citrus, arable,
olive. The models show good correspondence with the

jective was to have at least 100 point pairs in distance class experimental data for citrus and arable crops, but the ap-
90 m to 180 m and 400 point pairs in distance class 180 proximation does not fit the olive data. The cross-variogram
m to 270 m, in each of two direction classes (06458 and cIY(h;olive) cannot be considered as being proportional to
906458). Five points were lost because they were posi- cI(h;olive). A better fit, obtained with a linear model of
tioned within a cell that was also sampled by another point. coregionalization, is shown in Fig. 4. This model puts the
In another 21 cells the land cover could not be properly most weight (73%) on the relatively unimportant long-
determined. The total reference set thus amounted to 688 range component (1350 m) of cI(h;olive). Besides having
cells with high-accuracy (hard) land-cover data (Fig. 2). low overall predictive ability (see above), the image-derived

The image-derived land-cover class probabilities (De soft indicator data particularly fail to detect short-range
Bruin and Gorte, 2000) were calibrated against the hard variations in the presence or absence of olive vegetation.
indicator data by means of logistic regression. This was As can be observed in Fig. 5, conditioning on hard
done to approximate equality of the stationary means of olive indicator data has a considerable effect on the esti-
hard and soft indicator data, and thus validity of unbiased- mated local probabilities of occurrence. In the neighbor-
ness condition in Eq. (9). The thus-transformed class prob- hood of hard indicator data, the short range variability of
abilities served as soft indicator data in all subsequent the kriging estimates (Fig. 5b) is lower than that of the
analyses. Indicator variogram modeling for the three main image-derived probabilities (Fig. 5a). At the same time the
crop types was done using GSTAT 2.0 (Pebesma, 1998; local uncertainty is lower. Beyond the range of influence
Pebesma and Wesseling, 1998). The Markov coregionaliza- of the hard indicator data (see Fig. 2), Figs. 5a and 5b
tion model was used to infer the cross-variograms between are identical.
hard and soft indicator data. The resulting models were The effect of the hard indicator data on estimating

spatial uncertainty is even more pronounced. Figure 6visually checked against sample cross-variogram values. If
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Figure 3. Experimental indicator (cross-)variograms (symbols), fitted variogram models (a–c), and Markov mod-
els of the indicator cross-variograms (d–f) for the three main crop types in the study area.

illustrates some results of 500 SIS realizations (2473500 of the simulations it was classified as not having olive vege-
tation. The difference with the distribution of Fig. 6 is apixels each), conditioned on both the hard and soft indica-

tor data. The attribute of interest concerns the area of a consequence of the absence of hard indicator data that via
the model of coregionalization relate the uncertain image-contiguous olive-covered region around one of the sample

locations (point #213). This location was known to be cov- derived data to locations having known land cover.
For comparison, the original 1995 land-cover classifi-ered by olive vegetation. The area estimate is subject to

spatial uncertainty because it depends on the land cover cation (De Bruin and Gorte, 2000) would have reported
a contiguous olive region of 80 ha around point #213.at multiple locations taken together. Therefore, it cannot

be directly calculated from a probability field (e.g., Fig. Although the error matrix of that classification indicates
the difficulty of correctly classifying olive vegetation, it is5b), but an approximate answer can be obtained from the

statistics of a set of equiprobable realizations. The results not clear how this uncertainty affects the area estimate.
of the multiple SIS computations are summarized in a
histogram (Fig. 6a) and a cumulative distribution graph

Figure 4. Experimental indicator cross-(Fig. 6b) of the simulated area. Olive-labeled pixels were
variogram for olive (symbols) and linearconsidered connected if they were within the immediate model of coregionalization fitted under

8-pixel neighborhood (eight nearest neighbors) of each constraint [Eq. (11)].
other. The mean area amounted to 217 ha and the (sample)
variance was 7,638 ha2. However, the latter figure is of
little practical value since the area distribution exhibits
bimodality with distinct peaks around 150 ha and 330 ha.
This bimodality is caused by two regions being connected
or not in the individual simulations.

The SIS computations were repeated without condi-
tioning on the 688 hard indicator data. The results are
summarized in Figs. 7a and 7b. The mean area and variance
now amounted to 65 ha and 3,513 ha2, respectively. The
area distribution has a high peak at 0 ha and a second,
lower peak around 70 ha. The first peak is due to uncer-
tainty about the land cover at location #213 itself. In 31%
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Figure 5. Image-derived soft indica-
tor data for olive (a) and ocICK esti-
mates of the local probabilities of oc-
currence conditional to the nearby
hard and the collocated soft indica-
tor data (b).

Assessment of uncertainty in area estimates requires spatial ter and may concern, for example, the size of land-cover
regions (e.g., habitats) or the proportion of land-cover typeserror modeling and cannot be based on global measures

derived from an error matrix. within spatial units (e.g., pixel blocks). The area estimates
are based on exhaustive but uncertain (soft) remotelyAs indicated earlier, area predictions over spatial units

with fixed geometry also involve spatial uncertainty. Figure sensed data and a sample of exact (hard) data. The latter
data are particularly important if the image-derived data8 shows estimates of the proportions of olive vegetation

and their variances in square pixel blocks of 100 pixels (9 are not very informative. Collocated indicator cokriging
allows the updating of soft probability data using a simpli-ha) each. The former were calculated as block averages

of the ocICK posterior probability estimates p(u;olive|(n)) fied model of coregionalization between hard and soft data.
A Markov-type assumption may further alleviate the mod-shown in Fig. 5b. Alternatively, they could have been ob-

tained from some form of block indicator kriging (Isaaks eling efforts. The case study, however, demonstrated that
the Markov approximation does not always fit the experi-and Srivastava, 1989; Goovaerts, 1997; Deutsch and Jour-

nel, 1998). The variances were calculated from the 500 mental cross-variogram. Sequential indicator simulation
enables the generation of a set of alternative equiprobablemaximally conditioned SIS realizations. Note that unlike

block kriging variances, these conditional variances reflect maps from which uncertainties regarding land-cover pat-
the uncertainty that is due to both data geometry and terns can be inferred. The method can be implemented
data values. using public domain software (Deutsch and Journel, 1998;

Pebesma, 1998; Ma and Journel, 1999).
Assessment of uncertainty about land cover is rarelyCONCLUSIONS a goal in itself. More often, the variable of interest is an

ecological response variable that ultimately may be usedThis paper presents a geostatistical method to model uncer-
tainties in image-derived estimates of the areal extent of in developing land-use policies. Estimates of the uncer-

tainty in such a variable can be obtained by using multipleland-cover types. These uncertainties have a spatial charac-
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Figure 6. Histogram (a) and cumulative dis-
tribution (b) of the area of a contiguous re-
gion with olive vegetation (around sample
#213). The distribution was calculated from
500 SIS realizations; all conditioned on nearby
hard and collocated soft indicator data.

SIS-generated land-cover maps as input to ecological re- adopted. Alternatively, it may be more appropriate to model
mixtures of discrete land-cover classes, in which case geosta-sponse models. The uncertainty estimates thus obtained

can then be used in risk-based policy (Goovaerts, 1999; tistical estimation could be performed using some form of
compositional kriging (De Gruijter et al., 1997).Kyriakidis, 1999).

The indicator approach presented in this paper re- The method requires an exhaustive set of mutually
exclusive land-cover classes (e.g., olive vs. nonolive). Un-quires the land-cover regions to be considerably larger than

the pixels’ ground resolution cells (H-resolution; Strahler et certainty is due to incomplete data about the true land-
cover type but does not concern the class definitions; theseal., 1986). In the opposite case, it may be relevant to model

vegetation quantities as continuous variables so that an ap- should be clear-cut. If the latter is not the case, the concept
of expected membership in a fuzzy set can be used toproach similar to that proposed by Dungan (1998) could be

Figure 7. Histogram (a) and cumulative dis-
tribution (b) of the area of a contiguous region
with olive vegetation (around sample #213).
The distribution was calculated from 500 sem-
iconditional SIS realizations (i.e., without con-
sidering the hard indicator data).
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Figure 8. Estimates of the propor-
tions of olive vegetation (a) and their
variances (b) in pixel blocks of 10310
pixels (9 ha).

combine uncertainty about values of random variables with
The author is grateful to Jaap de Gruijter, who gave helpful adviceuncertainty about the class intentions. Examples of such a in an early stage of this research. He, Arnold Bregt, Martien

combination of fuzziness and probabilistic uncertainty in Molenaar, and Alfred Stein are acknowledged for commenting
areas other than land-cover mapping have been reported on an earlier version of the manuscript.
by Lark and Bolam (1997) and De Bruin (2000).
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