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approach for investigating place effects on health: the
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Study objective: Most studies of place effects on health have followed the multilevel analytical approach
that investigates geographical variations of health phenomena by fragmenting space into arbitrary areas.
This study examined whether analysing geographical variations across continuous space with spatial
modelling techniques and contextual indicators that capture space as a continuous dimension surrounding
individual residences provided more relevant information on the spatial distribution of outcomes.
Healthcare utilisation in France was taken as an illustrative example in comparing the spatial approach
with the multilevel approach.
Design: Multilevel and spatial analyses of cross sectional data.
Participants: 10 955 beneficiaries of the three principal national health insurance funds, surveyed in 1998
and 2000 on continental France.
Main results: Multilevel models showed significant geographical variations in healthcare utilisation.
However, the Moran’s I statistic showed spatial autocorrelation unaccounted for by multilevel models.
Modelling the correlation between people as a decreasing function of the spatial distance between them,
spatial mixed models gave information not only on the magnitude, but also on the scale of spatial
variations, and provided more accurate standard errors for risk factors effects. The socioeconomic level of
the residential context and the supply of physicians were independently associated with healthcare
utilisation. Place indicators better explained spatial variations in healthcare utilisation when measured
across continuous space, rather than within administrative areas.
Conclusions: The kind of conceptualisation of space during analysis influences the understanding of place
effects on health. In many contextual studies, viewing space as a continuum may yield more relevant
information on the spatial distribution of outcomes.

T
he past decade has seen a growing interest in the effects
places of residence have on health.1–4 Most contextual
studies based on individual level data have followed the

multilevel analytical approach (using the usual random
coefficient multilevel models5 6 or alternating logistic regres-
sion7 8). In the multilevel analytical approach, measures of
association between contextual factors and health have their
standard errors corrected for the non-independence of people
within areas.9 Furthermore, as Merlo has emphasised,10

multilevel models provide measures of variation based on
random effects (such as area level variance or the variance
partition coefficient) that inform us on the distribution of
health outcomes across areas.11 12 This study aims to show
that the multilevel analytical approach may fail to provide
optimal epidemiological information for both measures of
association and measures of variation in many analytical
cases, because of dependence on a space fragmented into
arbitrary administrative areas.
As a specific instance of the modifiable areal unit problem

discussed in the field of geography,13–16 measures of variation
in multilevel models are dependent on the arbitrary size and
shape of the areas.17 More importantly for social epidemiol-
ogists, even if appropriate size and shape are considered, the
usual multilevel models, in neglecting spatial connections
between areas, treat them as if they were disconnected
entities. Assuming independence for persons from different
areas even if the areas are adjacent or nearby,9 the multilevel
analytical approach fundamentally assumes that all spatial
correlation can be reduced to within area correlation.
Therefore, measures of variation in multilevel models may

only provide partial information on the spatial distribution of
health outcomes in quantifying the magnitude of correlation
within areas but not the range of correlation in space.
To obtain epidemiologically relevant information such as

the latter, we suggest building a more continuous notion of
space into statistical models. This approach has been
advocated in ecological studies for disease mapping,18–20

identification of clusters of disease,19 21 and implementation
of spatial regression.22–28 However, there has been much less
effort to incorporate a continuous notion of space in studies
based on individual data.29–31 Some authors have modelled
spatial variations of individual outcomes with non-para-
metric functions of the spatial location.32 33 Approaches of this
kind, and others such as geographically weighted regres-
sion,34 do not provide the requisite parametric information of
interest on the spatial distribution of outcomes. In any case,
there has been almost no attempt to examine whether
investigating variations across continuous space provides
more relevant information than the multilevel approach in
the social epidemiological field of contextual analysis.
To explain spatial variations of outcomes, beyond indivi-

dual factors, authors consider contextual factors that are
usually measured within administrative areas.1 However,
people may be affected not only by the characteristics of their
local administrative area of residence, but also by the context
beyond these administrative boundaries, as their social
activities may encompass a broader space.35 Therefore, we
propose an approach for defining the social factors of the
context that considers spatial neighbourhoods, defined as
continuous spaces around individual places of residence,
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rather than territorial neighbourhoods arbitrarily defined by
administrative boundaries.36–39

In France, geographical variations in healthcare utilisation
operate on a larger scale than the administrative areas
usually considered in multilevel analysis.40 Such variations,
therefore, constitute a good instance of the need for
considering space as a continuum, rather than fragmented
into disconnected areas. In France, people can access directly
specialist physicians without referrals and as frequently as
they wish, and obtain partial or total reimbursement,
depending on their insurance status. With regard to utilisa-
tion behaviour, although the underuse of specialty care may
result in suboptimal diagnosis or treatment options,41 42

frequent self referral to specialists without regular recourse
to a primary care physician (PCP) leads to a lack of
coordination of care.43 44 We investigated whether the relative
utilisation of PCPs or specialists could be linked to the
availability of physicians (a determinant in convenience of
geographical access) and to the socioeconomic level of the
context (a factor that may affect healthcare utilisation
through beliefs and expectations about the healthcare
system).
Using a nationwide French survey sample, (1) we under-

took a multilevel analysis of healthcare utilisation and
examined whether there was spatial autocorrelation un-
accounted for by multilevel models; (2) we investigated
whether spatial models (such as spatial mixed models45)
better accounted for geographical variability and provided
more accurate information on the spatial distribution of
healthcare utilisation than multilevel models; and (3) we
explored measuring specific place characteristics across
continuous space, rather than within administrative areas,
to better explain spatial variability of behaviour.

METHODS
Datasets and outcomes
Our data came from the survey on health and health
insurance conducted by the French Research and
Information Institute for Health Economics (IRDES).46 Half
of the sample was surveyed in 1998, the other half in 2000.

Figure 1 Distribution of municipalities in which people were surveyed.
Individual information on healthcare utilisation was plotted across all of
mainland France, providing adequate information for modelling
variations across continuous space with spatial regression techniques.

20 kilometres
N

20 kilometres
N

20 kilometres
N

Figure 2 Measurement of the socioeconomic status of the context at the
municipality level (above), at the broad area level (middle), and across
continuous space (bottom). Measures across continuous space,
computed as a weighted average of contextual information at
surrounding points, take into account information over a much larger
area than the municipality of residence. For ease of illustration, only one
point every 10 kilometres (rather than every kilometre) is represented.
The point size is a function of the weight value.
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The nationwide population sample is representative of the
persons insured through the three main national health
insurance funds (for salaried employees, farmers, self
employed people, and retirees in these three categories—that
is, 96% of the population). After approval by the French
National Commission for Data Protection, survey data were
merged with administrative files containing information on
physician consultations for each person over a one year
period.
Two complementary binary outcomes were examined. The

first was derived from a question in the survey and showed
whether or not each person had a regular PCP. Analysis of
this outcome was restricted to those surveyed in 2000
(n=5227), the only year in which this question was asked.
The second binary outcome showed whether or not more
than 50% of a person’s consultations over the course of the
year had been with specialists, rather than PCPs. This
outcome was computed from the administrative data on
healthcare consumption and was successfully merged with
the survey data for 9309 of 10 955 people. Analysis of this
outcome was undertaken among people who had had at least
one consultation over the one year period (n=8102). We
used a binary outcome because of the non-normality of the
residuals in a multilevel linear model for the proportion of
specialist consultations expressed in its continuous form,
which also facilitated comparison with the model for the first
binary outcome. Very similar results were obtained when cut
offs other than 50% of specialist consultations were used to
define the second binary outcome. After excluding people
under 18 years of age, the final sample sizes were 5217 for the
PCP analyses, and 8093 for analyses of the percentage of
specialist consultations.
Municipality level data, including socioeconomic data

(taken from the 1999 census) and information on the
number of sites where physicians could be consulted
(according to the ADELI database of the French Ministry of
Health), were linked to the samples described above.

Explanatory variables
Definition of contextual indicators in administrative
areas
Continental France is divided into 36 500 municipalities, or
into 348 broad areas constituted by aggregating adjacent
municipalities among all of which significant commuting
occurs.47 In the dataset for the PCP outcome, 3233 munici-
palities and 338 broad areas were represented. In the dataset

for the percentage of specialist consultations, 4421 munici-
palities and 340 broad areas were included. Considering areas
in the latter dataset, the median population size was 2185 for
municipalities (interquartile range: 794–6 533), and 98 495
for the broad areas (61 818–178 720). Municipalities in
which people had been surveyed were distributed across all
of France (fig 1).
We had no precise locational information other than

municipality affiliation (discussed below). People were
located at the centroid of their municipality when computing
contextual factors across continuous space, but were ran-
domly located within municipalities during spatial regression
analysis (see appendices 1 and 2 for rationale).
At the level of administrative areas, the contextual factors

investigated were one socioeconomic indicator (percentage of
inhabitants with minimal education—that is, incomplete low
secondary schooling or less) and the densities of PCPs and
specialists (number of consultation sites per square kilo-
metre). All these variables were computed at the municipality
level and at the broad area level.

Contextual indicators measured across continuous
space
The three contextual factors were also measured across
continuous space surrounding each person’s place of resi-
dence.34 39 This procedure is described in detail in appendix 1.
As illustrated at the bottom of figure 2, the measurement
approach for the socioeconomic status of the context consists
in positioning points on every kilometre of French territory,
attributing to these points the socioeconomic characteristic of
the municipality in which they are located, and then
computing the socioeconomic contextual factor for each
person as a weighted average of the contextual values for all
points located around that person. In computing this average,
we used weights to show that points at a greater distance
from a person may affect that person less than points that are
closer.34 Because of the weighting function used, our
approach considers contextual information within a radius
of about 35 kilometres of the persons, a space far exceeding
the size of municipalities of residence. As illustrated in
figure 2, this measurement across continuous space clearly
differs from measures at either the municipality level or the
broad area level.
We also measured the supply of PCPs and supply of

specialists across continuous space by computing the
weighted number of consultation sites within a radius of

Table 1 Individual level variables used as adjustment factors in regression models for
healthcare utilisation, France, 1998 and 2000

Variables Categories

Age Less than 30*; 30–44; 45–59; 60–74; 75 and older
Sex Male*; female
Marital status Married or living with partner*; single; divorced; widowed
Self rated health (on a scale From 0 to 10) Low score (from 0 to 6)*; medium-low score (equal to 7);

medium-high score (equal to 8); high score (equal to 9 or 10)
Number of diseases� 0*; 1 or 2; 3 or 4; more than 4
Educational achievement level Primary school or less*; secondary school; university; student
Occupational status` Unskilled blue collar worker*; skilled blue collar worker; lower

level white collar worker; mid-level position; upper level white
collar worker

Employment status Working*; unemployed; other
Household income per capita1 First quartile*; second quartile; third quartile; fourth quartile
Health insurance status Basic insurance only*; supplementary insurance; payments

waived for medical reasons or because of poverty

*This is the reference category in the models. �A list of diseases was provided to participants to assist in their
reporting. Physicians from the CREDES completed the list for each person on the basis of their prescription drug use
and their consultations with health professionals. Dental conditions were excluded. `Occupational status was
defined according to the French list of professions and social categories published by the French National Institute
of Statistics and Economic Studies.50 1Household income was adjusted for household size.
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50 kilometres of a person’s residence, using weights to
account for the fact that physicians at a great distance were
less accessible than those closer (see appendix 1).

Individual level adjustment factors
Regression models were adjusted for health, demographic,
and socioeconomic variables that have repeatedly been
shown to be associated with healthcare utilisation (full
details in table 1).

Statistical analysis
To rigorously compare multilevel and spatial modelling
approaches, the two level multilevel model described in
appendix 2 was fitted separately in two different ways: first
with municipalities as the second level units, and then with
much larger areas—that is, the broad areas mentioned above,
as second level units. An accurate estimate of random
variations between areas was obtained by estimating the
multilevel models with a Markov chain Monte Carlo method
(MLwiN 1.2, Institute of Education, London). To see whether
there was spatial autocorrelation unaccounted for by multi-
level models, we used Bivand’s R software package48 to
compute Moran’s I statistics for the area level residuals.32 49 In
our case, the Moran’s I showed whether adjacent areas (that
is, those sharing a common boundary) had more similar area
level residuals than would be expected under spatial
randomness. Moran’s I is roughly equal to 0 when there is
no spatial autocorrelation and positive when there is
clustering.
To model geographical variations across continuous space,

we used geostatistical spatial mixed models that measure the
correlation in healthcare utilisation between people as a
decreasing function of the spatial distance between them (see
appendix 2). These spatial mixed models were fitted with the
SAS macro GLIMMIX (version 8.02, SAS Institute, Cary, NC,
USA). To compare the fit of the empty multilevel and spatial
models, we refitted the multilevel models with GLIMMIX. We
used the scaled deviance to compare the different models.
After including all individual level variables, contextual
variables were added to the models, but were only retained
if they were significantly associated with the outcomes
in spatial mixed or multilevel models. We successively

Table 2 Results of the empty multilevel logistic models and empty spatial logistic models
for healthcare utilisation, France, 1998 and 2000

No regular primary care
physician

High percentage of specialist
consultations

Municipality level multilevel model�
Area level variance su

2 (SE) 0.382 (0.133)** 0.175 (0.059)**
Moran’s I for area residuals (SE) 0.33 (0.02)*** 0.20 (0.02)***
Scaled deviance 4738.9 8841.2
Broad area level multilevel model�
Area level variance su

2 (SE) 0.249 (0.068)*** 0.140 (0.030)***
Moran’s I for area residuals (SE) 0.24 (0.03)*** 0.32 (0.03)***
Scaled deviance 4056.3 8625.6
Spatial model`
s2 (SE) 0.032 (0.008)*** 0.033 (0.010)***
s1

2 (SE) 1.084 (0.023)*** 1.116 (0.018)***
r (SE) 16.40 (9.64)* 115.5 (64.7)*
Scaled deviance 3603.2 7840.6

*p,0.05; **p,0.01; ***p,0.001 (p values are two sided). �The multilevel model parameters were estimated by
the Markov chain Monte Carlo method (MLwiN). The Wald test was used for the area level variance. To compute
the Moran’s I, we used the area level residuals of 67% of the municipalities (n = 2167) for the variable regarding
regular primary care physicians, and the residuals of 73% of the municipalities (n = 3227) for the variable
regarding specialty care use (the other municipalities had no adjacent municipality in the sample). All broad area
residuals were used to compute the Moran’s I. Based on the assumption of normality for the area level residuals, the
Moran’s I is normal under the null hypothesis, with a mean approximately equal to 0 and a known variance. We
computed a two tailed p value for the Moran’s I. Scaled deviances come from multilevel models estimated using the
GLIMMIX macro. `Spatial model parameters were estimated with GLIMMIX. The Wald Z test was used for the
covariance parameters. The parameter s2 is the partial sill, s1

2 is the nugget effect, and three times the parameter r
is the range of the model (the distance beyond which the correlation is less than 5% of the correlation at distance 0).
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Figure 3 Correlation between people in healthcare utilisation
behaviour as a function of the spatial distance between them, estimated
by empty spatial mixed models, France, 1998 and 2000.
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estimated place effects measured at the municipality level, at
the broad area level, and across continuous space. To
compare the different measures, each indicator was divided
into quartiles.
The spatial perspective we propose comprises two different

aspects: (1) utilisation of spatial mixed, rather than multi-
level models, and (2) measurement of contextual factors
across continuous space, rather than within administrative
areas. Obviously, it is necessary to test these two aspects
separately to assess their specific value in contextual analysis.
Therefore, we estimated the multilevel models (either with
people grouped within municipalities or broad areas) with
contextual variables successively measured (a) within muni-
cipalities, (b) within broad areas, and (c) across continuous
space. We then estimated separate spatial mixed models with
these different contextual measures (municipality factors,
broad area factors, measures across continuous space).

RESULTS
Twelve per cent of the participants reported they had no
regular PCP, and 23% had gone to specialists for more than
50% of their consultations within a one year period.
Multilevel models showed significant variations for both

outcomes at the municipality level or at the broad area level
(two sided p value ,0.001; table 2). The Moran’s I for area
level residuals was significantly positive in all multilevel
models (two sided p value ,0.001), suggesting unaccounted
spatial autocorrelation between adjacent areas (table 2).
In the empty spatial mixed models (table 2), two people

located in the same place had a correlation equal to 0.028 for
not having a regular PCP (fig 3). Such a correlation was 46%
lower for people 10 kilometres apart, and 95% lower for
people 50 kilometres apart. The correlation in having a high
percentage of specialist consultations was of similar magni-
tude for people in the same place, but decreased more
gradually than for the other outcome with increasing
distance between people (correlation was 5% and 23% lower,
respectively, for people 10 and 50 kilometres apart). It shows
that the regular PCP outcome varied in space on a more local
geographical scale than the outcome on the percentage of
specialist consultations. For both outcomes, the scaled

deviance was considerably lower in the empty spatial mixed
models than in the empty multilevel models, showing a
better fit to the data for the spatial correlation structure
(table 2).
A spatial mixed model adjusted for individual factors

indicated that a higher socioeoconomic status of the context
predicted increased odds of not having a regular PCP
(table 3). However, the supply of physicians was not
associated with this outcome. Regarding the second outcome,
a higher socioeconomic status of the context and a greater
supply of specialists independently predicted increased odds
of having a high percentage of specialist consultations.
Although confidence intervals were wide, there was an
indication of consistently stronger associations between
contextual variables and the outcomes when the variables
were measured across continuous space, rather than within
administrative municipalities or broad areas (table 3).
It should be noted that the different approaches to

measuring contextual variables represented in figure 2 lead
to different geographical representations when identifying
places that do not share the same levels of exposure to these
characteristics. This aspect is illustrated in figure 4, where the
socioeconomic level of the context, as defined by the three
different approaches, is mapped for a rectangular zone
around the city of Paris.
To examine whether the explanatory factors accounted for

spatial variations in healthcare utilisation, we estimated the
area level variance and the Moran’s I in the consecutive
multilevel models (including no covariates, individual cov-
ariates, or individual and contextual factors). We represented
these indicators at the top of figure 5 for the multilevel model
for specialty care use with people nested within broad
areas. The unexplained heterogeneity between broad areas
(expressed as the area level variance) decreased when
individual and contextual variables were introduced into
the model. Area level variance was lowest when place
indicators were measured across continuous space. The
Moran’s I similarly decreased with the increasing complexity
of the model, and once again was lowest when place
characteristics were measured across continuous space. The
same pattern was true for not having a regular PCP, and for

Table 3 Place effects on healthcare utilisation from spatial mixed models adjusted for individual level characteristics. Each
column corresponds to different spatial mixed models, with contextual factors successively measured at the municipality level, at
the level of broad areas, and across continuous space. France, 1998 and 2000

Municipality level effects*
OR 95% CI

Broad area level effects*
OR 95% CI

Effects measured across continuous space*
OR 95% CI

Outcome: no regular primary care physician�
Socioeconomic status of the context (compared with first
quartile)

Second quartile 1.03 (0.80 to 1.33) 0.97 (0.75 to 1.27) 1.02 (0.75 to 1.37)
Third quartile 1.27 (0.99 to 1.63) 1.22 (0.93 to 1.59) 1.49 (1.10 to 2.00)
Fourth quartile 1.79 (1.38 to 2.31) 1.86 (1.40 to 2.46) 2.24 (1.61 to 3.13)

Outcome: high percentage of specialist consultations�
Socioeconomic status of the context (compared with first
quartile)

Second quartile 1.09 (0.92 to 1.30) 1.10 (0.91 to 1.34) 1.18 (0.97 to 1.45)
Third quartile 1.30 (1.08 to 1.57) 1.20 (0.97 to 1.49) 1.38 (1.09 to 1.74)
Fourth quartile 1.50 (1.23 to 1.84) 1.17 (0.90 to 1.53) 1.62 (1.15 to 2.28)

Supply of specialists (compared with first quartile)
Second quartile 1.02 (0.86 to 1.21) 1.20 (0.96 to 1.50) 1.40 (1.05 to 1.88)
Third quartile 1.19 (0.93 to 1.53) 0.97 (0.71 to 1.33) 1.70 (1.08 to 2.67)
Fourth quartile 1.48 (1.05 to 2.09) 1.95 (1.14 to 3.33) 2.03 (1.13 to 3.67)

Supply of primary care physicians (compared with first
quartile)

Second quartile 0.92 (0.77 to 1.09) 0.89 (0.72 to 1.11) 0.88 (0.66 to 1.18)
Third quartile 0.87 (0.67 to 1.12) 1.05 (0.78 to 1.42) 0.69 (0.44 to 1.09)
Fourth quartile 0.82 (0.57 to 1.17) 0.66 (0.39 to 1.10) 0.59 (0.33 to 1.07)

*The odds ratios reported here were adjusted for all individual level factors listed in table 1. �In the model for not having a regular primary care physician, the only
contextual variable retained was the socioeconomic status of the context. In the model regarding the percentage of specialist consultations, the three contextual
factors were retained (each effect adjusted for the others).
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the multilevel models with municipalities as the second level
(results not shown). The Moran’s I remained significant (two
sided p value ,0.05; results not shown) in all multilevel
models for both outcomes after the contextual variables
were included, showing unaccounted residual spatial auto-
correlation.
Similarly, in the spatial mixed models, we examined

whether the residual spatial autocorrelation between people
(modelled as a decreasing function of the distance between

them) was explained by individual and contextual factors.
The case of the models for the percentage of specialist
consultations is shown at the bottom of figure 5. The residual
spatial autocorrelation was lowest when place indicators
were measured across continuous space. The same pattern
was true for not having a regular PCP (results not shown).
Finally, we examined whether multilevel models over-

estimated the significance level of contextual effects in dis-
regarding spatial autocorrelation. We considered multilevel

50 km

First quartile
Second quartile

Percentage of minimally educated inhabitants†

At the level of municipalities

Third quartile
Fourth quartile

50 km

First quartile
Second quartile

Percentage of minimally educated inhabitants†

At the level of broad areas of residence

Third quartile
Fourth quartile

50 km

First quartile
Second quartile

Percentage of minimally educated inhabitants†

Measured across continuous space

Third quartile
Fourth quartile

N

N

N

Figure 4 Variations of socioeconomic
level in place of residence as measured
at the municipality level, at the level of
broad areas, and across continuous
space. Measurements made in a
rectangular zone around the city of
Paris (the boundaries of Paris appear in
bold at the centre of the maps). On the
lower map (showing measures across
continuous space) the value plotted in
each municipality was obtained by
considering contextual information in a
circular space that far exceeds the area
of the municipality. Therefore, the
smoothed pattern that appears on the
map simply shows that people residing
in neighbouring municipalities share
common contextual influences. �Each
indicator was divided into quartiles,
with cut offs from the study sample of
5217 people for the outcome variable
regarding regular primary care
physicians.
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and spatial mixed models that included place characteristics
measured across continuous space, and divided the place
effect parameters by their standard errors. The multilevel
models systematically overestimated statistical significance
of place effects, as compared with the spatial models (table 4).
As an example, the supply of PCPs showed a significant
association with specialty care use in the multilevel models,
which was not the case in the spatial model.

DISCUSSION
We proposed a spatial analytical approach based on a
continuous notion of space. Following the distinction
between measures of variation and measures of associa-
tion,11 12 we found, in our case on healthcare utilisation, that

both types of measures provided more relevant epidemiolo-
gical information when embedded in a spatial perspective
than in the multilevel framework.

Limitations of the il lustrative example
Other than municipality affiliation, we did not have precise
locational information. However, this lack of precision may
not have been of critical importance in our study, as the
36 500 French municipalities constitute more local areas than
the municipalities in many other countries. In addition, it is
known that geographical variations in healthcare utilisation
operate on a much broader scale than the municipality level.40

Therefore, in our case, it would have been more undesirable
to neglect geographical correlation between neighbouring

Table 4 Significance level (defined by dividing parameters by their standard errors) of
place effects measured across continuous space on healthcare utilisation, estimated from
multilevel models with people nested within municipalities or broad areas, and spatial
mixed models, France, 1998 and 2000

Municipality level
multilevel model

Broad area level
multilevel model Spatial mixed model

Outcome: no regular primary
care physician
Socioeconomic status of the
context, fourth quartile

7.1 6.0 4.8

Outcome: high percentage of
specialist consultations
Socioeconomic status of the
context, fourth quartile

5.7 4.7 2.8

Supply of specialists, fourth
quartile

3.4 3.3 2.4

Supply of primary care
physicians, fourth quartile

3.3 3.0 1.7
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Empty model
Individual level model
Full model (broad area factors)
Full model (municipality factors)
Full model (spatial factors)

Figure 5 Explanation of geographical
variations in the odds of having a high
percentage of specialist consultations
with individual and contextual
variables, France, 1998 and 2000.
Top: area level variance estimated from
multilevel models with people nested
within broad areas, and Moran’s I
statistic computed from broad area level
residuals (bars: 95% confidence
intervals). Bottom: residual correlation
between people by spatial distance
between them estimated from spatial
mixed models.
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municipalities than to ignore geographical variations within
municipalities. Conversely, more accurate georeferencing of
people would have been necessary to investigate health
outcomes that exhibit significant variations within munici-
palities.
A second limitation is that sample sizes might have been

more important, especially when conducting municipality
level multilevel analyses. However, our samples were
sufficient to quantify geographical variations between muni-
cipalities, which, as expected, were of greater magnitude than
broad area level variations.

Investigating the magnitude and shape of spatial
variations
The spatial correlation of outcomes, instead of being a
statistical nuisance, is a phenomenon of direct interest that
needs to be modelled properly to obtain relevant information.
In neglecting spatial relations among areas and only
considering the correlation of outcomes within areas, multi-
level models were unable to provide complete information on
the spatial distribution of healthcare utilisation. In contrast
with the assumption that areas of high and low risk were
randomly distributed in space, the Moran’s I showed that
people residing in adjacent areas exhibited greater similarity
of behaviour than would be expected in the case of spatial
randomness. Because of unaccounted spatial autocorrelation,
multilevel models overestimated the statistical significance of
contextual variables, resulting in incorrect inferences.
Viewing space as a continuum, spatial mixed models

captured the spatial autocorrelation unaccounted for by
multilevel models. In modelling the correlation between
people as a decreasing function of the spatial distance
between them, spatial models not only captured the
magnitude of spatial variations but also the scale of such

variations (yielding information on the range of correlation
in space). It indicated that the geographical coherence in
healthcare utilisation existed on a much larger scale than the
municipality level.

Measuring contextual factors across continuous space
Measures across continuous space allowed us to better
explain spatial variations in healthcare utilisation than did
municipality level or broad area level factors. Regarding
municipality level measures, people may be affected not only
by the characteristics of their municipality, but also by
surrounding municipalities. For example, residing in a
deprived municipality may have a different impact on
healthcare utilisation if the municipality belongs to a globally
affluent rather than a socially disadvantaged area. Obviously,
such effects can be more efficiently captured by measures
that consider contextual influences in a space that exceeds
municipality boundaries than by municipality level factors.
On the other hand, the broad administrative areas considered
in our study are not centred on individual residences, and
therefore may not have allowed us to adequately capture
contextual effects. Measures across continuous space sur-
rounding people were more appropriate in reflecting con-
textual influences on healthcare utilisation that operated on a
larger scale than the municipality level.

CONCLUSIONS
Our study shows that the conceptualisation of space that is
used for analysis has an influence on the understanding of
place effects on health. In investigating healthcare utilisation,
measures of variation and those of association between
contextual factors and health both provided more relevant
information when space was viewed as a continuum than
when it was seen as fragmented into disconnected areas. We
acknowledge that the multilevel approach may be the
appropriate choice when the context is defined in a way that
is not strictly geographical (for example, workplaces or
schools)17; when investigating processes that operate on the
scale of administrative areas (for example, matters related to
public policies); or when spatial correlation can be reduced to
the correlation within areas. However, in many social
epidemiological studies, investigating geographical variations
across continuous space using spatial modelling techniques
and place indicators that capture space as a continuous
dimension may be more appropriate in describing and
explaining the spatial variability of health outcomes.
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Key points

N Most contextual analysis studies have followed the
multilevel analytical approach that divides geographi-
cal space into discrete areas disconnected from one
another.

N In our investigation of healthcare utilisation, multilevel
models, in neglecting spatial relations between areas
and considering only the correlation of outcomes
within areas, failed to provide complete information
on the spatial distribution of outcomes.

N Because of unaccounted spatial autocorrelation, multi-
level models overestimated the significance level of
contextual effects, resulting in incorrect inferences.

N By modelling the correlation as a decreasing function
of the spatial distance between people, spatial mixed
models not only provided information on the magni-
tude of spatial variations, but also on the shape of
spatial variations.

N Measuring contextual explanatory factors across con-
tinuous space, rather than within administrative areas,
allowed us to better explain the spatial variability of
healthcare utilisation.

N The conceptualisation of space used for analysis
influences our understanding of place effects. In many
cases, it may be more appropriate to investigate
geographical variations of outcomes across continuous
space.
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APPENDIX

APPENDIX 1: CONTEXTUAL MEASURES ACROSS
CONTINUOUS SPACE
We used a geographical information system (GIS) with
municipalities georeferenced as polygons. People were posi-
tioned at the centroid of their municipality when computing
contextual factors. There would be no reason to attribute a
different location, and accordingly a different contextual
value, to people from the same municipality, as we have no
locational information other than municipality affiliation.
As figure 2 shows, our approach to the socioeconomic

contextual factor takes into account contextual information
at geographical points located in a circular space around
people, which space far exceeds the boundaries of the
municipality of residence. The percentage of minimally
educated inhabitants was available at the municipality level
and needs to be attributed to the geographical points.
However, municipalities differ in size, and only considering
one point per municipality located around a person’s
residence would result in overestimating the impact on that
person of smaller compared with larger municipalities. We,
therefore, regularly positioned points on every kilometre of
French territory (resulting in a regular grid of 540 000
points), and attributed to each point the socioeconomic
characteristic of the municipality in which it was
located, thereby ensuring that all neighbouring locations
were equally represented when computing the contextual
factor.
Weights were needed to show the extent to which points

situated at a greater distance from people had less of an
impact on them than points that were closer.34 We defined
such weights by assuming that the degree surrounding
locations affected people at a given location was a function of
the overall movement of people regularly travelling between
locations. Thus, we sought to approximate the global move-
ment between locations as a function of the distance between
locations in the territory. For the sake of simplicity, we
estimated a mean function for the whole of France, rather
than using a place specific weighting function. We roughly
quantified the regular movement between locations by
considering distances covered by people in going to work,
using for this purpose the 1999 French census, which
provided us with municipality of residence and workplace
municipality for the 22 million people employed in mainland
France. The straight line distance between the centroids of
the municipalities of residence and work (set to 0 for people
working in their residential municipality) followed an
exponential distribution, with a density of probability
roughly equal to w(d)=0.07996exp(–0.07996d), where d is
the distance in kilometres. We used values of this decreasing
function of the distance as weights in the computation of
contextual factors.
The socioeconomic contextual factor Si for people located at

the centroid of a municipality i was computed as a weighted
average of the socioeconomic values at surrounding points j:

where sj is the socioeconomic value attributed to point j of the
one kilometre grid, and wij is the weight of point j on people
from municipality i. Weights were defined with the decreas-
ing function of the distance described above, but were set to 0
when they were less than 5% of the weight for a point
at distance 0. As shown in figure 2, this means that
our approach considers contextual information within

a 37.5 kilometre radius of people, a space considerably larger
than any municipality. Our approach is an adaptation of the
spatial filters used in disease mapping to obtain smoothed
maps of disease incidence.20 31

For measuring the supply of physicians across continuous
space, each site of consultation was randomly located within
its municipality (exact locations were not available). For
people in municipality i, we determined the weighted
number of sites of consultation j within a radius of 50 kilo-
metres as:

For example, for a person having two physicians available
within 50 kilometres, for example, at a distance of 10 and
30 kilometres, Pi would be equal to w(10) + w(30). Pi would
be greater if more physicians were available within the
area, and if they were closer to the person’s residence.
Such an indicator was computed separately for PCPs and
specialists.
Our approach consists in measuring contextual factors

across continuous space, while allowing for the more
significant impact of nearer locations.34 Slightly different
approaches and methodological refinements may be sug-
gested to implement this general idea. For example, other
options exist to define the weighting function, and different
functions may be needed in different parts of the territory or
for the different contextual factors, but investigating these
aspects will require sensitivity analyses.

APPENDIX 2: THE MULTILEVEL AND THE SPATIAL
MIXED MODELS
Let yij be the value of the binary outcomes for individual i in
area j. We first fitted empty multilevel logistic models for
these outcomes6:

where uj is the random deviation of intercept b0 for area j. To
account for the hierarchical structure of the data, the
multilevel model includes area level residuals uj of variance
su

2.
We also modelled geographical variations across contin-

uous space. As figure 1 shows we did not have individual
information for all French municipalities. Accordingly,
spatial lattice models,24 51 which usually consider correlation
between adjacent areas of a territory, were not adapted to our
case. The use of a geostatistical model considering locations
on the territory proved more appropriate.
The spatial mixed models considered are not dependent on

a space fragmented into areas.45 People were randomly
located in their municipality so that the distance between
people from the same municipality would not be set to 0
when estimating the spatial correlation function. Results
remained unchanged when randomly relocating people
within municipalities.
Let us consider a logistic model:
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Let dij be the spatial distance between places of residence
for person i and person j. Spatial mixed models do not take
into account geographical correlation with area level random
effects, but specify a spatial correlation structure for
individual residuals, assuming that the correlation between
residuals ei and ej for persons i and j is a decreasing function
of the distance dij:

Exp(-dij/r) shows that the correlation is proportional to the
exponentiated distance between people. In this model, two
people located at the same place may have an estimated
correlation less than 1, as they do not necessarily have
identical healthcare utilisation behaviour.
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