
Ž .ISPRS Journal of Photogrammetry & Remote Sensing 56 2001 65–80
www.elsevier.comrlocaterisprsjprs

Spatial prediction and uncertainty assessment of topographic
factor for revised universal soil loss equation using digital

elevation models

Guangxing Wanga,), George Gertnera, Pablo Parysowb, Alan Andersonc
a Department of Natural Resources and EnÕironmental Sciences, NRES, UniÕersity of Illinois at Urbana-Champaign, W503 Turner Hall,

1102 S. Goodwin AÕenue, Urbana, IL 61801, USA
b School of Forestry, Northern Arizona UniÕersity, Flagstaff, AZ, USA

c USACERL, P.O. Box 9005, Champaign, IL, USA

Received 9 November 1999; accepted 15 May 2001

Abstract

Ž .Revised Universal Soil Loss Equation RUSLE is a model to predict longtime average annual soil loss, related to
rainfall-runoff, soil erodibility, slope length and steepness, cover management, and support practice. The product of slope
length L and steepnessS is called topographic factorLS, implying the topographic effect on soil loss. This study focuses on
Ž . Ž . Ž .a spatially predicting the topographic factorLS for RUSLE using a Digital Elevation Model DEM , b selecting the

Ž .appropriate DEM spacing for predicting theLS factor, and c modeling the loss of spatial variability of the predictedLS
factor due to DEM resampling. The results show that using the physically based topographical factorLS equation and DEMs
led to a higher correlation of predictedLS values with topographical features, compared to a spatial simulation method
based onLS empirical models and sample data. The appropriate DEM spacing required to achieve prediction precision and
detailed spatial variability of theLS factor was not identical for both requirements and a compromise may be made
depending on the application aims. By modeling the spatial variability of predictedLS values for different DEM spacing, a
new method to directly measure loss of spatial variability due to data resampling was developed. Compared to measures of
entropy and global variance, the new method can reveal the different losses of spatial variability in different directions when
the spatial variability is anisotropic. Published by Elsevier Science B.V.
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1. Introduction

Using the Revised Universal Soil Loss Equation
Ž .RUSLE , the longtime average annual soil loss can
be predicted as a product of rainfall-runoff erosivity
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factor R, soil erodibility factorK, slope length factor
L, slope steepness factorS, cover management factor

ŽC, and support practice factorP Renard et al.,
. Ž .1997 . The slope steepness factorS is a function of

slope angles measured in degrees and reflects the
influence of slope gradient on erosion. The slope

Ž .length factor L is a function of slope length mea-
sured in meters. Soil erosion increases as slope
length and steepness increase, and it is more sensi-
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tive to slope steepness than to slope length. Their
product, called the topographic factorLS, represents
the topographic effect as the ratio of soil loss on a
given slope length and steepness to soil loss from a
slope that has a length of 22.13 m, and a steepness of
9% where all other conditions are the same. The
topographic factor is the most sensitive in the predic-

Žtion of soil loss Renard and Ferreira, 1993; Risse et
.al., 1993 .

In RUSLE, L and S are calculated using a set of
Ž .empirical models Renard et al., 1997 . With a field
Ž .sample, Wang et al. 2000 carried out spatial predic-

tion and uncertainty analysis of theLS factor derived
from the empirical models using geostatistical meth-
ods. When soil loss is estimated for large areas as

Ž .part of a geographic information system GIS for
converging and diverging terrain, the empirical mod-
els did not differentiate net erosion and those areas
experiencing net deposition. A physically based to-
pographical factorLS equation has thus been devel-

Ž .oped based on a digital elevation model DEM
Ž .Moore and Burch, 1986; Moore and Wilson, 1992 .
However, the precision for predicting theLS factor
is related to the DEM accuracy and spacing, and the
methods to derive topographical variables are related

Ž .to LS. For example, Mitasova et al. 1996 investi-´ˇ ´
gated this approach by interpolating DEMs to finer
spacing, and suggested that the commonly used 30-m
spacing USGS DEMs are insufficient.

In addition to prediction precision, capturing the
spatial variability with an appropriate DEM spacing
is necessary to accurately represent the spatial char-
acteristics of theLS factor. Recently, DEMs with
different spacings have become readily available and
lead to the problem of choosing an appropriate DEM
spacing for a given task. Furthermore, the appropri-
ate DEM spacing may be a function of other vari-
ables such as the complexity of the terrain, required
precision, desired information, etc. Choosing an ap-
propriate DEM spacing thus becomes very impor-
tant.

Variance-based techniques have been widely used
to determine appropriate cell spacing in remote sens-
ing for mapping in natural resource inventory and

Ženvironmental monitoring Townshend and Justice,
.1988; Marceau et al., 1994a,b . A local variance

method to choose an appropriate cell spacing for
mapping was developed by Woodcock and Strahler

Ž .1987 based on the relationship between cell spac-
ing and spatial dependence. In the studies by Atkin-

Ž . Žson and Danson 1988 , Atkinson and Curran 1995,
. Ž .1997 and Atkinson 1997 , the appropriate cell spac-

ing was determined based on the relationship be-
tween the spatial dependence of a variable and the
cell spacing using the semivariance at a lag of one
cell. This method can lead to the regularised semi-
variogram and the maximum semivariance at a lag of
one cell for any size of support.

Spatial prediction of a variable implies that esti-
mates of this variable are derived at any locations or
sub-areas. An accurate spatial prediction provides

Žnot only an unbiased population estimate mean
.global estimate but also reliable local estimates. The

unbiased and reliable estimates are related to require-
ments for prediction precision and detailed spatial

Ž .information spatial variability . If the objective is to
derive reliable local estimates, the cell spacing of the
dataset used to derive the estimates should be opti-
mised for obtaining detailed spatial information. If
the aim is to derive unbiased mean global estimates,
precision of prediction becomes very important. The
precision depends on the spatial variation of the
dataset and measurement errors of the variable. If
both global and local estimates are sought for, pre-
diction precision and detailed spatial information of
the estimates should be considered simultaneously.
The desired prediction precision and detailed spatial
information are thus the criteria for determining ap-
propriate cell spacing for spatial prediction. These
criteria can be applied to determine the appropriate
spacing of the DEM used for spatial prediction of
topographical factorLS related to soil loss.

Additionally, in geostatistics, a semivariogram
function measures spatial variability of a variable.
The spatial variability implies the average dissimilar-
ity between data separated by a vector or distance
given a direction. When a sample semivariogram is
fitted using one of the three models commonly used
Ž .spherical, Gaussian and exponential , the nugget
parameter of the models, called the nugget variance,
indicates the measurement error and spatial variabil-

Ž .ity within a support Curran and Dungan, 1989 . The
larger the support, the smaller the measurement error
and the smaller the spatial variability within the
support. The support is related here to the DEM
spacing. Thus, nugget variance of the semivariogram
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estimates the random noise, consisting of the mea-
surement error, and within-cell variability. Data re-
sampling can reduce the nugget variance. Therefore,
the semivariogram method may be used to investi-
gate the appropriate DEM spacing for prediction of
the LS factor.

Moreover, DEM variability affects slope steep-
ness, slope length, and watershed area. Data resam-
pling from finer DEM spacing to coarser may lead to
loss of spatial information in these variables, and
thus causes errors that can propagate to theLS

Ž .factor. Vieux 1995 used entropy theory to measure
Ž .the loss of spatial information. De Cola 1997 stud-

ied multi-resolution covariance and modeled error
propagation using the variance difference between
two sizes of cell spacing. However, the uncertainty
and error propagation may vary over space due to
anisotropy of spatial variability and should be mod-
eled in terms of semivariograms in different direc-
tions.

The objective of this study is to develop an
approach to spatially predict the topographical factor
LS using DEM, to choose the appropriate DEM
spacing and to assess the loss of the spatial variabil-
ity due to data resampling. The spatial prediction is
first made using the physically based topographical

Ž .factor LS equation by Moore and Burch 1986 and
Ž .Moore and Wilson 1992 for different DEM spac-

Žing. The uncertainty of the spatial prediction Chiles`
.and Delfiner, 1999; Myers, 1997 , including the

variance, spatial variability, entropy and relationship
of estimates with DEM spacing, is then investigated.
The spatial variability of the predictedLS values is
modeled. The effect of DEM spacing on the uncer-
tainty of estimates is studied. The appropriate DEM
spacing is analysed. A new method to model the loss
of spatial variability caused by data resampling is
presented and compared to existing loss measures
using entropy and global variance.

2. Case study area and datasets

The study area is located in Central Texas in Bell
and Coryell Counties approximately 256 km south-
west of Dallas, TX. Its area is approximately 87,890

Ž .ha Wang et al., 2000 . The landscape exhibits a

stair-step topography consisting of a gently rolling to
rolling dissected remnant plateau. Higher elevations
occur at the northwest portions of the study area and

Ž .the lowest ones at the southeast Fig. 1 . A strip of
territory with steeper slopes goes from the northwest
to the southeast. In the central lower area, there is a
flat sub-region. Belton Reservoir and Stillhouse Hol-
low Reservoir are close to the southeast border and
the southeast corner, respectively. Surface water
drains mostly in an easterly direction.

A 7-min DEM with 30-m spacing and vertical
resolution of 1 m for this area was acquired from the

Ž .US Geological Survey Fig. 1 . This DEM was
classified as Level-2. The root mean square error in
elevation was 5.13 m. Slope ranges from 08 to 388
with an average of 2.948 and steep slopes mainly
occur as bluffs along the flood plain and at the
slopes of the mesa–hills. Using nearest neighbour
resampling, new datasets with 50-, 100-, 200- and
400-m spacings were derived from the original DEM.
Moreover, a small area of 10 by 10 km was selected
at the northwest where there is high variation of the

Ž .predictedLS values see Fig. 1 . For the small area,
datasets with 20-, 10- and 5-m spacings were created
from the original DEM using an interpolation method

Žcalled regularised spline with tension Mitasova and´ˇ ´
.Mitas, 1993 .´ˇ

3. Methodology

In this study, the five DEMs mentioned in Section
2 were used to derive estimates of slope, aspect,
flow-line length, flow-line density, and up-slope con-
tributing area using the Geographic Resources Anal-

Ž .ysis Support System GRASS, 1993 GIS. TheLS
factor was calculated according to a physically based

Žtopographical factorLS equation Moore and Burch,
.1986; Moore and Wilson, 1992 . The spatial variabil-

ity of the LS grids was then presented by plotting
semivariogram values with data separation distances
in different directions using the Geostatistical Soft-

Ž . Ž .ware Library GSLIB Deutsch and Journel, 1998 .
The spatial variability structures were modeled using
spherical, exponential and Gaussian models for dif-

Žferent DEM spacing using S-Plus Kaluzny et al.,
.1998 .
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Fig. 1. The original DEM with 30-m spacing and its slope map. A small area at the northwest, used in other tests below, is outlined in the
DEM map.

Furthermore, for each DEM spacing, global vari-
Žance, mean local variance in a 3=3 neighbour-

.hood and mean semivariance at a lag of one cell
were derived from the predictedLS grids. The re-
sults were used together with the modeled semivari-
ograms to choose the appropriate DEM spacing. In
addition to entropy and global variance of estimates,
a method to model the loss of spatial variability due
to data resampling was derived. The relationships
between losses of global variance, spatial variability
and entropy were discussed. A program developed
by the authors was used to calculate the relative

Ž .losses. ArcView GIS Hutchinson and Daniel, 1997
was employed to display the raster data.

3.1. Calculation of topographic factor LS

The physically based topographical factorLS
equation to estimate theLS factor is:

m nA sinb
LSs 1Ž .

22.13 0.0896
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where m and n are constants equal to 0.6 and 1.3,
respectively;b is the land surface slope in degrees,
A is the up-slope contributing area per unit width of

w 2 y1xcell spacing m m from which the water flows
into a given grid cell. The areaA for a given grid
cell is calculated from the sum of the grid cells from
which the water flows into the cell, as follows
Ž .Mitasova et al., 1996 :´ˇ ´

nma
As 2Ž .

b

wherea is the area of a grid cell;n is the number of
cells draining into the cell;m is the weight depend-
ing on the runoff generation mechanism and infiltra-
tion rates; andb is the cell spacing. With uniform
rainfall and infiltration in this study area, the weight

Ž .m was assumed to be one Mitasova et al., 1996 .´ˇ ´
Becausea is constant for a specific cell spacing,
asbb. Thus, Asnb. In practice,A can be approxi-
mated by multiplying the down-slope flow-line den-
sity with the DEM spacing.

For each DEM spacing, theLS factor was pre-
Ž .dicted using Eq. 1 for each cell of the study area

and the variance of theLS factor was also derived
for each cell using the predictedLS values within a
window. The cell for calculating variance was lo-
cated at the center of the window and the size of
window was related to the separation distance by
which the cell values tend to be independent. Addi-
tionally, the grids of predictedLS values and their
variances derived using this method above were
compared to those created usingLS empirical mod-
els and sample data with a spatial simulation geosta-
tistical method. For the empirical models, the sample
data and the geostatistical method, readers may refer

Ž .to Wang et al. 2000 .

3.2. Spatial Õariability and appropriate DEM spac-
ing

For spatial prediction and uncertainty assessment
of the LS factor using DEM, it is very important to
choose an appropriate DEM spacing and to capture
spatial variability. Ideally, the DEM spacing should
be determined such that the desired precision of
estimates and detailed spatial information can be
simultaneously achieved using the least data. Since

data resampling leads to reduction of data noise, the
global variance of predicted values generally de-
creases as DEM spacing becomes coarser. The de-
crease is rapid at the beginning, then slows, and
finally the variance stabilizes. Given the precision
requirements, the global variance and the appropriate
DEM spacing for the desired precision can be deter-
mined. Data resampling, on the other hand, results in
loss of spatial information. The appropriate DEM
spacing for the desired precision may be too coarse
to capture and allow interpretation of spatial variabil-
ity. Thus, the appropriate DEM spacing for each of
these two requirements may differ. In this study, the
global variance and mean local variance of the whole
grid and semivariance at a lag of one cell are inte-
grated to search for an appropriate compromise in
DEM spacing.

Ž .A local variance Woodcock and Strahler, 1987
is defined as the variance within a 3=3 window.
The mean local variance for a grid is taken to be the
mean of the local variances through the entire grid
with the exception of the border grid cells. Given a
method of data resampling for spatial prediction of
the LS factor, if the DEM spacing is considerably
finer than the appropriate DEM spacing to capture

Žthe spatial variability ofLS, the local variances or
.mean local variance will generally be low because

of high correlation between the cell values in the
3=3 neighbourhood. If the DEM spacing approxi-
mates the appropriate DEM spacing, the local vari-
ances tend to be higher because of lower correlation
between the cell values. When the DEM spacing is
further increased, the local variances start to decrease
again because of similarity between the neighbours.
The maximum in the mean local variance as a
function of DEM spacing is an indication of the
appropriate DEM spacing to capture spatial variabil-
ity of the LS factor. It can thus be used to choose an
appropriate DEM spacing for spatial prediction of
the LS factor.

On the other hand, spatial variability of a variable
can be modeled as a realization of a random function
Ž . Ž .Atkinson and Curran, 1997 . LetZ x be a random
function defined for positionx in two-dimensional

Ž . Ž .space asZ x sm qe x with m as the localv v
Ž .mean of Z in a neighbourhood V, ande x as the

random function with a zero mean. With the so-called
intrinsic hypothesis of stationarity, a semivariogram
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Ž .g h measures the average dissimilarity between
data separated by a lag distanceh given a direction:

1
g h s var Z x yZ xqhŽ . Ž . Ž .

2

1 2s E Z x yZ xqh 3Ž . Ž . Ž .
2

The semivariogram is usually unknown and can
be approximated with an experimental semivari-
ogram obtained by sampling. Assume that the vari-

Ž .able Z is sampled in the study area andn data z ua

are obtained, whereas1, 2, . . . , n and u is thea

vector of spatial coordinates of thea th sample. The
experimental semivariogram is calculated as half the
average squared difference between the components
of every data pair:

Ž .N h1 2
g h s z u yz u qh 4Ž . Ž . Ž . Ž .Ž .ˆ Ý a a2N hŽ .

as1

Ž .where N h is the number of data pairs used,h is
Ž .the distance separating two sample values,z ua

Ž .and z u qh are two samples at locationsu anda a

u qh separated by a lag distance ofh.a

When the lag distance is equal to the cell spacing,
Ž .the value obtained by Eq. 4 is the semivariance at a

Ž .lag of one cell Atkinson and Danson, 1988 . The
relationship between the cell spacing and the semi-
variance at a lag of one cell is similar to that
between the cell spacing and local variance men-
tioned above. At the beginning, the semivariance
increases with increased cell spacing. At some cell
spacing, the spatial variability of the variable is
captured best and the semivariance at a lag of one
cell reaches a maximum value, then it decreases
again and becomes stable. The semivariance at a lag
of one cell is thus an indication of the appropriate
DEM spacing to capture the desired spatial variabil-
ity of the LS factor.

3.3. Modeling spatial Õariability and uncertainty

The experimental semivariograms should be
checked for detecting anisotropy in different direc-
tions such as azimuth 08, 458, 908, and 1358. If they
are isotropic, an omnidirectional experimental semi-
variogram can be calculated and is often fitted using

spherical, exponential or Gaussian models. Other-
wise, the experimental semivariograms should be

Ž . Ž .fitted separately in different directions. Eqs. 5 , 6
Ž .and 7 listed below are the spherical, exponential

and Gaussian models, respectively, with nugget ef-
fects:

g hŽ .ˆ

3° h h
c qc 1.5 y0.5 0Fh-a0 1 0~ ž / ž /a as 0 0¢c qc hGa0 1 0

5Ž .

° 3h
c qc 1yexp y 0Fh-a0 1 0~ ž /ag h sŽ .ˆ 0¢c qc hGa0 1 0

6Ž .

g hŽ .ˆ

2° 3hŽ .
c qc 1yexp y 0Fh-a0 1 02~ ž /as 0

¢c qc hGa0 1 0

7Ž .

where c and c are the nugget variance and struc-0 1

ture variance, respectively, andcsc qc is the sill0 1

variance; a is the actual range parameter for the0

spherical model. For the exponential and Gaussian
models, a is the effective range parameter. The0

effective range is defined as the distance at which
Ž .g a s0.95c. When c s0, the equations aboveˆ 0 0

represent pure spherical, exponential and Gaussian
models.

The nugget variancec of a semivariogram can0

be inferred by they-intercept of the fitted model and
arises from measurement error variance and micro-

Ž .scale variance Atkinson, 1997; Goovaerts, 1997 .
When the experimental semivariograms are calcu-
lated using raster data, the nugget variance implies a
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noise term, that is, measurement error variance and
within-cell variability. The sill variancec implies the
variance of the raster data. The nugget variance and
sill variance generally decrease as the cell spacing
increases. The range parametera implies the dis-0

tance when spatial dependence disappears, and it
tends to increase as the cell spacing increases. In this
study, these parameters for the grids of predictedLS
values were modeled and used together to investigate
the relationship of spatial variability of predictedLS
values with the DEM spacing.

One could resample a DEM to a coarser spacing
and then compute all these quantities related to the
LS factor for another spacing, or one could compute
LS for the original DEM and then resampleLS to a
coarser spacing. The objective of this study is, how-
ever, to investigate the appropriate DEM spacing
from which the LS factor can be derived. The sec-
ond method may not directly result in the appropriate
DEM spacing; thus, the first method was used in this
study. The loss of spatial variability of elevation due
to data resampling is propagated to the calculation of
slope and up-slope contributing area, and thus to
prediction of the LS factor. The loss of spatial
variability was modeled using the measures of en-
tropy, global variance and semivariogram.

The theory of entropy was used to measure loss of
Ž .information content Vieux, 1995 . LetI denote the

entropy,B the number of discrete intervals of theLS
factor, andP the probability of theLS factor occur-i

ring within the intervali. The entropy of grid data at
Ž .a specific spacing is Shannon and Weaver, 1964 :

B

Isy P log P 8Ž . Ž .Ý i i
is1

Measuring the entropy of theLS factor for differ-
ent DEM spacing provides an estimate of the rate of
information content loss due to the data resampling.
The entropy is also a measure of spatial variability
when applied to raster data. The entropy is addition-
ally consistent with the variance of raster data. When
the topographic surface is a plane, the elevation is a
constant and the probabilityP is 1.0. This meansi

zero entropy, zero information content, and zero
uncertainty. The higher entropy is associated with
surfaces of highly variable elevation or of uniform
slope. The loss of entropy from the original DEM

spacingÕ to a DEM spacingÕ due to data resam-0 k

pling can be represented as:

D I Õ ™Õ s I y I 9Ž . Ž .0 k Õ Õ0 k

Moreover, the variance change after data resam-
pling is:

Ds 2
Õ ™Õ ss 2

Õ ys 2
Õ 10Ž . Ž . Ž . Ž .0 k 0 k

2Ž . 2Ž .where s Õ and s Õ are the variance ofLS0 k

raster data for DEM spacingÕ and Õ , respectively.0 k

If the spatial variability of the predictedLS factor
for two different sizes of DEM spacing is modeled

Ž . Ž . Ž .using either Eq. 5 , Eq. 6 or Eq. 7 , the difference
of the modeled semivariograms between two sizes of
DEM spacing at any lag indicates implicitly the loss
of spatial variability. The integral of the differences
over the grid is thus the total loss of the spatial
variability for the whole grid, and can be denoted as:

Dg s g h yg d h d az 11Ž . Ž . Ž . Ž .HHÕ ™ Õ Õ Õ0 k 0 k

where az is an azimuth at which the semivariogram
is derived. Given a specific direction, the integral
can be evaluated over distanceh:

H
Dg s g h yg h dh 12Ž . Ž . Ž .HÕ ™ Õ Õ Õ0 k 0

0

where H is the maximum distance in a specific
direction. When a semivariogram model is selected,
the equation for loss of spatial variability is specific.
Using the spherical model, for example, the loss of
spatial variability can be represented as:

Dg s DC hqDC h2yDC h4 NminŽa00 ,ak 0.� 4
Õ ™ Õ 0 1 2 00 k

q DC hqc hyDC h2� 0 01 3

qDC h4 NmaxŽa00 ,ak 0.44 minŽa ,a .00 k 0

� 4 Hq DC h N 13Ž .5 maxŽa ,a .00 k 0

where:

Ž .1.5 c a yc a01 k 0 k1 00
DC sc yc DC s0 00 k 0 1 2a a00 k 0

3 30.5 c a yc a 1.5cŽ .01 k 0 k1 00 k1
DC s DC s2 33 3 2a4a a k 000 k 0

0.5ck1
DC s DC sc yc qc yc4 5 00 k 0 01 k134ak 0

and c , c , and a are the nugget variance, struc-00 01 00

ture variance and actual range of influence of the
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Ž .semivariogram for the original DEM spacingÕ ,0

respectively; andc , c , and a the same quanti-k 0 k1 k 0
Ž .ties for the new DEM spacingÕ .k

Ž . Ž . Ž .Eqs. 9 10 and 11 generally indicate the en-
tropy loss, global variance loss, and spatial variabil-
ity loss from the original DEM spacingÕ to a new0

spacing Õ . If the losses are divided by the corre-k

sponding entropy, global variance and semivari-
ogram for the original DEM spacingÕ , the relative0

losses are obtained. Furthermore, the relative losses
of spatial variability and global variance can be
plotted against the relative entropy loss.

4. Results

The grids of the predictedLS factor obtained
using the physically-based topographical factorLS
equation and different DEM spacing are shown in
Fig. 2. For comparison, a predictedLS grid derived
using LS empirical models with sample data and a
spatial simulation method are also presented in the
lower right of Fig. 2. The outline indicates the
boundary of the area where slope and slope length
data in 219 field sample areas were used.

When the physically based topographical factor
Ž .LS equation and DEMs were used Fig. 2 , at the

areas from northwest to southeast and at the corner
of southwest, highLS factor values were derived
because of the hilly terrain. The central-south area is
flat, thus, low LS estimates were predicted. Further-
more, the lakes at the southeast were filled with
estimates of zero. The features above are similar
when the DEM spacing is less than 100 m, slightly
different between 30- and 200-m DEM spacings, and
very different between 30- and 400-m DEM spac-
ings. The finer the DEM spacing, the more detailed
the spatial variability.

A geostatistical spatial simulation algorithm was
used to estimate theLS values at the unknown
locations using the empirical models and sample data
Ž .lower right of Fig. 2 . The resultingLS grid had a
100-m spacing. Within this grid, high and lowLS
values were obtained respectively in the hilly and
flat areas. However, most of the areas had no sample
data and were filled with the predicted values close
to the average of the sample data. The topographical

features affectingLS values cannot obviously be
observed in this grid. For example, this grid does not
show the areas filled with zero, indicating flat areas
and lakes, but the other grids in Fig. 2 do show these
features.

The variance grids of the predictedLS values for
different DEM spacing were computed by the win-
dow method mentioned in Section 3.1 and are shown
in Fig. 3. The window size used was 800 by 800 m,
i.e. the size in cells varied according to the DEM
spacing. For comparison, the variance grid of pre-
dicted LS values created byLS empirical models
with sample data and a spatial simulation is also
given in the lower right of Fig. 3. The grid spacing
was 100 m.

When the physically based topographical factor
Ž .LS equation and DEMs were used Fig. 3 , large

variances are spatially distributed along the hilly
areas from northwest to southeast, and at the south-
west corner. Small variances are mainly found at the
central-south of the flat area and the lake areas. The
features of variance spatial distribution correspond to
topographic features of the area and the spatial vari-
ability of the predictedLS factor. The relationship of
the DEM spacing to the predictedLS values de-
scribed in Fig. 2 also applies to the variances. For
the variance grid of the empirical models in the
lower right of Fig. 3, the relationship of the vari-
ances with the topography was not distinct. In this
case, the variances depended on the sample values
and data configuration, not on topography. In the
areas with lowerLS values and denser samples, the
variances are smaller, and vice versa. Outside of the
sampling area, the variances are high.

The experimental semivariograms of the predicted
LS grid were derived in four directions using the

Ž .original 30-m DEM spacing Fig. 4 . The semivari-
ograms have the similar development trend over
distance in all four directions, and they increase
rapidly from 0 to 400 m, then slowly from 400 to
about 1200 m, and stabilize after 1200 m. The
nugget variances are different in different directions.
The experimental semivariograms for 08 azimuth and
different DEM spacing are presented in Fig. 5. These
semivariograms are similar in shape, and may be
modeled using the same spherical model. For the
same lag distance, the semivariogram values de-
crease from finer to coarser spacing. The semivari-
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Ž .Fig. 2. Comparison of the predictedLS grids for different DEM spacing. Additionally, a predictedLS grid 100-m spacing created byLS
Ž .empirical models with sample data with marked field sample areas and a spatial simulation method is shown in the lower right.
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Fig. 4. Experimental semivariogram of predictedLS grid for 30-m DEM spacing and four directions.

ograms for 100- and 200-m DEM spacing look very
similar and overlap, but have different nugget vari-
ances.

The semivariograms for different DEM spacing
and four directions were modeled using the spherical
model and the parameters are listed in Table 1. For
each direction, the nugget and structure variance
decrease and the range parameter increases as the
DEM spacing increases except for the 100-m DEM
spacing. The decrease in the nugget variance implies
a reduction of noise and within-cell spatial variabil-
ity due to data resampling. For the same DEM
spacing, the nugget and structure variances and range
parameter vary depending on the direction. However,

Ž .the sill variances nugget plus structure variance are
very similar in different directions. At the southeast,
the nugget variance and range parameter are the
largest because of the complex topography and the
high spatial variability in elevation and slope. The
exception mentioned above is that the 100-m DEM
spacing led to the smallest nugget variances in all
directions, and to smaller range parameters in three

directions compared to the 50-m DEM spacing. The
reason has not been clarified yet and further investi-
gation is needed.

The change of global variance, mean local vari-
ance and semivariance at a lag of one pixel over the

Ž .DEM spacing for the whole area denoted with W–
Ž .and a small area denoted with S are shown in Fig.–

6. For the small area, the global variance and mean
local variance of the predictedLS values, and semi-
variance at a lag of one cell at first increase with
DEM spacing. The largest global variance is found at
the 30-m spacing, and it decreases slowly from 30 to
50 m, rapidly from 50 to 200 m, and after 200 m
slowly again. The mean local variance and semivari-
ance at a lag of one cell reach their largest values at
the 50-m spacing, then decrease slowly and gradu-
ally stabilize.

For the entire area, the global variance of the
predictedLS values decreases rapidly with the DEM
spacing from 30 to 100 m, and then becomes stable

Ž .after 100 m Fig. 6 . The mean local variance and
semivariance at a lag of one cell increase from 30- to

Fig. 3. Comparison of variance grids of the predictedLS values for different DEM spacing. Additionally, a variance grid of predictedLS
Ž .values 100-m spacing created byLS empirical models with sample data and a spatial simulation method is shown in the lower right.
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Fig. 5. Experimental semivariogram of predictedLS grids for different DEM spacing and 08 azimuth.

50-m spacing, and after 50 m decrease rapidly. There
is a secondary wide peak at the 200-m spacing. The
reason why the mean local variance and semivari-
ance at a lag of one cell are smaller for the 100-m
DEM spacing compared to the ones for 200 m is not
clear, as mentioned previously for the nugget vari-
ances. The 50-m spacing at which the largest local
variance and semivariance at a lag of one cell are
observed may be appropriate for detailed spatial

Ž .information distribution and variability for spatial
prediction of theLS factor.

The similar behaviour of the mean local variance
and semivariance at a lag of one cell with the DEM
spacing implies that the semivariance at a lag of one
cell can replace the local variance as a guide for
choosing the appropriate DEM spacing, when the
aim is to obtain detailed spatial information. Both the
local variance and semivariance at a lag of one cell
measure the mean local spatial variability, while the
global variance measures the global variation of the
estimates and shows a considerably different be-
haviour with an increase of DEM spacing. The global

Table 1
Spherical semivariogram model parameter estimates of topographical factorLS for different DEM spacing and spatial directions

Ž . Ž .DEM c c c a m DEM c c c a m0 1 0 0 1 0
Ž . Ž .spacing m spacing m

Azimuth 08 Azimuth 458
30 2.09 1.98 4.07 638 30 1.79 2.24 4.03 681
50 1.85 1.78 3.63 603 50 1.70 1.88 3.58 760

100 0.26 1.34 1.60 578 100 0.56 1.09 1.65 711
200 0.73 0.88 1.61 765 200 0.84 0.82 1.66 826
400 0.49 0.44 0.93 1602 400 0.57 0.37 0.94 1581

Azimuth 908 Azimuth 1358
30 1.39 2.43 3.82 326 30 2.51 1.53 4.04 1129
50 1.30 2.15 3.45 356 50 2.40 1.20 3.60 1275

100 0.38 1.27 1.65 746 100 0.60 1.03 1.63 927
200 0.74 0.92 1.66 968 200 1.16 0.49 1.65 1739
400 0.47 0.44 0.91 1179 400 0.62 0.30 0.92 1882

c and c are the nugget variance and structure variance, respectively.0 1

csc qc is the sill variance anda is the actual range parameter.0 1 0
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Fig. 6. Global variance and mean local variance of the predictedLS values and semivariance at a lag of one cell for different DEM spacing.
W indicates the whole grid and S the small area shown in Fig. 1.– –

variance can be used to determine the DEM spacing
when the objective is to provide an unbiased mean
global estimate.

The loss of spatial information measured based on
entropy is shown in Fig. 7. The grid of predictedLS
values at the original 30-m DEM spacing has the
largest entropy for both the entire area and the small
area. Compared to the entropy of the original 30-m
spacing, the entropy decreases, indicating the loss of
information for both finer and coarser spacing. This

means that interpolating a DEM to new datasets of
finer spacing may not be able to provide more
information. The reason why the entropy drops more
rapidly for the small area than for the whole area
may be that there is a higher spatial variability of the
LS factor within the small area. There is no signifi-
cant difference in the relative loss of entropy from
30 to 100 and from 30 to 200 m for the entire area.

Fig. 8 shows the relationship between the relative
losses due to resampling from 30-m spacing to a

Fig. 7. Entropy varying with DEM spacing as measure of information loss caused by data resampling.
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Ž Ž .. Ž Ž ..Fig. 8. Relative spatial variability loss due to data resampling, as measured by entropy Eq. 9 , global variance Eq. 10 , and spatial
Ž Ž ..variability given by the integral of the differences of semivariogram functions Eq. 11 in different directions.

larger spacing. The measures of loss are based on
Ž Ž .. Ž Ž ..entropy Eq. 9 , global variance Eq. 10 , and

spatial variability as expressed by the integral of the
differences of semivariogram functions at different

Ž Ž ..directions Eq. 11 . For the specific data resam-
pling used here, the spatial variability and global
variance loss were high compared to the relative loss
of entropy. For example, when the data was resam-
pled from the original 30-m DEM spacing to 50 m, a
slight entropy loss of 0.71% occurred; however, the
relative losses of spatial variability and global vari-
ance were larger than 8.9%.

The data resampling from 30-m spacing to 100 m
led to a relative entropy loss of 10.10% and relative
global variance loss of 58.5%. The relative loss of
spatial variability varies from 43% to 62% depend-
ing on the directions, with the smallest loss occurring
at an azimuth of 908. This suggests that the spatial
variability of the LS factor in different directions

Žmay be different in structure and amount at least for
.certain DEM spacing , and this anisotropy leads to

the above differences in the loss of spatial variabil-
ity. In the process of further DEM resampling to
200-m spacing, the relative losses are similar to
those of 100 m, except for the relative loss of spatial
variability at the azimuth 908. When the data were
resampled to 400 m, an entropy loss of 19.04% and
very large relative losses of spatial variability and

global variance occurred in all directions. These
results indicate that the 50-m spacing may be an
appropriate choice as it leads to little losses com-

Žpared to 30 m while the DEM data are reduced by
.about 2.8 , while the next larger spacing of 100 m

leads to significant losses.

5. Conclusion and discussion

This study deals with spatial prediction and uncer-
tainty analysis of the topographic factorLS involved
in RUSLE using a DEM in a case study area. The
focus is on investigating the use of DEM and appro-
priate DEM spacing for spatial prediction of theLS
factor, and modeling the loss of spatial variability
due to data resampling. The predictedLS and its
variance grids derived using the physically-based
topographical factorLS equation and DEMs are
spatially consistent and correlated with the topo-
graphical features. That is, in the hilly areas the
predicted LS values and variances are high, and in
flat areasLS values and variances are low. The lake
areas are filled withLS values of zero. The im-
proved correlation of the predictedLS values with
the topography is obvious compared to the corre-
sponding grids by a spatial simulation based on
empirical models and sample data.
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The DEM spacing should be chosen considering
simultaneously the required prediction precision and
the detailed spatial information of theLS factor. In
choosing a single DEM spacing optimally for both
requirements, a compromise may be needed, depend-
ing on the users’ emphasis on one of the require-
ments or both. Global variance and semivariance at a
lag of one cell can be used in combination to achieve
the above purpose. In addition, modeling the experi-
mental semivariograms and using them to estimate
spatial variability loss due to data resampling can
help users determine the appropriate DEM spacing.

For the same spatial direction, the sill parameters
and the nugget variances of the modeled semivari-
ograms generally decrease from finer to coarser DEM
spacing while the range parameters generally in-
crease. The more complex the topographic features,
the larger the nugget variances and range parameters.
In addition to the within-cell spatial variability, the
nugget variances may be considered as an estimate
of noise caused by errors from elevation measure-
ments, data resampling, models used, and calculation
of the variables related to theLS factor. Developing
a method to separate the noise from the within-cell
spatial variability is important in order to determine
an appropriate DEM spacing.

In addition to entropy and global variance as a
Ž .general measure of information loss in Eqs. 9 and

Ž .10 , a new method to directly measure the loss of
Žspatial variability was presented. This method Eq.

Ž ..11 is based on the modeled semivariograms and
Žvaries depending on the semivariogram model e.g.,

.spherical chosen. Once a model is determined, the
loss measure function of spatial variability can be
easily derived and calculated by differentiation and
integration. The results in Fig. 8 showed that the
losses of spatial variability calculated by the new
method are similar in three of the four directions, but
different in one direction. This implies that the new
method can reveal differences in spatial variability
and spatial variability loss due to data resampling in
different directions when anisotropy exists.
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