geodma_2:features
Diferenças
Aqui você vê as diferenças entre duas revisões dessa página.
Ambos lados da revisão anteriorRevisão anteriorPróxima revisão | Revisão anteriorPróxima revisãoAmbos lados da revisão seguinte | ||
geodma_2:features [2017/02/14 19:38] – [Landscape-based features] raian | geodma_2:features [2017/02/15 16:01] – [Landscape-based features] raian | ||
---|---|---|---|
Linha 69: | Linha 69: | ||
| c_MPS | MPS stands for Mean Patch Size, which is equals to the sum of the areas ($m^2$) of all patches of the corresponding patch type, divided by the number of patches of the same type. | $MPS = \frac{\sum_{j=1}^n a_j}{n} 10^{-4}$ | $\geq 0$| $ha$ | | | c_MPS | MPS stands for Mean Patch Size, which is equals to the sum of the areas ($m^2$) of all patches of the corresponding patch type, divided by the number of patches of the same type. | $MPS = \frac{\sum_{j=1}^n a_j}{n} 10^{-4}$ | $\geq 0$| $ha$ | | ||
| c_PSSD | PSSD stands for Patch Size Standard Deviation, which is the root mean squared error (deviation from the mean) in patch size. This is the population standard deviation, not the sample standard deviation. | $PSSD = \sqrt{\frac{\sum_{j=1}^n \left(a_j - MPS \right)^2}{n}} 10^{-4}$ | $\geq 0$| $ha$ | | | c_PSSD | PSSD stands for Patch Size Standard Deviation, which is the root mean squared error (deviation from the mean) in patch size. This is the population standard deviation, not the sample standard deviation. | $PSSD = \sqrt{\frac{\sum_{j=1}^n \left(a_j - MPS \right)^2}{n}} 10^{-4}$ | $\geq 0$| $ha$ | | ||
- | | c_LSI | Landscape Shape Index equals the sum of the landscape boundary and all edge segments ($m$) within the boundary. This sum involves the corresponding patch type (including borders), divided by the square root of the total landscape area ($m^2$). | $\frac{\sum_{j=1}^n e_j}{2\sqrt{\pi \times A}}$| $\geq 1$| - | | + | | c_LSI | LSI stands for Landscape Shape Index, which is equals the sum of the landscape boundary and all edge segments ($m$) within the boundary. This sum involves the corresponding patch type (including borders), divided by the two times the square root of the total landscape area ($m^2$) multiplied by pi ($\pi$). | $LSI = \frac{\sum_{j=1}^n e_j}{2\sqrt{\pi \times A}}$ | $\geq 1$| - | |
- | | c_MSI | Mean Shape Index equals the sum of the patch perimeter ($m$) divided | + | | c_MSI | MSI stands for Mean Shape Index, which is equals the sum of the patch perimeter ($m$) by divided two times the square root of patch area ($m^2$) multiplied by pi ($\pi$) for each patch of the corresponding patch type, divided by the the number of patches of the same patch type (class). | $MSI = \frac{\sum_{j=1}^n \frac{p_j}{2 \times \sqrt{\pi \times a_j}}}{n}$| $\geq 1$| - | |
| c_AWMSI | Area-Weighted MSI equals the sum, across all patches of the corresponding patch type, of each patch perimeter ($m$) divided by the square root of patch area ($m^2$). | $\sum_{j=1}^n \left[ \frac{p_j}{2 \sqrt{\pi \times a_j}} \times \frac{a_j}{\sum_{j=1}^n a_j} \right]$| $\geq 1$| - | | | c_AWMSI | Area-Weighted MSI equals the sum, across all patches of the corresponding patch type, of each patch perimeter ($m$) divided by the square root of patch area ($m^2$). | $\sum_{j=1}^n \left[ \frac{p_j}{2 \sqrt{\pi \times a_j}} \times \frac{a_j}{\sum_{j=1}^n a_j} \right]$| $\geq 1$| - | | ||
| c_MPFD | MPFD stands for the Mean Patch Fractal Dimension. | $\frac{\sum_{j=1}^{n} \frac{2 \times \ln{p_j}}{\ln{a_j}}}{N}$ | | | | | c_MPFD | MPFD stands for the Mean Patch Fractal Dimension. | $\frac{\sum_{j=1}^{n} \frac{2 \times \ln{p_j}}{\ln{a_j}}}{N}$ | | | |
geodma_2/features.txt · Última modificação: 2021/08/27 22:14 por tkorting