Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision Both sides next revision
geodma_2:features [2017/02/15 16:18]
raian [Landscape-based features]
geodma_2:features [2017/02/15 16:36]
raian [Landscape-based features]
Line 76: Line 76:
 | c_ED | ED stands for Edge Density, which is equals the sum of the lengths ($m$) of all edge segments involving the corresponding patch type, divided by the total landscape area ($m^2$). | $ED = \frac{\sum_{j=1}^m e_j}{A} 10^{4}$| $\geq 0$| $m/ha$ | | c_ED | ED stands for Edge Density, which is equals the sum of the lengths ($m$) of all edge segments involving the corresponding patch type, divided by the total landscape area ($m^2$). | $ED = \frac{\sum_{j=1}^m e_j}{A} 10^{4}$| $\geq 0$| $m/ha$ |
 | c_MPAR | MPAR stands for Mean Perimeter Area Ratio, which is equals the sum of ratios between perimeters and areas, divided by the number of patches of the same type. | $MPAR = \frac{ \sum_{j=1}^n \frac{p_j}{a_j}}{n}$| $\geq 0$| $m^{-1}$ | | c_MPAR | MPAR stands for Mean Perimeter Area Ratio, which is equals the sum of ratios between perimeters and areas, divided by the number of patches of the same type. | $MPAR = \frac{ \sum_{j=1}^n \frac{p_j}{a_j}}{n}$| $\geq 0$| $m^{-1}$ |
-| c_PSCOV | Patch Size Coefficient of Variation calculates the ratio between the features c_PSSD and c_MPS. | $\frac{PSSD}{MPS} \times 100$| $\geq 0$| - |+| c_PSCOV | PSCOV stands for Patch Size Coefficient of Variation, which calculates the ratio between the features c_PSSD and c_MPS. | $PSCOV = \frac{PSSD}{MPS} \times 100$| $\geq 0$| - |
 | c_NP | NP stands for Number of Patches, which is equals to the number of patches of a corresponding patch type (class) inside a particular landsacape. | $NP = n$ | $\geq 0$ | - | | c_NP | NP stands for Number of Patches, which is equals to the number of patches of a corresponding patch type (class) inside a particular landsacape. | $NP = n$ | $\geq 0$ | - |
 | c_TE | TE stands for Total Edges, which is equals the total size of the edges of the all patches of the given patch type (class). | $TE = \sum_{j=0}^n e_j$ | $\geq 0$ | $m$ | | c_TE | TE stands for Total Edges, which is equals the total size of the edges of the all patches of the given patch type (class). | $TE = \sum_{j=0}^n e_j$ | $\geq 0$ | $m$ |

Navigation