Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision Both sides next revision
geodma_2:features [2017/02/17 17:40]
raian [Landscape-based features]
geodma_2:features [2017/03/07 17:25]
raian [Landscape-based features]
Line 72: Line 72:
 | c_MSI | MSI stands for Mean Shape Index, which is equals the sum of the patch perimeter ($m$) by divided two times the square root of patch area ($m^2$) multiplied by pi ($\pi$) for each patch of the corresponding patch type, divided by the the number of patches of the same patch type (class). | $MSI = \frac{\sum_{j=1}^n \frac{p_j}{2 \times \sqrt{\pi \times a_j}}}{n}$| $\geq 1$| - | | c_MSI | MSI stands for Mean Shape Index, which is equals the sum of the patch perimeter ($m$) by divided two times the square root of patch area ($m^2$) multiplied by pi ($\pi$) for each patch of the corresponding patch type, divided by the the number of patches of the same patch type (class). | $MSI = \frac{\sum_{j=1}^n \frac{p_j}{2 \times \sqrt{\pi \times a_j}}}{n}$| $\geq 1$| - |
 | c_AWMSI | AWMSI stands for Area-Weighted MSI, which is equals the sum of the landscape boundary and all edge segments ($m$) within the boundary. This sum involves the corresponding patch type (including borders), divided by the two times the square root of the total landscape area ($m^2$) multiplied by pi ($\pi$). This first term is multiplied by the area of the corresponding patch, divided by the sum of the areas of all patches of the same patch type (class).| $AWMSI = \sum_{j=1}^n \left[ \frac{p_j}{2 \sqrt{\pi \times a_j}} \times \frac{a_j}{\sum_{j=1}^n a_j} \right]$| $\geq 1$| - | | c_AWMSI | AWMSI stands for Area-Weighted MSI, which is equals the sum of the landscape boundary and all edge segments ($m$) within the boundary. This sum involves the corresponding patch type (including borders), divided by the two times the square root of the total landscape area ($m^2$) multiplied by pi ($\pi$). This first term is multiplied by the area of the corresponding patch, divided by the sum of the areas of all patches of the same patch type (class).| $AWMSI = \sum_{j=1}^n \left[ \frac{p_j}{2 \sqrt{\pi \times a_j}} \times \frac{a_j}{\sum_{j=1}^n a_j} \right]$| $\geq 1$| - |
-| c_MPFD | MPFD stands for the Mean Patch Fractal Dimension. | $MPFD = \frac{\sum_{j=1}^{n} \frac{2 \times \ln{p_j}}{\ln{a_j}}}{N}$ | | |+| c_MPFD | MPFD stands for the Mean Patch Fractal Dimension. | $MPFD = \frac{\sum_{j=1}^{n} \frac{2 \times \ln{p_j}}{\ln{a_j}}}{n}$ | | |
 | c_AWMPFD| AWMPFD stands for Area-weighted Mean Patch Fractal Dimension. | $AWMPFD = \sum_{j = 1}^{n} [\frac{2 \times \ln{p_j}}{\ln{a_j}} \times \frac{a_j}{\sum_{j = 1}^{n} a_{ij}}]$ | | | | c_AWMPFD| AWMPFD stands for Area-weighted Mean Patch Fractal Dimension. | $AWMPFD = \sum_{j = 1}^{n} [\frac{2 \times \ln{p_j}}{\ln{a_j}} \times \frac{a_j}{\sum_{j = 1}^{n} a_{ij}}]$ | | |
 | c_ED | ED stands for Edge Density, which is equals the sum of the lengths ($m$) of all edge segments involving the corresponding patch type, divided by the total landscape area ($m^2$). | $ED = \frac{\sum_{j=1}^m e_j}{A} 10^{4}$| $\geq 0$| $m/ha$ | | c_ED | ED stands for Edge Density, which is equals the sum of the lengths ($m$) of all edge segments involving the corresponding patch type, divided by the total landscape area ($m^2$). | $ED = \frac{\sum_{j=1}^m e_j}{A} 10^{4}$| $\geq 0$| $m/ha$ |

Navigation