Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
geodma_2:features [2017/02/17 17:40]
raian [Landscape-based features]
geodma_2:features [2017/05/18 00:07]
raian [Segmentation-based spatial features]
Line 49: Line 49:
 | POL_FRACTALDIM | Returns the fractal dimension of an object. | $2 \frac{\log {\frac{\textit{perimeter}}{4}} }{\log area}$ | $[1, 2]$ | - | | POL_FRACTALDIM | Returns the fractal dimension of an object. | $2 \frac{\log {\frac{\textit{perimeter}}{4}} }{\log area}$ | $[1, 2]$ | - |
 | POL_GYRATION_RATIUS | This feature is equals the average distance between each vertex of the polygon and it's centroid. The more similar to a circle is the object, the more likely the centroid will be inside it, and therefore this feature will be closer to 0. | $\frac{\sum{\sqrt{(x_i - x_C)^2 + (x_i - x_C)^2}}}{N}$ | $\geq 0$ | $[m, degrees, ...]$ | | POL_GYRATION_RATIUS | This feature is equals the average distance between each vertex of the polygon and it's centroid. The more similar to a circle is the object, the more likely the centroid will be inside it, and therefore this feature will be closer to 0. | $\frac{\sum{\sqrt{(x_i - x_C)^2 + (x_i - x_C)^2}}}{N}$ | $\geq 0$ | $[m, degrees, ...]$ |
 +| POL_RADIUS | Returns the polygon radius. It corresponds to the maximum distance between the polygon centroid its vertexes. | $R$ | $>0$ | - |
 | POL_BBOX_LENGTH | It is the height of the object'​s bounding box, measured in the unit of measure of the current Spatial Reference System. | | $\geq 0$ | $[m, degrees, ...]$ | | POL_BBOX_LENGTH | It is the height of the object'​s bounding box, measured in the unit of measure of the current Spatial Reference System. | | $\geq 0$ | $[m, degrees, ...]$ |
 | POL_PERIMETER | Returns the perimeter of the object, measured in the unit of measure of the current Spatial Reference System. | | $\geq 0$ | $[m,​degrees,​...]$ | | POL_PERIMETER | Returns the perimeter of the object, measured in the unit of measure of the current Spatial Reference System. | | $\geq 0$ | $[m,​degrees,​...]$ |
Line 72: Line 73:
 | c_MSI | MSI stands for Mean Shape Index, which is equals the sum of the patch perimeter ($m$) by divided two times the square root of patch area ($m^2$) multiplied by pi ($\pi$) for each patch of the corresponding patch type, divided by the the number of patches of the same patch type (class). | $MSI = \frac{\sum_{j=1}^n \frac{p_j}{2 \times \sqrt{\pi \times a_j}}}{n}$| $\geq 1$| - | | c_MSI | MSI stands for Mean Shape Index, which is equals the sum of the patch perimeter ($m$) by divided two times the square root of patch area ($m^2$) multiplied by pi ($\pi$) for each patch of the corresponding patch type, divided by the the number of patches of the same patch type (class). | $MSI = \frac{\sum_{j=1}^n \frac{p_j}{2 \times \sqrt{\pi \times a_j}}}{n}$| $\geq 1$| - |
 | c_AWMSI | AWMSI stands for Area-Weighted MSI, which is equals the sum of the landscape boundary and all edge segments ($m$) within the boundary. This sum involves the corresponding patch type (including borders), divided by the two times the square root of the total landscape area ($m^2$) multiplied by pi ($\pi$). This first term is multiplied by the area of the corresponding patch, divided by the sum of the areas of all patches of the same patch type (class).| $AWMSI = \sum_{j=1}^n \left[ \frac{p_j}{2 \sqrt{\pi \times a_j}} \times \frac{a_j}{\sum_{j=1}^n a_j} \right]$| $\geq 1$| - | | c_AWMSI | AWMSI stands for Area-Weighted MSI, which is equals the sum of the landscape boundary and all edge segments ($m$) within the boundary. This sum involves the corresponding patch type (including borders), divided by the two times the square root of the total landscape area ($m^2$) multiplied by pi ($\pi$). This first term is multiplied by the area of the corresponding patch, divided by the sum of the areas of all patches of the same patch type (class).| $AWMSI = \sum_{j=1}^n \left[ \frac{p_j}{2 \sqrt{\pi \times a_j}} \times \frac{a_j}{\sum_{j=1}^n a_j} \right]$| $\geq 1$| - |
-| c_MPFD | MPFD stands for the Mean Patch Fractal Dimension. | $MPFD = \frac{\sum_{j=1}^{n} \frac{2 \times \ln{p_j}}{\ln{a_j}}}{N}$ | | |+| c_MPFD | MPFD stands for the Mean Patch Fractal Dimension. | $MPFD = \frac{\sum_{j=1}^{n} \frac{2 \times \ln{p_j}}{\ln{a_j}}}{n}$ | | |
 | c_AWMPFD| AWMPFD stands for Area-weighted Mean Patch Fractal Dimension. | $AWMPFD = \sum_{j = 1}^{n} [\frac{2 \times \ln{p_j}}{\ln{a_j}} \times \frac{a_j}{\sum_{j = 1}^{n} a_{ij}}]$ | | | | c_AWMPFD| AWMPFD stands for Area-weighted Mean Patch Fractal Dimension. | $AWMPFD = \sum_{j = 1}^{n} [\frac{2 \times \ln{p_j}}{\ln{a_j}} \times \frac{a_j}{\sum_{j = 1}^{n} a_{ij}}]$ | | |
 | c_ED | ED stands for Edge Density, which is equals the sum of the lengths ($m$) of all edge segments involving the corresponding patch type, divided by the total landscape area ($m^2$). | $ED = \frac{\sum_{j=1}^m e_j}{A} 10^{4}$| $\geq 0$| $m/ha$ | | c_ED | ED stands for Edge Density, which is equals the sum of the lengths ($m$) of all edge segments involving the corresponding patch type, divided by the total landscape area ($m^2$). | $ED = \frac{\sum_{j=1}^m e_j}{A} 10^{4}$| $\geq 0$| $m/ha$ |

Navigation