Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Last revision Both sides next revision
geodma_2:features [2017/09/18 16:54]
raian [Landscape-based features]
geodma_2:features [2021/08/27 19:08]
tkorting [Segmentation-based spectral features]
Line 16: Line 16:
  
 | Name             | Description | Formula | Range | Units | | Name             | Description | Formula | Range | Units |
-AMPLITUDE_BAND ​  | Defines ​the amplitude of the pixels inside the object. The amplitude means the maximum pixel value minus the minimum pixel value. | $amp = px_{max} - px_{min}$ | $\geq 0$ | $px$ | +AMPL_BAND ​  | Amplitude defines ​the amplitude of the pixels inside the object. The amplitude means the maximum pixel value minus the minimum pixel value. | $amp = px_{max} - px_{min}$ | $\geq 0$ | $px$ | 
-BAND_RATIO_BAND ​ ​| ​Describes ​the contribution of the given band to the region. | $bandRatio = \frac{\mu_{B_i}}{\sum_{j = 1}^{NB} \mu_{B_j}}$ | $\geq 0$ | $px$ | +BRATIO_BAND ​ ​| ​Band Ratio describes ​the contribution of the given band to the region. | $bandRatio = \frac{\mu_{B_i}}{\sum_{j = 1}^{NB} \mu_{B_j}}$ | $\geq 0$ | $px$ | 
-| COUNT_BAND ​      ​| ​Defines ​the total number of pixels inside the object, including pixels with dummy values. ​                                        | $N_{tot} = cout(X)$ ​        | $\geq 0$ | $N$  | +| COUNT_BAND ​      ​| ​Count defines ​the total number of pixels inside the object, including pixels with dummy values. ​                                        | $N_{tot} = cout(X)$ ​        | $\geq 0$ | $N$  | 
-CONTRAST_SE_BAND ​Returns ​a measure of the intensity contrast between a pixel and its southeast neighbor over the object. Contrast is 0 for a constant object. It is also known as //Sum of Squares Variance// | $Contrast = \sum_{i=0}^{D-1}\sum_{j=0}^{D-1}p_{i,​j} . |i - j|^2$         | $[0, (size(GLCM, 1)-1)^2]$ | - | +CONTSE_BAND ​Contrast SE returns ​a measure of the intensity contrast between a pixel and its southeast neighbor over the object. Contrast is 0 for a constant object. It is also known as //Sum of Squares Variance// | $Contrast = \sum_{i=0}^{D-1}\sum_{j=0}^{D-1}p_{i,​j} . |i - j|^2$         | $[0, (size(GLCM, 1)-1)^2]$ | - | 
-DISSIMILARITY_SE_BAND ​Measures ​how different the elements of the GLCM are from each other and it is high when the local region has a high contrast. | $dissimilarity = \sum_{i=0}^{D-1}\sum_{j=0}^{D-1}p_{i,​j}|i-j|$ | $\geq 0$ | - | +DISSE_BAND ​Dissimilarity SE measures ​how different the elements of the GLCM are from each other and it is high when the local region has a high contrast. | $dissimilarity = \sum_{i=0}^{D-1}\sum_{j=0}^{D-1}p_{i,​j}|i-j|$ | $\geq 0$ | - | 
-ENERGY_SE_BAND ​   ​| ​It returns the squared root of Angular Second Moment, computed by the sum of the squared elements in GLCM. Energy is 1 for a constant image. ​ | $energy = \sum_{i=0}^{D-1} \sum{j=0}^{D-1} p_{i,j}^2}$ | $[0,1]$ | - | +ENERGSE_BAND ​   ​| ​Energy SE returns the squared root of Angular Second Moment, computed by the sum of the squared elements in GLCM. Energy is 1 for a constant image. ​ | $energy = \sum_{i=0}^{D-1} \sum{j=0}^{D-1} p_{i,j}^2}$ | $[0,1]$ | - | 
-ENTROPY_SE_BAND ​  | Measures ​the disorder in an image. When the image is not uniform, many GLCM elements have small values, resulting in large entropy. | $entropy = -\sum_{i=1}^{D - 1} \sum_{j=1}^{D - 1} p_{ij} . \log{p_{ij}}$ | $\geq 0$ | - | +ENTRSE_BAND ​  | Entropy SE measures ​the disorder in an image. When the image is not uniform, many GLCM elements have small values, resulting in large entropy. | $entropy = -\sum_{i=1}^{D - 1} \sum_{j=1}^{D - 1} p_{ij} . \log{p_{ij}}$ | $\geq 0$ | - | 
-HOMOGENEITY_SE_BAND ​Assumes ​higher values for smaller differences in the GLCM. Also called //Inverse Difference Moment//. Homogeneity is 1 for a diagonal GLCM. | $homog = \sum_{i=1}^{D - 1} \sum_{j=1}^{D - 1} \frac{p_{ij}}{1 + (i - j)^2}$ | $\geq 0$ | - | +HOMOGSE_BAND ​Homogeneity SE assumes ​higher values for smaller differences in the GLCM. Also called //Inverse Difference Moment//. Homogeneity is 1 for a diagonal GLCM. | $homog = \sum_{i=1}^{D - 1} \sum_{j=1}^{D - 1} \frac{p_{ij}}{1 + (i - j)^2}$ | $\geq 0$ | - | 
-KURTOSIS_BAND ​    | Returns ​the kurtosis value for all the valid pixels (not dummy) inside the object. ​                                               | $K = \frac{n(n+1)(n-1)}{(n-2)(n-3)} . \frac{\sum_{i=1}^{N}(px_i-\mu)^4}{(\sum_{i=1}^N (px_i - \mu)^2)^2$ | $\geq 1$ | -  | +KURT_BAND ​    | Kurtosis returns ​the kurtosis value for all the valid pixels (not dummy) inside the object. ​                                               | $K = \frac{n(n+1)(n-1)}{(n-2)(n-3)} . \frac{\sum_{i=1}^{N}(px_i-\mu)^4}{(\sum_{i=1}^N (px_i - \mu)^2)^2$ | $\geq 1$ | -  | 
-MAXIMUM_VAL_BAND ​ ​| ​Computes ​the maximum gray level value (not dummy) inside the object. ​                                               | $maxVal = max(X)$ | $X$ | $px$  | +MAX_VAL_BAND ​ ​| ​Maximum Value computes ​the maximum gray level value (not dummy) inside the object. ​                                               | $maxVal = max(X)$ | $X$ | $px$  | 
-| MEAN_BAND ​        ​| ​Computes ​the average value for all $N$ pixels inside the object. | $\mu = \frac{\sum_{i=1}^N px_i}{N}$ | $\geq 0$ | $px$ | +| MEAN_BAND ​        ​| ​Mean computes ​the average value for all $N$ pixels inside the object. | $\mu = \frac{\sum_{i=1}^N px_i}{N}$ | $\geq 0$ | $px$ | 
-| MEDIAN_BAND ​      ​| ​Computes ​the median for all $N$ pixels inside the object. | $median = p_{\frac{(n+1)}{2}}$ | $X$ | $px$ |  +| MEDIAN_BAND ​      ​| ​Median computes ​the median for all $N$ pixels inside the object. | $median = p_{\frac{(n+1)}{2}}$ | $X$ | $px$ |  
-MINIMUM_VAL_BAND ​ ​| ​Computes ​the minimum gray level value (not dummy) inside the object. ​                                               | $minVal = min(X)$ | $X$ | $px$  | +MIN_VAL_BAND ​ ​| ​Minimum Value computes ​the minimum gray level value (not dummy) inside the object. ​                                               | $minVal = min(X)$ | $X$ | $px$  | 
-| MODE_BAND ​        ​| ​Returns ​the most occurring gray level value (mode) for all $N$ (not dummy) pixels inside the object. When the object is multimodal, the first value is assumed. | | $X$ | $px$ | +| MODE_BAND ​        ​| ​Mode returns ​the most occurring gray level value (mode) for all $N$ (not dummy) pixels inside the object. When the object is multimodal, the first value is assumed. | | $X$ | $px$ | 
-NUM_MODES_BAND ​   ​| ​Returns ​the number of modes for the object. ​        | | $\geq 1$ | $px$ | +N_MOD_BAND ​   ​| ​Num Modes returns ​the number of modes for the object. ​        | | $\geq 1$ | $px$ | 
-SKEWNESS_BAND ​    | Returns the skewness ​value for all the valid pixels (not dummy) inside the object. ​                                               | $S = \frac{n\sqrt{n-1}}{n-2} . \frac{\sum_{i=1}^{N}(px_i-\mu)^3}{(\sum_{i=1}^N (px_i - \mu)^2)^\frac{3}{2}$ | - | -  | +SKEW_BAND ​    | Returns the Skewness ​value for all the valid pixels (not dummy) inside the object. ​                                               | $S = \frac{n\sqrt{n-1}}{n-2} . \frac{\sum_{i=1}^{N}(px_i-\mu)^3}{(\sum_{i=1}^N (px_i - \mu)^2)^\frac{3}{2}$ | - | -  | 
-STD_DEVIATION_BAND ​| Returns the standard deviation ​of all $N$ (not dummy) pixels ($\mu$ is the mean value) inside the object. | $\sigma = \sqrt{\frac{1}{N-1}\sum_{i=1}^N \left(px_i - \mu \right)^2}$ | $\geq 0$ | $px$ | +STDDEV_BAND ​| Returns the Standard Deviation ​of all $N$ (not dummy) pixels ($\mu$ is the mean value) inside the object. | $\sigma = \sqrt{\frac{1}{N-1}\sum_{i=1}^N \left(px_i - \mu \right)^2}$ | $\geq 0$ | $px$ | 
-| SUM_BAND | Returns the sum of all $N$ (not dummy) pixels inside the object. ​                                          | $sum = \sum_{i = 1}^{N}px_i$ | $\geq 0$ | $px$ | +| SUM_BAND | Returns the Sum of all $N$ (not dummy) pixels inside the object. ​                                          | $sum = \sum_{i = 1}^{N}px_i$ | $\geq 0$ | $px$ | 
-VALID_COUNT_BAND ​Defines ​the total number of pixels inside the object with not dummy values. ​                                          | $N = count(X)$ | $\geq 0$ | $N$ | +VLDCNT_BAND ​Valid Count defines ​the total number of pixels inside the object with not dummy values. ​                                          | $N = count(X)$ | $\geq 0$ | $N$ | 
-VAR_COEFF_BAND ​| Returns the coefficient ​of variation ​of the values for all the valid pixels (not dummy) inside the object ​              | $c_v = \frac{100\sigma}{\mu}$ | $[0,100]$ | % | +VARCOEF_BAND ​| Returns the Coefficient ​of Variation ​of the values for all the valid pixels (not dummy) inside the object ​              | $c_v = \frac{100\sigma}{\mu}$ | $[0,100]$ | % | 
-VARIANCE_BAND ​| Returns the variance ​of all $N$ (not dummy) pixels ($\mu$ is the mean value) inside the object. | $s^2 = \frac{\sum_{i=1}^N \left(px_i - \mu \right)^2}{N-1}$ | $\geq 0$ | $px$ |+VAR_BAND ​| Returns the Variance ​of all $N$ (not dummy) pixels ($\mu$ is the mean value) inside the object. | $s^2 = \frac{\sum_{i=1}^N \left(px_i - \mu \right)^2}{N-1}$ | $\geq 0$ | $px$ |
 ===== Segmentation-based spatial features =====  ===== Segmentation-based spatial features ===== 
  

Navigation