Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
geodma:features [2014/06/20 17:08]
tkorting
geodma:features [2017/07/18 11:56] (current)
tkorting
Line 1: Line 1:
-====== GeoDMA Features ======+====== GeoDMA ​0.2 Features ======
  
 GeoDMA has metrics integrating Polygons, Cells, and Images. Through image segmentation,​ GeoDMA creates Polygons. ​ GeoDMA has metrics integrating Polygons, Cells, and Images. Through image segmentation,​ GeoDMA creates Polygons. ​
Line 20: Line 20:
 | rX_entropy_B | Measures the disorder in an image. When the image is not uniform, many GLCM elements have small values, resulting in large entropy. | $-\sum_{i=1}^{D - 1} \sum_{j=1}^{D - 1} p_{ij} . \log{p_{ij}}$ | $\geq 0$ | - | | rX_entropy_B | Measures the disorder in an image. When the image is not uniform, many GLCM elements have small values, resulting in large entropy. | $-\sum_{i=1}^{D - 1} \sum_{j=1}^{D - 1} p_{ij} . \log{p_{ij}}$ | $\geq 0$ | - |
 | rX_homogeneity_B | Assumes higher values for smaller differences in the GLCM. | $\sum_{i=1}^{D - 1} \sum_{j=1}^{D - 1} \frac{p_{ij}}{1 + (i - j)^2}$ | $\geq 0$ | - | | rX_homogeneity_B | Assumes higher values for smaller differences in the GLCM. | $\sum_{i=1}^{D - 1} \sum_{j=1}^{D - 1} \frac{p_{ij}}{1 + (i - j)^2}$ | $\geq 0$ | - |
-| rX_mean_B | Returns the average value for all $N$ pixels inside the object. | $ \frac{\sum_{i=1}^N px_i} {N}$ | $\geq 0$ | $px$ | +| rX_mean_B | Returns the average value for all $N$ pixels inside the object. | $ \frac{\sum_{i=1}^N px_i}{N}$ | $\geq 0$ | $px$ | 
 | rX_mode_B | Returns the most occurring value (mode) for all $N$ pixels inside the object. When the object is multimodal, the first value is assumed. | | $\geq 0$ | $px$ | | rX_mode_B | Returns the most occurring value (mode) for all $N$ pixels inside the object. When the object is multimodal, the first value is assumed. | | $\geq 0$ | $px$ |
 | rX_std_B | Returns the standard deviation of all $N$ pixels ($\mu$ is the mean value). | $\sqrt{\frac{1}{N-1}\sum_{i=1}^N \left(px_i - \mu \right)^2}$ | $\geq 0$ | $px$ | | rX_std_B | Returns the standard deviation of all $N$ pixels ($\mu$ is the mean value). | $\sqrt{\frac{1}{N-1}\sum_{i=1}^N \left(px_i - \mu \right)^2}$ | $\geq 0$ | $px$ |
Line 44: Line 44:
 =====  Landscape-based features ===== =====  Landscape-based features =====
  
-When the unit is hectares, the value is divided by $10^4$. ​+When the unit is hectares, the value is divided by $10^4$. Please note that most of the following features are based on [[http://​www.umass.edu/​landeco/​research/​fragstats|Fragstats software]].
  
 | Name | Description | Formula | Range | Units | | Name | Description | Formula | Range | Units |
Line 55: Line 55:
 | c_msi | Mean Shape Index equals the sum of the patch perimeter ($m$) divided by the square root of patch area ($m^2$) for each patch of the corresponding patch type. | $\frac{\sum_{j=1}^n \frac{j}{2\sqrt{\pi \times a_j}}}{n}$| $\geq 1$| - | | c_msi | Mean Shape Index equals the sum of the patch perimeter ($m$) divided by the square root of patch area ($m^2$) for each patch of the corresponding patch type. | $\frac{\sum_{j=1}^n \frac{j}{2\sqrt{\pi \times a_j}}}{n}$| $\geq 1$| - |
 | c_awmsi | Area-Weighted MSI equals the sum, across all patches of the corresponding patch type, of each patch perimeter ($m$) divided by the square root of patch area ($m^2$). | $\sum_{j=1}^n \left[ \frac{j}{2 \sqrt{\pi \times a_j}} \times \frac{a_j}{\sum_{j=1}^n a_j} \right]$| $\geq 1$| - | | c_awmsi | Area-Weighted MSI equals the sum, across all patches of the corresponding patch type, of each patch perimeter ($m$) divided by the square root of patch area ($m^2$). | $\sum_{j=1}^n \left[ \frac{j}{2 \sqrt{\pi \times a_j}} \times \frac{a_j}{\sum_{j=1}^n a_j} \right]$| $\geq 1$| - |
-| c_mpfd | | | | | +| c_mpfd | MPFD stands for the Mean Patch Fractal Dimension. ​| | | | 
-| c_awmpfd| - | | | |+| c_awmpfd| ​AWMPFD stands for Area-weighted Mean Patch Fractal Dimension. ​| | | |
 | c_ed | Edge Density equals the sum of the lengths ($m$) of all edge segments involving the corresponding patch type, divided by the total landscape area ($m^2$). | $\frac{\sum_{j=1}^m e_j}{A} 10^{-4}$| $\geq 0$| $m/ha$ | | c_ed | Edge Density equals the sum of the lengths ($m$) of all edge segments involving the corresponding patch type, divided by the total landscape area ($m^2$). | $\frac{\sum_{j=1}^m e_j}{A} 10^{-4}$| $\geq 0$| $m/ha$ |
 | c_mpar | Mean Perimeter Area Ratio equals the sum of ratios between perimeters and areas, divided by the number of patches of the same type. | $\frac{ \sum_{j=1}^n \frac{j}{a_j}}{n}$| $\geq 0$| $m^{-1}$ | | c_mpar | Mean Perimeter Area Ratio equals the sum of ratios between perimeters and areas, divided by the number of patches of the same type. | $\frac{ \sum_{j=1}^n \frac{j}{a_j}}{n}$| $\geq 0$| $m^{-1}$ |
 | c_pscov | Patch Size Coefficient of Variation calculates the ratio between the features _c_pssd_ and _c_mps_. | $\frac{PSSD}{MPS} \times 100$| $\geq 0$| - | | c_pscov | Patch Size Coefficient of Variation calculates the ratio between the features _c_pssd_ and _c_mps_. | $\frac{PSSD}{MPS} \times 100$| $\geq 0$| - |
-| c_np |  | | | +| c_np | NP equals the number of patches inside a particular landsacape. ​$n$ $\geq 0$ 
-| c_te | | | | | +| c_te | TE equals the total size of the edge. $\sum_{j=0}^n e_j$$\geq 0$ $ha$ 
-| c_iji | - | | | +| c_iji | IJI stands for Interspersion and Juxtaposition Index. ​ The observed interspersion over the maximum possible interspersion for the given number of patch types. | $\frac{-\sum_{j=1}^n e_j \ln(e_j)}{\ln(n ​1)}$ $[0, 100]$ $\%$ |

Navigation