This is an old revision of the document!


Lista de Artigos Autômatos Celular

Wagner Billa, Aurelienne Jorge, Carlos GuimarãesModelling of incident sound wave propagation around sound barriers using cellular automata
Leoni Silva e Camila SalesBowness, R., Chaplain, M.A., Powathil, G.G. and Gillespie, S.H., 2018. Modelling the effects of bacterial cell state and spatial location on tuberculosis treatment: Insights from a hybrid multiscale cellular automaton model. Journal of theoretical biology, 446, pp.87-100.
Luiz Assis, Cintia Pereira White, S. Hoya, A. Martín Del Rey, and G. Rodríguez Sánchez. “Modeling epidemics using cellular automata.” Applied Mathematics and Computation 186, no. 1 (2007): 193-202.
S. G. Berjak, J. W. Hearne (2002) An improved cellular automaton model for simulating fire in a spatially heterogeneous Savanna system. Ecological Modelling 148(2):133–15
Almeida, Rodolfo Maduro, and Elbert EN Macau. "Stochastic cellular automata model for wildland fire spread dynamics." Journal of Physics: Conference Series. Vol. 285. No. 1. IOP Publishing, 2011.
Fisch, Robert, Janko Gravner, and David Griffeath. "Threshold-range scaling of excitable cellular automata." Statistics and Computing 1.1 (1991): 23-39.
Fisch, Robert. "Clustering in the one-dimensional three-color cyclic cellular automaton." The Annals of Probability (1992): 1528-1548.
Li, Wentian. "Complex patterns generated by next nearest neighbors cellular automata." Computers & Graphics 13.4 (1989): 531-537.
Chate, H. & Manneville, P. (1990). Criticality in cellular automata. Physica D (45), 122-135.
Li, W., Packard, N., & Langton, C. (1990). Transition Phenomena in Cellular Automata Rule Space. Physica D (45), 77-94.
Colasanti, R. L., R. Hunt, and L. Watrud. “A simple cellular automaton model for high-level vegetation dynamics.” Ecological Modelling 203.3 (2007): 363-374.
S. Yassemi, S. Dragićevića, M. Schmidt(2008), Design and implementation of an integrated GIS-based cellular automata model to characterize forest fire behaviour , Ecological Modelling, 210(1–2), 71–84
Araujo and Celani (20166), Exploring Weaire-Phelan through Cellular Automata: A proposal for a structural variance-producing engine
Rickert, M., Nagel, K., Schreckenberg, M. and Latour, A., 1996. Two lane traffic simulations using cellular automata. Physica A: Statistical Mechanics and its Applications, 231(4), pp.534-550.
White, R. and Engelen, G., 1993. Cellular automata and fractal urban form: a cellular modelling approach to the evolution of urban land-use patterns. Environment and planning A, 25(8), pp.1175-1199.
Barredo, J.I., Kasanko, M., McCormick, N. and Lavalle, C., 2003. Modelling dynamic spatial processes: simulation of urban future scenarios through cellular automata. Landscape and urban planning, 64(3), pp.145-160.
Karafyllidis, I. and Thanailakis, A., 1997. A model for predicting forest fire spreading using cellular automata. Ecological Modelling, 99(1), pp.87-97.
Ermentrout, G.B. and Edelstein-Keshet, L., 1993. Cellular automata approaches to biological modeling. Journal of theoretical Biology, 160(1), pp.97-133.
Yuan, W. and Tan, K.H., 2007. An evacuation model using cellular automata. Physica A: Statistical Mechanics and its Applications, 384(2), pp.549-566.
Dormann, S. and Deutsch, A., 2002. Modeling of self-organized avascular tumor growth with a hybrid cellular automaton. In silico biology, 2(3), pp.393-406.
Bersini, H. and Detours, V., 1994, July. Asynchrony induces stability in cellular automata based models. In Artificial Life IV (pp. 382-387). MIT Press, MA.

Navigation