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Extraction of information from remotely sensed images would greatly benefit from increased use of spatial data. 
However, the utility of spatial data has been undermined by a lack of understanding of the nature and causes oI 
observed spatial variation in images. One approach to this problem is to model the spatial vaiiation in images as a 
function of ground scene and sensor parameters. Variograms are the tool used to link models of ground scenes to 
spatial variation in images. Explicit vaxiograms are calculated for simple models oI ground scenes consisting of 
randomly located discs on a continuous background. By incorporating the effect oI the IFOV of the sensor through a 
process called regulaxization, explicit variograms for images of these scene models are derived. Verification of the 
explicit variograms is accomplished by simulating images that match the assumed scene model and sensor parameters 
and calculating empirical vaxiograms |or these images. For a simple scene model oI randomly located discs on a 
continuous background, explicit and empirical variograms match, verifying the convergence of these two dissimilar 
approaches. The sensitivity o[ vaxiograms is studied through varying parameters of scene models both in calculating 
explicit variograms and in simulating images. Results indicate direct ties between several scene parameters and the 
behavior of vaxiograms. The height o|  the sill of the variogram is related to the density o|  objects. The range of 
influence is related to the size oI objects. Increased variance in the size distribution oI objects results in a more 
rounded shape in the variogram near the sill. Primary effects oI increasing the units oI regularization, or larger pixel 
size, axe a decrease in the height ot the sill and an increase in the range of influence. 

1. Introduction 

As the collection d remotely sensed 
data has shifted from analog to digital 
formats, there has been as associated shift 
from visual to computer-based analysis 
methods. During this period of roughly 
the last 15 years, several interesting 
trends have emerged. First, a tremen- 
dous amount has been learned about the 
spectral properties of surface materials. 
As a result, techniques that use spectral 
properties to study surface phenomenon 
have become highly sophisticated and el- 

fective. Not only has there been a great 
accumulation of data on the spectral 
properties of a wide variety of objects, 
but there have been significant advances 
in the understanding of the causes of 
these spectral properties. If this first trend 
can be summarized by asserting that there 
has been an increase in the use of data 
from the spectral domain in remote sens- 
ing, then a second trend during the same 
time period can be summarized as a de- 
crease in the use of data from the spatial 
domain. Visual interpretation of imagery 
has always retied heavily on texture, 
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or spatial variation in images, for the 
discrimination of surface phenomenon.  
However, it has proven difficult to quan- 
tify the spatial patterns humans recognize 
and incorporate them in computer-based 
methods of information extraction. This is 
not to imply that there have not been 
efforts made  to include spatial data in 
image analysis procedures, but compared 
to the effort devoted to the use of spec- 
tral data, the spatial domain has been 
largely ignored. 

One reason spatial data are not used 
more in remote sensing is that the nature 
and causes of spatial variation in images 
are not understood. Certainly most peo- 
ple recognize their existence and poten- 
tial value in remote sensing, but the lack 
of understanding concerning their causes 
has undermined  their exploitation. In 
particular, no one has been able to pre- 
dict the spatial patterns to be expected 
for a particular location in a particular 
type  of imagery. Instead, the use of spa- 
tial data has been limited to the empirical 
association between surface phenomenon 
and spatial patterns in images. The ap- 
proach taken in this paper is to a t tempt  
to unders tand the nature and causes of 
spatial variation in images as they relate 
to the characteristics of ground scenes 
and the sensor collecting the imagery. An 
improved understanding in this area is 
expected to serve as a basis for devel- 
opment  of future information-extraction 
methods that  more logically use spatial 
data. 

One distinction that is used throughout 
this paper  concerns the difference be- 
tween a scene and an image. A scene 
refers to the ground scene from which 
remotely sensed measurements are de- 
rived to create an image. In order to 
study the effects of scenes on the spatial 
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characteristics of images, a systematic 
method of describing scenes is required. 
The approach used in this paper follows 
the description presented by Strahler 
et al. (1986) that models ground scenes as 
assemblages of discrete objects arranged 
on a continuous background. 

2. Variograms 

In this s tudy variograms are used to 
measure the spatial variation in im- 
ages. Variograms measure spatial varia- 
tion in a regionalized variable. Any ran- 
dom variable whose position in space or 
t ime is known is a regionalized variable. 
In this formulation, variables are indexed 
by their location. Thus, assume Y(x) is a 
regionalized variable associated with lo- 
cation x. For the variable Y at different 
locations, it becomes necessary to index 
the locations as x,, where i = 1, . . . ,  n cor- 
respond to n observations. If the Y(x~) 
are uncorrelated, then the image will con- 
sist of random noise. If however, the Y(xi) 
are in some way related, then the data 
will exhibit spatial structure. Perhaps the 
weakest assumption one can make about 
this struchtre is what Matheron (1971) 
refers to as the "intrinsic" hypothesis, 
that  the increments Y( x i + h ) - Y( x i) as- 
sociated with a small distance h are 
weakly stationary. Under this assumption, 
the first momen t  of the increment, its 
expected value, is constant or at least 
only slowly varying with spatial position 
x; and the second moment  is also in- 
variant with spatial position. The second 
m o m e n t  is called the variogram: 

23'(h) = E[Y(x~ + h ) -  Y(x,)] 2. 

Just as the variance characterizes the 
distribution of a nonspatial random vari- 
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able, so the variogram characterizes the 
distribution of a regionalized variable. The 
distance at which samples become inde- 
pendent  is often called the range of in- 
fluence and is denoted as a. The value at 
which the variogram levels off is denoted 
c and is called the sill (Clark, 1979). 

Geostatisticians have used the vario- 
gram as a primary tool in many spatial 
studies. In particular, variograms are used 
as part of a process called kriging. Krig- 
ing is a method of estimating local values 
from surrounding point samples, a pro- 
cess generically referred to as interpola- 
tion. Kriging uses the relationship be- 
tween point samples established by the 
variogram to estimate the vohtme of lodes 
and efficiently locate additional samples 
(Matern, 1960). For kriging, a model de- 
scribing the shape of the variogram is 
necessary. 

One commonly used model for the 
shape of a variogram is the spherical 
model: 

y(h)  = c[3h/2a - ha/2a 3] when h ~< a 

and 

y(h) = c when h > a. 

Figure 1 shows an example of a spherical 
model of a variogram. As expected, the 
variogram passes through the origin. If 
samples are taken exactly zero distance 
apart, then they are the same sample and 
their variance will also be zero. As h 
increases within the range of influence, 
the difference between measurements in- 
creases and the variogram rises. Past the 
distance a, samples from the data are 
independent,  and the variogram reaches 
a stable plateau at the value c, the sill. 

F 
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FIGURE 1. The spherical model of a variogram (mod- 
ified trom Clark, 1979) 

Just as a sample variance is an estimate of 
the true variance of a variable, the sill is 
an estimate of the true variance of a 
regionalized variable. Thus, one can 
estimate the sill via a sample variance. 

The spherical model is often referred to 
as the "ideal" model for a variogram 
became there is a well-defined sill and 
the meaning of the range of influence is 
easily interpreted (Clark, 1979). Not all 
models for the shape of a variogram share 
these characteristics. Figure 2 shows the 
shape of an exponential model for a 
variogram compared with a spherical 
model with the same sill and range of 
influence. The exponential model is 

F 
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FIGURE 2. The spherical and exponential models for 
the same values of a and c (modified from Clark, 1979). 



326 

calculated as follows: 

y ( h ) +  c [ 1 -  e x p ( -  h/a)]. 

The exponential model never reaches 
its sill, but asymptotically approaches it. 
In addition, the meaning of a, the range 
of influence, is not clear. In the spherical 
model there was a direct physical inter- 
pretation of a, but in the exponential 
model it is a parameter necessary to de- 
scribe the shape of the model that has 
limited interpretive value. 

There are models for the shape of 
variograms which do not have a sill. The 
simplest form of these is the linear model: 

"~ (h )  = ph, 

where p is the slope of the line. An 
extension of this model is the generalized 
linear model: 

y( h ) = ph x, 

where 0 ~< ~ < 2. Figure 3 shows the ef- 
fect of the exponent X on the shape of 
the generalized linear model. 

While the above models are commonly 
used in geostatistics, other models could 

/ A >1 
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FIGURE 3. The linear model and generalized linear 
models of variograms (modified from Clark, 1979). 
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be used. For example, all the above mod- 
els are monotonic, assuming that varia- 
tion will only increase as a function of 
distance. However, if the data exhibit 
periodicity, models based on trigonomet- 
ric functions might be appropriate. Also, 
variograms can be multidimensional. All 
the examples have shown one-dimen- 
sional (i.e., isotropic) variograms, but two- 
and three-dimensional variograms are 
possible. In this situation h becomes a 
vector specifying both distance and di- 
rection (and possibly inclination). One- 
dimensional variograms have the ad- 
vantage of being easy to display and 
interpet. Two-dimensional variograms are 
usually displayed as contour plots and 
can be useful for revealing anisotropy in 
data. However, displays using contours 
can make evaluation of shapes of vario- 
grams difficult. As a third dimension is 
added there is again potential for infor- 
mation on variation in another dimension, 
but the problems of display and analysis 
of shape increase. 

In geostatistics, the models used to de- 
scribe variograms tend to be combina- 
tions of several models. These combina- 
tions can include several models of the 
same type with different parameters, or 
different types of models. The use of 
combinations of models is similar to Fou- 
rier analysis where sinusoidal curves with 
different amplitudes, frequencies, and 
phases are combined to model a function 
(Bloomfield, 1976). One difference from 
Fourier analysis is the subjective nature 
of methods used to determine the type of 
models to be combined and their coeffi- 
cients. Often the nature of the model 
selected is guided by the specific interests 
of an application. Criteria which affect 
model selection are the behavior near the 
origin, the fit near the sill, and the de- 
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termination of the range of influence located, overlapping discs of radius r, 
(Clark, 1979). when h < 2r is 

2.1. Scene models and variograms 

The previously described models for 
the shapes of variograms are necessary 
for kriging, and as a result have played a 
significant role in studies involving vario- 
grams. However, for the purpose of un- 
derstanding spatial variation in remotely 
sensed images, their value is limited. The 
reason is that there is no apparent way to 
link models for the shapes of variograms 
to scene models. A more useful tool is a 
variogram whose characteristics can be 
determined as a flmction of the parame- 
ters describing a scene model. Serra 
(1982) provides a method for calculat- 
ing explicit variograms for some simple 
scenes. 

The derivation of explicit variograms is 
based on an extension of the binomial. 
This approach is well suited for a discrete 
scene model, in which the objects in the 
scene and the background are considered 
homogeneous, thus allowing only two 
states in the image. It is possible to de- 
termine q, the proportion of the area not 
covered by N randomly distributed ob- 
jects of area b within a large area A as 

q = exp( -- Nb/A). 
. ,y 

The proportion of the area covered by 
objects is simply 1 - q. The variogram for 
the distance between two points h dis- 
tance apart is 

" y ( h ) = q - e x p [ N ( o ( h )  - 2b)] 

where O(h) is the overhp function. The 
overlap function for the case of randomly 

I n ] O(h ) = 2rgcos -1 ~-~ -~/r 2 -  h2/4. 

If h >i 2r, then no ovedap occurs and 
~,(h) = q(1 - q) = qp, which is the bi- 
nomial variance. 

This formulation of a variogram is 
slightly different than originally de- 
scribed. In the original description, the 
variable Y(x) is continuously measured. 
For this explicit variogram, the variogram 
is defined as the probability the Y(x) and 
Y (x+h)  will be different, i.e., x is 
located within the object and x + h is 
located on the background, or vice-versa. 
This is equivalent to the probability of 
crossing a boundary between an object 
and the background.  

Figure 4 shows explicit variograms for 
scenes of overlapping discs. The vario- 
gram is calculated for N = 1, 10, 25, 50, 
100, and 200 objects of unit radius on an 

/ ~  N=25 

/ /  ~ ~ N  =200 

~ N=IO 

DISTANCE 

FIGURE 4. Variograms for scenes with different num- 
bers (N) of randomly located, overlapping discs. 
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area of size 100 ~r 2 units. The variogram 
starts with zero variance and rises to the 
sill, or maximum variance. The distance 
to the sill is the size of the objects, and 
the height of the sill is determined by the 
number of objects. At low values of N, 
variance is low because most of the area 
is background. As N increases, the curves 
become steeper and the sill successively 
higher until half the area is covered (p = 
q = 0.5, N---69.3). As more than half of 
the area is covered, the height of the sill 
decreases because more of the area be- 
comes covered by discs. Thus, there will 
be two different scenes with the same sill, 
one in which the discs occupy area p and 
one in which the background occupies 
area p. Distinguishing between these two 
alternatives should not normally present a 
problem because the general brightness 
of the scene will be different. 

The two cases may also be dis- 
tinguished by their shape. Note that in 
Figure 4 the variograms for N > 69.3 have 
a more rounded shape than those for 
N < 69.3. The reason for this may be 
resolved by studying another of the usefitl 
measures of variograms, the slope at the 
origin. Serra (1982) shows that the slope 
at the origin depends on the amount of 
boundary between discs and the back- 
ground. This reduces for both high and 
low N, but in different ways. For higher 
values of N, the background becomes 
dissected into a large number of small 
areas, or slivers between the discs. In this 
situation the amount of boundary be- 
comes large, and "t(h) becomes large at 
short distances, leading to the more 
rounded, faster rising shape of the vario- 
gram for large N. A more complete treat- 
ment  of the mathematical theory underly- 
ing variograms has been presented in an 
earlier paper (Jupp et al., 1988). 
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2.2. Variograms and 
remotely sensed images 

Whenever remotely sensed data consist 
of images, an important new information 
component is added to the measurement 
output by the sensor: its spatial position. 
Since the position of the measurement in 
the image is usually a quantifiable func- 
tion of the position in the scene of the 
resolution cell from which it is derived, 
each measurement can be associated with 
a ground location and be positioned rela- 
tive to other measurements. The sensor's 
response then becomes a regionalized 
variable, because its position in space is 
known. Thus, variograms can be used to 
characterize the spatial structure in re- 
motely-sensed images. 

There is an important factor that must 
be considered when using variograms in 
conjuction with remotely sensed images. 
The models presented for the shapes of 
variograms (spherical, exponential, etc.) 
are for punctual variograms, or vario- 
grams derived from point measurements. 
Measurements in remotely sensed images 
are integrated over areas, and this dif- 
ference is important. In this instance, 
when measurements are taken over some 
length or area, the resulting variogram is 
referred to as regularized. Regionalized 
variables can be thought of as having a 
true or underlying punctual variogram 
based on point measurements, and an 
associated regularized variogram which is 
derived from measurements taken over a 
given length or area. 

In remotely sensed images, the regu- 
larizing area is the instantaneous field of 
view of the sensor, with the point spread 
function describing the form of the regu- 
larization. For this study, the resolution- 
cell size of the image is taken as the units 
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Of regularization. The effects of regu- 
larization are similar to those typically 
associated with measurements that repre- 
sent some form of aggregation. The over- 
all variance of the data is reduced, and 
fine scale variations are blurred. Certainly 
variation at a scale finer than the scale of 
regularization cannot be detected and 
variations less than two to three times the 
scale of regularization cannot be reliably 
characterized. 

The effect of regularization on punc- 
tual variograms can be determined analy- 
tically, but is considerably more straight- 
forward for some models. Geostatisticians 
have determined the expected results of 
one-dimensional regularization for several 
models of variograms for use with core 
samples (Clark, 1977). The exponential 
model for samples of length l is 

a 2 

71(h)=C( ~ + - ~ t l - e  -t/a] 

xe-h/a[1--el/a]}, 

where h >/l. Determination of Tt when 
h < l is considerably more complex. 

The linear model is straightforward for 
all distances: 

ph ~ . 
= h) when h l 

and 

"~l = P ( h  - I/3) when h > l. 

The calculation of a regularized spheri- 
cal model is complicated, and tables have 
been produced to aid in its estimation. 
The sill for the regallarized variogram will 

c p u n c t u a l  
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FIGURE 5. The eHect of regularization from samples 
of length I on the spherical model o~ a variogram (mod- 
ified from Clark, 1979). 

be lower than the punctual variogram, as 
can be seen in Fig. 5. 

The effect of regldarization of disc- 
model variograms can be seen in Figs. 
6A-H and Fig. 7. These figures show the 
punctual variogram and the regularized 
variogram for several different units of 
regularization for the same scene model. 
The punctual variogram is the same for 
these figures, but the units of regulariza- 
tion are increased in size. In essence, 
increasing the units of regularization is 
analogous to coarser spatial resolution in 
remotely sensed imagery. The scene 
model used in these tests is randomly 
distributed discs of radius 3.5 m that 
cover 10% of an area of size 360 × 360 m. 

Figures 6B-H show variograms as they 
would look if calculated from remotely 
sensed imagery at various spatial resolu- 
tions. In other words, the x-axis is in 
integer multiples of the units of regu- 
larization. As a result, the scale of the 
x-axis changes in these graphs. At small 
units of regularization, the variograms re- 
semble the punctual variogram, with a 
well-developed drop from the sill in the 
range of influence. At larger units of reg- 
ularization, the shape of the variogram 
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FIGURE 6. The effect of regularization on a disc model variogram. All variograms are for the same scene model but 
each use a different level of regularization. B - H  are displayed as if measured from a remotely-sensed image. A) 
Punctual variograrn; B) 1-m regularization; C) 2-m regularization; D) 4-m regularization; E) 6-m regularization; F) 8-m 
regularization; G) 12-m regularization; H) 30-m regularization. 

becomes very simple. In fact, for Figs. 
6D-F ,  or 4, 6, and 8 m, the variogram is 
essentially one point below the sill. By 
12 m and beyond the variogram is essen- 
tially fiat. Figure 7 is a composite of the 
graphs in Figs. 6A-F that holds the x-axis 
constant. This composite illustrates 
several important points about the effect 
of regularization. As the size of the regu- 
larizing units increase, three things should 
be noted. First, the height of the sill (or 
the variance of the variable) decreases. 
Second, the range of influence, or the 

distance to the sill, increases. Third, the 
height of the variogram at the first mea- 
sured interval of h increases relative to 
the sill until they match. While one can 
determine the regularized variogram from 
the punctual variograrn, in practice, the 
more common situation is that the ob- 
served variogram is a regularized vario- 
gram and the desired form is the punc- 
tual variogram. In this situation, the 
equation for the regularized variogram is 
used to estimate a and c, which are then 
used in the equation for the punctual 
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variogram. A more thorough mathemati- 
cal treatment of regularization can be 
found in Jupp et al. (1988). 

Variograms can be calculated from re- 
motely sensed images as follows: 

1 ~ [y(x,)_y(xi+h)]2, 2 7 ( h )  = n 
i = l  

where n is the number of observations 
used to estimate 7. Ideally, a variogram 
should be computed by comparing each 
point with all others. In a normal applica- 
tion in geostatistics, the number of avail- 
able samples is limited, and an estimate 

of the variogram is produced in this way. 
In the remote sensing case, generally the 
area of interest is entirely sampled; but, 
due to the large sizes of images, the com- 
parison of each measurement with all 
other measurements is computationally 
unrealistic, and constraints need to be 
imposed. One constraint concerns the 
distance h over which the variogram is to 
be measured. This distance can be 
thought of as a "window size" when 
using image data and needs to be larger 
than the range of influence and large 
enough for any periodicities in the data 
to be revealed. 
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FIGURE 7. The e/feet of regularization on a disc model variogram. This graph is a 
composite of Figs. 6 A - F  that holds the x-axis constant. 

A second constraint concerns the num- 
ber of points in the image to be used as 
centers of windows. The use of a sample 
results in an estimate of the true regu- 
larized variogram. The actual locations of 
points to be used are determined ran- 
domly from the set of points greater than 
distance h from the edges of the image. 
This restriction is to avoid boundary con- 
ditions and to insure a constant number 
of points contributing to the two-dimen- 
sional variogram for each vector h. For 
the one-dimensional variogram, there are 
not the same number of pixels for each 
distance h. In fact, the possible combina- 
tions of distances between centers of 
pixels grows as their distance apart in- 
creases. To simplify the resulting vario- 
gram, all distances between successive 
integer multiples of the number of resolu- 
tion cells are combined to produce a single 

estimate of y over that interval. The dis- 
tance used to index this estimate is the 
average of the contributing distances 
weighted by their frequency of occur- 
rence. For example, there are four pixels 
1 resolution-cell distant from any center 
point (its nearest neighbors), and four 
pixels 1.414 resolution cells away (at the 
diagonals). Thus, for the one-dimensional 
variogram, the contributions of these eight 
pixels is used at each center point to 
estimate the value of 7 for l ~ < h < 2  
units of distance. The distance used to 
index their result is ½(1 + ~/2)= 1.212, or 
the average of the distances of the con- 
tributing pixels. As h increases, the com- 
binations become more complicated, and 
the number of pixels contributing to the 
estimate of any given interval increases. 
One additional note is that the square 
root of the variogram is used for all graphs 
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of observed variograms. In much the same 
way that a standard deviation is more 
easily interpreted than a variance, the 
magnitude of the square root of the vario- 
gram is more easily understood. 

Variograms were selected for use in 
this study primarily because of their 
mathematical simplicity and ease of inter- 
pretation. However, other choices exist 
that would have led to similar results, and 
deserve some mention. The use of spatial 
autocorrelation with geographic (Glass 
and Tobler, 1971; Olson, 1975) and time 
series (Kisiel, 1969) data is closely related 
to the use of variograms. Spatial autocor- 
relation is a measure of covariance be- 
tween observations divided by the vari- 
ance of the variable. The correlogram, 
which measures autocorrelation as a func- 
tion of distance, is very similar to the 
variogram (Cliff and Ord, 1981). 

Craig and Labovitz (1980) measured 
autocorrelation in Landsat MSS images 
and tested the influence of factors related 
to the sensors, physical factors such as 
sun angle and cloud cover, and a "geo- 
graphic location" factor. Their results in- 
dicated that the spatial autocorrelation in 
MSS images cannot be attributed to elec- 
tromechanical features of the scanner sys- 
tem. Cloud cover and geographic location 
had significant impacts on the observed 
autocorrelation in images. In addition, 
a Box and Jenkins (1976) Autoregres- 
sive-Integrated-Moving-Average [ARIMA 
(1,0,1)] model was found to fit the MSS 
data. Labovitz et al. (1981) extended the 
study and found physiography contrib- 
uted more significantly to autocorrelation 
in images than land cover. Also, autocor- 
relation was found to be higher in images 
with finer spatial resolution (30 m). 

There are a couple of minor differences 
between the correlogram and the vario- 
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gram. Due to the correction of covariance 
by the variance, the correlogram inter- 
sects the y-axis at unity, rather than the 
origin. Deviations from zero, rather than 
the sill, are of interest in correlograms. 
The autocorrelation formulation, and 
thus correlograms, require a slightly more 
restrictive stationarity assumption than 
variograms. The mean is assumed to re- 
main constant over the entire extent of 
the variable, while the use of variograms 
only requires that the mean is locally 
stationary. The use of deviations from the 
mean in the calculation of covariances 
requires the more strict assumption of 
stationarity. 

There are reasons to believe that the 
mean of remotely sensed images will 
change spatially within a single image. 
The illumination and reflection geometry 
is not constant for all resolution cells in 
an image. Due to the anisotropic reflec- 
tance of surface materials, there can be 
systematic changes in brightness across 
images. The inappropriateness of the 
stationarity assumption could lead to bi- 
ased estimates of the magnitude of auto- 
correlation. While the general formula- 
tion of autocorrelation requires the use of 
means in the calculation of covariances, 
in fairness, Geary's coefficient does not 
and may have been an acceptable alter- 
native for the remote sensing case (Cliff 
and Ord, 1981). 

A second factor that influenced the 
decision to use variograms rather than 
autocorrelation approaches concerns the 
nature of past research on the two meth- 
ods. Research on autocorrelation has 
largely been concerned with statistical 
distribution of autocorrelation coefficients 
(Cliff and Ord, 1981) and significance 
testing (Oden, 1984). Other than provid- 
ing a more objective method of determin- 
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ing the range of influence, significance 
testing would not be particularly helphtl 
in this study. The concern for shapes of 
variograms was considered an attractive 
feature as the shapes of observed vario- 
grams might prove helpful in tmderstand- 
ing the relation between spatial variation 
in images and scene models. 

Another choice for a method of mea- 
suring spatial variation in images is 
Fourier analysis. In particular, the power 
spectrum, which is a plot of the percent 
variance associated with each frequency 
as a function of frequency, would 
have been appropriate (Rayner, 1971; 
Mollering and Rayner, 1981). This 
method is mathematically equivalent to 
the autocorrelation approach, as they are 
transforms of each other. 

Other factors supported the selection 
of variograms for use in this study. The 
ability to use Serra's work to explicitly 
derive variograms for simple scene mod- 
els is particularly important. There has 
been work on simulating autocorrelated 
surfaces (Haining et al., 1983) that might 
have been useful, but a direct tie to a 
scene model has not been explicitly de- 
veloped. A second area of research on 
variograms that is very useflil concerns 
regularization. Dqe to the obvious in- 
fluence of spatial resolution on spatial 
variation in images, a direct understand- 
ing of the effect of the size of the sam- 
pling unit on variograms was useful (Jupp 
et al., 1988). It should also be noted that 
variograms are similar to many of the 
texture measures used in remote sensing. 
These texture measures are often used 
as features in classification and, like 
the variograrn, measure variance as a 
function of either distance or direction 
(Weszka, et al., 1974; Haralick, 1979; Shih 
and Schowengerdt, 1983; Frank, 1984). 
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One measure, the polarogram (Davis, 
1981), is very similar to the two-dimen- 
sional variogram, using polar coordinates 
to plot variance. 

3. Image simulation 

In the last section, two diverse ap- 
proaches to variograms were presented. 
One approach is empirical, in which a 
variogram is calculated from an observed 
image. The other is theoretical, with the 
expected nature of variograms being ex- 
plicitly defined on the basis of a sim- 
ple scene model. In an effort to bridge 
the gap between these two approaches, 
images were simulated on the basis of 
known scene models. These simulations 
serve several purposes. First, they con- 
firm the validity of the explicit vario- 
grams through empirical testing. Second, 
they allowed for testing of the extension 
of the simple disc model to more com- 
plicated scenes. And third, the vario- 
grams of simulated images help explain 
the characteristics of empirically calcu- 
lated variograms from real remotely 
sensed images. 

3.1. Simulation methods 

The simulated images used in this paper 
are based on a coniferous forest scene 
model. The basic approach is a modifica- 
tion of a Monte Carlo computer model 
used by Li and Strahler (1985) in their 
studies of forest canopy reflectance. 
Monte Carlo methods are used to locate 
trees on a plane which are illuminated 
from a specified angle and azimuth. This 
approach leads to four kinds of objects in 
the scene: illuminated tree crown and 
background, and shadowed tree crown 
and background. The forest simulation 
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represents a general model With sever- 
al parameters. For this project, these 
parameters are calibrated primarily by 
field data collected in the Klamath Na- 
tional Forest in northern California (Li 
and Strahler, 1985). 

In the original model of Li and Strahler, 
many realizations of individual resolution 
cells were simulated. Their approach 
specifies two levels of resolution: 1) the 
scale at which scene objects are differen- 
tiated, and 2) the size of the resolution 
cells. For this project, the simulation pro- 
gram was altered to simulate one larger 
scene in which the scale at which scene 
objects are differentiated matches the size 
of the resolution cells. The size used in 
the simulations presented is 1 m. The 
distinction between a simulated scene and 
simulated image is minor in this case. 
A scene implies different objects and 
an image implies reflectances (or emit- 
tances). The sim~ation assumes no atmo- 
spheric effects and a square wave re- 
sponse on the part of the sensor. As a 
result, there are only four values for re- 
flectances in the image, one for each type 
of scene element. 

The primary parameters of the simula- 
tion concern the characteristics of trees: 
their number, location, size, and shape. 
In the IA and Strahler model, the number 
of trees in a single realization of a resolu- 
tion cell varies according to a Poisson or 
Neyman Type A distribution. However, 
for the single realization of a larger area, 
a single value, or the mean of a Poisson 
distribution is used to determine the 
number  of trees for the entire area. 

Of more interest is the manner in which 
the trees are located within the scene. 
Considerable effort has been devoted to 
this question, and several alternatives have 
been considered. Li (1981) measured the 
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spatial patterns of trees using point-pat- 
tern techniques based on locations de- 
rived from aerial photography and found 
that a Neyman Type A model fit better 
than the random model. In a later study 
in a neighboring area, Franklin et al. 
(1985) again used locations of trees taken 
from aerial photography and found that 
the random model was a good approxi- 
marion. Results of field data collected in 
the Klamath National Forest indicate that 
the random model is a reasonable ap- 
proximation. Thus, in the simulations pre- 
sented, the locations of the center of trees 
are determined through random coordi- 
nates. 

The model is based on the use of cones 
as the shapes of trees. Thus, the model is 
limited to coniferous forests. Trees are 
assumed to have a constant apex angle of 
10 °, which is based on the field data 
previously mentioned. A log-normal dis- 
tribution of the sizes of trees is used. This 
decision is based on the results of other 
published studies, and the parameters of 
the distribution were calibrated from the 
field data collected in the Klamath. For a 
more complete description of the model 
and its parameters, see Li and Strahler 
(1985). 

3.2. Validation of the explicit variograms 

One use of the simulated images was to 
validate the explicit variograms. Due to 
the nature of the forest simulation model 
it was easily generalized to correspond to 
the disc model used for the explicit vario- 
grams previously presented (Fig. 4). By 
reducing the variance of the heights of 
trees to a number close to zero, and 
eliminating shadows through the use of a 
solar zenith angle of zero, an image corre- 
sponding to discs on a background at 1-m 
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FIGURE 8. A I~rtion of the simulated disc image (A) and an enlargement (B). 

regularization was simulated. Figure 8 
shows the simulated disc image, which 
has discs of 7-m diameter covering 9.92% 
of the background of an area 360 x 360 m 
in size. In order to test the validity of the 
explicit variograms, an empirical vario- 
gram was calculated from the simulated 
disc image, and an explicit variogram 
for the corresponding scene model was 
calculated at 1-m regularization. Figure 9 
shows these two variograms plotted to- 
gether for comparison. These two vario- 
grams do not match exactly, but are very 
close 

There are several possible reasons why 
the observed and expected variograms do 
not match exactly. The empirical vario- 
gram is derived from one realization of a 
simulation process based on randomiza- 
tion. Thus, it is likely that this one real- 
ization will depart from the model to 
some extent. Also, the empirical vario- 
gram is estimated, in this case from a 
sample of 600 points in the image. As the 
number of points is changed, the vario- 
gram changes slightly. Clearly, the more 
points that are used, the more stable and 
accurate the estimate is likely to be. Fig- 
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B 
FIGURE 8. (Continued) 

ure 10 shows four estimates of the vario- 
gram for the simulated disc image using 
four different sampling densities. Their 
variation is large relative to the difference 
between the explicit and empirical vario- 
grams shown in Fig. 9. 

The ability to reproduce empirically 
through image simulation the results for a 
disc model expected by theoretical formu- 
lation is a significant step in the use of 
variograms to study spatial structure in 
images. This "dosing of the loop" vali- 
dated the theory as well as the software 
used to calculate explicit variograms and 

estimate variograms from observed 
images. 

3.3. Extension of the disc model 

Having demonstrated the connection 
between observed variograms and theo- 
retical variograms using a simple disc 
model, it is possible to test the effect of 
variations in that model on variograms. 
Obviously, real scenes are not composed 
of randomly located discs of the same size 
on a uniform background. However, it 
may be possible to use the characteristics 
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of explicit variograms from this simple 
model to help explain the nature of vario- 
grams derived from real images. 

3.3.1. Shape. To test the effect on 
observed variograms of the shape of ob- 
jects, a forest image was sim~ated using 
the previously described methods. The 
same parameter settings that were used 
for the simulated disc image (Fig. 8) were 
used with one exception; the angle of 
illumination was changed to  20 ° in order 
to produce shadows. The resulting image 
(Fig. 11) exhibits all four components of 
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the forest model: illuminated canopy, 
shadowed canopy, illuminated back- 
ground, and shadowed background. The 
size of the discs used in calculation of the 
explicit variogram match the area of the 
cones in the image. In order to compare 
the observed variogram from this image 
with the disc model, it was necessary to 
convert the image to only two values, or 
tones. In this instance, trees and shadows 
were stretched to black and the back- 
ground was left white. The resulting 
image (Fig. 12) looks like cones on their 
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FIGURE 11. A portion of the simulated forest image (A) and an enlargement (B). 
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sides. These cones do not strictly match 
the disc model due to their shape, but the 
ability to extend the disc model is of 
interest in this case. 

A variogram was calculated from the 
observed black and white image for com- 
parison with the result of the explicit 
variograms for the disc model. However, 
it was not clear what values should be 
used for the disc model in the calculation 
of the explicit variogram. In particular, it 
was not obvious what should be used as 
the size parameter. For the forest cone 
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image, the radius changes as a ftmction of 
orientation from 3.5 m across the tree to 
5.5 m from the far edge of the tree to the 
tip of the shadow. Figure 13 shows the 
observed variogram calculated from the 
image in Fig. 12 compared with three 
explicit variograms for the disc model 
using 3.5, 4.5, and 5.5 m for the radii of 
the discs. Interestingly, the 3.5 m radius 
is the best approximation of the forest 
model, which is the same size as the trees 
before the addition of their shadows. The 
shadows markedly affect their shape but 

B 
FIGURE 11. (Continued) 
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FIGURE 12. A portion of the simulated forest image stretched to two tones (A) for comparison 
with the disc model and an enlargement (B). 

do not significantly influence their effec- 
tive size. Figure 14 is a comparison of the 
observed variogram with a variogram for 
discs with area equal to the area of the 
forest cone. While these two variograms 
are not a perfect match, they demon- 
strate that shape is a relatively minor 
factor in this case. Using just the area 
covered by individual objects, it was pos- 
sible to produce a reasonable fit with the 
disc model. This result is important be- 
cause it indicates that the disc model 

might be used as a reasonable approxima- 
tion of scenes with objects d other shapes. 

3.3.2. Size variance. The derivation 
of the explicit variograms assumes that all 
the discs are the same size, which is 
unlikely for real scenes. To test the in- 
fluence of variance in the size of discs, an 
image was simulated using the same 
parameters of the initial simulation of the 
disc image (Fig. 8) with the exception of 
the variance in disc size. As mentioned 
earlier, a log-normal distribution is used 
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B 
FIGURE 12. (Continued) 

to describe the size distribution, and its 
standard deviation was set intentionally 
high at 3.168. The resulting image is 
shown in Fig. 15. To calculate an explicit 
variogram for comparison, it was again 
necessary to determine the appropriate 
size to be used for the discs. The mean 
radius is not a good approximation as the 
area covered is related to the square of 
the radius, not the radius. Instead, a value 
for the radius that produces the same 
area covered by discs as the log-normally 
distributed discs would be appropriate. 
This radius can be calculated using the 

mean (m) and variance (s 2) of the log- 
normal distribution: 

r =  m ~ + $  2 . 

For the simulated image shown in Fig. 8, 
the appropriate radius for use in the disc 
model is 4.72 m. 

Figure 16 is a comparison of the ob- 
served variogram from the simulated 
image with a lognormal distribution of 
disc sizes and the equivalent explicit 
variogram for fixed size discs. The two 
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FIGURE 15. A portion of the simulated image in which the sizes of the discs are log-normally 
distributed (A) and an enlargement (B). 

variograms agree closely with one inter- 
esting difference. The observed vario- 
gram exhibits a more rounded shape than 
the explicit variogram for fixed disc size. 
This rounded shape can be understood by 
examining the effect of the distribution of 
sizes on the variogram. At small dis- 
tances, the variogram is a little higher 
than expected, and at distances near the 
range of influence it is lower than ex- 
pected. At short distances the existence 
of small discs causes an increased amount 

of perimeter for the same area covered, 
increasing the likelihood that movements 
of short distances will result in crossing a 
boundary+ At distances near the range of 
influence, an opposite effect occurs. One 
result of the log-normal distribution is 
discs larger than the size of the fixed 
discs of the explicit variogram. These discs 
reduce the likelihood of crossing a 
boundary at distances smaller than their 
diameter, which can still be larger than 
the zone of influence of the fixed disc 
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model. This accounts for the difference 
between the two graphs in the 7-11-m 
range. 

4. Discussion and conclusions 

The main goal of the research pre- 
sented in this paper was to establish a 
direct link between the spatial character- 
istics of images and the scene from which 
the image is derived. Variograms proved 
a useful tool for studying this link because 
they allow the problem to be approached 
from two different directions. By produc- 
ing matching variograms by theoretical 
calculation of a regularized variogram and 
by empirical calculation of a variogram 
from a simulated image it was demon- 
strated that the spatial variation in images 
can be predicted on the basis of scene 
and sensor parameters. This "closing of 
the loop" between theoretical and em- 
pirical variograms for a specific scene 
model is probably the most significant 
finding of this research. This link be- 
tween scenes, images, and spatial varia- 
tion is essential for improving the use of 
spatial data in information extraction. It 
is only a preliminary step in a much 
larger process, but it is hoped that it will 
serve to alter people's perception of the 
nature of spatial variation in images. 
Through the txse of scene models, spatial 
variation can be modeled for images. Em- 
pirical association is not the only way 
spatial variation in images can be studied. 

In addition to "closing the loop," both 
ways of using variograms proved useful 
for understanding the nature and causes 
of spatial variation in images. The explicit 
variograms calculated for simple models 
of scenes showed that the characteristics 
of the variogram are related to the 
parameters of the scene model. For the 

CURTIS E. WOODCOCK ET AL. 

disc model, the height of the sill is related 
to the number of discs (or density of 
coverage) and the distance to the sill is 
related to their diameter. Through the 
regularization process it is possible to 
calculate variograms as if they were de- 
rived from measurements of some length 
or area rather than from points. The ef- 
fects on punctual variograms of regn- 
larization are to increase the zone of in- 
fluence, decrease the height of the sill, 
and increase the height of the first mea- 
surement relative to the sill until they 
match. The effects of regularization are 
critical because they correspond to the 
effects imposed by the IFOV of a sensor 
capturing images of a scene. The regu- 
larization of punctual variograms allows 
the direct calculation of variograms as 
they would be measured in an observed 
image. 

Empirical variograms of simulated 
images were used to test the effect of 
generalizing our simple disc model to 
consider the effect of the shape of objects 
in a scene and their size distribution. 
The effect of cone-shaped objects was 
minimal, while increasing the variance in 
their size distribution resulted in a more 
rounded shape near the range of in- 
fluence of the variogram. The use of 
simulated images was particularly helpful 
for initial evaluation of observed vario- 
grams because scene parameters could be 
controlled and changes in variograms reli- 
ably related to those factors. The second 
paper in this series involves the empirical 
calculation of variograms from real digital 
images and attempts to apply the knowl- 
edge gained from this analysis to their 
interpretation. 
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