SER - 300 - INTRODUÇÃO AO GEOPROCESSAMENTO

Laboratório 5 Geoestatística Linear

Análise da variação espacial do teor de argila sobre a Fazenda Canchim.

Professor(es) coordenador(es): Dr. Antonio Miguel Vieira Monteiro e Dr. Claudio Barbosa

Aluna: Yhasmin Mendes de Moura

INTRODUÇÃO

O objetivo deste laboratório é explorar os procedimentos estatísticos implementados pelo SPRING. Através destes processos deve-se analisar a variabilidade espacial de propriedades naturais amostradas e distribuídas espacialmente (argila).

Os passos desse laboratório consistem:

- Análise exploratória;
- Análise estrutural (cálculo e modelagem do semivariograma);
- Realizações de inferências.

2. Carregando dados no SPRING

O primeiro passo do laboratório foi carregar os dados no sistema SPRING. Ativou-se o banco de dados SaoCarlos e definiu-se o projeto ativo Canchin.

🗖 Projetos 📃 🗆 🔀
- Projetos
Canchim
Nome: Canchim
Projeção UTM/Hayford
– Retângulo Envolvente
Coordenadas: 🦳 Geográficas 🔎 Planas
X1: 204000.000000 X2: 211000.000000
Y1: 7565000.00000 Y2: 7575000.00000
Hemisfério: 🦳 N 💿 S 🔍 N 💿 S
Criar Ativar Desativar Alterar Suprimir
Ajuda

Figura 1 – Ativação do Projeto Canchin.

Selecionou-se, no painel de controle, o plano de informação argila da categoria Amostra_Campo (amostra) e visualizou-o na tela.

Figura 2 – Visualização do PI argila.

O próximo passo foi a análise exploratória, no SPRING esta análise de dados é realizada através de estatísticas univariadas (realizadas principalmente através de histogramas) e bivariadas.

Figura 3 – Análise exploratória da variável argila

Além das estatísticas descritivas, foi visualizado no SPRING, os recursos gráficos de histograma e de gráfico da probabilidade normal.

Figura 4 – Gráfico do histograma, à esquerda com 10 classes e à direita 15.

No histograma acima, o PI ativo (argila) está representado na cor amarela. A curva contínua em vermelho é uma distribuição Gaussiana e serve de referência para efeito de comparação. Abaixo temos o gráfico da probabilidade normal, onde a linha em vermelho representa a distribuição gaussiana e a cor azul a argila.

🗖 Análise Exploratória 🛛 🖃 🗖					
Estatística					
Gráfico de Probabilidade Normal 💽					
Plano de Informação					
Ativo: argila					
Selecionar outro PI					
Executar Fechar Ajuda					

Figura 5 – Gráfico da Probabilidade Normal para o Pi argila.

Posteriormente foi realizado a análise da variabilidade espacial por semivariograma. Na Figura 6 (abaixo) o semivariograma apresentado possui uma variação ou forma não muito adequada quando comparado a um semivariograma ideal.

Figura 6 – Diferença entre semivariogramas, diferenciados pelos parâmetros de Lag, incremento e tolerância.

Através do menu análise, no submenu geoestatística – ajuste de semivariograma, obteve-se os parâmetros do modelo (Efeito pepita, contribuição e alcance) tomados como referencia para a definição dos parâmetros do modelo isotrópico.

Figura 7 – Ajuste do semivariograma para modelagem do semivariograma experimental.

Com estes dados, pode-se programar na análise do semivariograma utilizando o ajuste de semivariogramas, no menu análise – geoestatística – ajuste de semivariograma. Para este procedimento deve-se clicar em Definir... e inserir os dados manualmente na janela de Parâmetros Estruturais nos campos de Efeito Pepita (118.854), Tipo: Gaussiano, Contribuição (230.892), Alcance Máximo (3989.20) e Alcance Mínimo (3989.20). Após este procedimento prossegue-se para a validação do modelo de ajuste, técnica que precede a técnica de krigeagem. O principal objetivo desta etapa é avaliar a adequação do modelo proposto no processo que envolve a re-estimação dos valores amostrais

conhecidos. Nesta etapa obtém-se a distribuição espacial do erro, estatística do erro e diagrama Observados x Estimados.

Figura 8 – Diagrama espacial de erro.

Figura 9 - Relatório de Dados e Diagrama Observados x Estimados.

Depois de realizada a validação do modelo, a etapa final do processo geoestatístico consiste na interpolação de krigeagem. Esta etapa final é realizada no menu Análise – Geoestatística – Krigeagem.

Figura 10 – Processo de krigeagem.

O próximo passo é a transformação da grade numérica em uma imagem, feito através do menu MNT – Geração. Após a criação da imagem na Categoria Imagem, plano de informação IMA_KRIG_ISO_argila, fez-se um recorte através da programação legal. Posteriormente fatiou-se o plano de informação em classes: [0,15]: "Arenoso", [15,35] : "Medio", [35,45] : "Argiloso", [45,60] : "Muito Argiloso", como demonstrado a seguir:

Figura 11 – Imagem Isotrópica gerada por krigeagem, com ou sem a grade.

Figura 12 – Fatiamento da Imagem Isotrópica.

O próximo procedimento do "LAB_5" foi gerar a imagem anisotrópica. O caso anisotrópico é um caso muito freqüente de ser observado, facilmente constatado através da observação da superfície de semivariograma. A superfície de semivariograma é um gráfico, 2D, que fornece uma visão geral da variabilidade espacial do fenômeno em estudo. É utilizado para detectar os eixos de Anisotropia, isto é, as direções de maior e menor continuidade espacial da propriedade em análise (SPRING). Para se detectar a anisotropia, deve-se proceder da seguinte forma: entrar no menu Análise – Geoestatística – Geração de Semivariograma; no tipo de análise deve-se colocar superfície, clicando em seguida em executar.

Figura 13 – Superfície do semivariograma para detectar a anisotropia.

Pela figura pode-se notar que há um espalhamento mais intenso na direção entre 17~20 graus e menos intenso na direção de aproximadamente 107 graus. As direções de maior e menor continuidade espacial são forçadas a serem ortogonais (uma elipse imaginária), pois isto é necessário à modelagem da anisotropia. Para a geração de semivariogramas direcionais deve-se proceder quase que da mesma forma que para a criação dos semivariogramas da Imagem Isotrópica. Na geração do semivariograma deve-se ajustar os parâmetros de lag e direção, obtendo o seguinte semivariograma:

Figura 15 – Modelagem dos semivariogramas direcionais.

Figura 16 – Modelo de ajuste esférico com o relatório de dados.

Realizado a modelagem da anisotropia, o próximo passo é gravar o modelo proposto. Isto é feito copiando os dados da tabela anterior (ajuste do semivariograma) para a janela de Parâmetros Estruturais.

Figura 17 – Modelagem de anisotropia.

O próximo passo é a validação do modelo de ajuste, técnica realizada antes da krigeagem. O principal objetivo desta parte é avaliar a integridade dos dados quanto ao modelo proposto, no processo de re-estimação dos dados amostrais conhecidos.

Figura 18 – Diagrama Espacial do Erro.

Figura 19 - Histograma do Erro, Estatística do Erro, Diagrama de valores Observados x Estimados.

O próximo procedimento é a interpolação por krigeagem ordinária, uma vez realizada a validação do modelo, a etapa final do processo geoestatístico consiste na interpolação de krigeagem. Esta etapa é realizada através do menu Análise – Geoestatística – Krigeagem. Neste caso o número de pontos no elipsóide de busca máximo passa para 64, obtendo o seguinte resultado:

Figura 20 – Krigeagem para a estimação anisotrópica.

Após a geração da grade de krigeagem, proveniente de um modelo anisotrópico, gerada para o teor de argila, gera-se a imagem e posterior classificação ([0,15] : "Arenoso", [15,35] : "Medio", [35,45] : "Argiloso", [45,60] : "Muito Argiloso"), como demonstrado a seguir:

Figura 21 - Geração da Imagem da krigeagem.

31.8 +	32.3	29.5	24.6 +	25,9	32.0 +	31,5 +	.32,6 +
32.6 +	29.7 +	24.7	12.4	14.9 +	23 1	29.8 +	337 +
32.3	33.2	فإذ	(<u></u>	ų	ų.	24.4 +	34 6 +
35.2 +	40.2		40.6	45.7	199	3	35.2 +
36.3 +	39.1 +	39 B	470 +	42.8	*		34.8 +
35.6 +	34.9	/38.7	50,4 +	49,6 +	491	35.3 +	33.7 +
36.4	39.9	40.2	45.2 ++	45.0	147.0	36.5 +	34,9 +
36.0 +	36.2	38.3	in	35.3 +	39 4	37.9 +	35.9 +
36.7 +	35.8	38.6	B1.0	.35.5 +	38.1 +	38.0 +	37.3 +
38.3 +	36.1	39.D +	35.5	36.0 +	38.5 +	<mark>38</mark> .0	37.8 +
	~						

Painel de Co	ntrole 💷 🗆 🚺
Categorias	
(V) Amostras_Car () Classes_Solo () Fatiamento_Ar (V) Imagem (V) Limites () Mapa_Geologi	npo ngila
Planos de Informa	ção
() IMA_KHIG_AN () IMA_KRIG_IS(() REC_IMA_KRI () OMA_KRIG_A (M) REC_IMA_KR	IIS_argila D_argila G_ISO_argila NIS_argila RIG_ANIS_argila
Prioridade: 0	CR Desenhar
M R R	G 🦵 B 🦵 Texto
Selecionar.	Consultar
CONTROL	E DE TELAS
Ativar: 💽 10	2030405
Exibir:	2 3 4 5
Acoplar:	2 3 4 5
Ampliar: 📀 1 C	20408
Fechar	Ajuda

^

≣ ~

1

5

5

5

2 3 4

Ajuda

Figura 22 – Imagem da Krigeagem com recorte.

Figura 23 – Fatiamento da imagem da krigeagem.

2.3 CONSIDERAÇÕES FINAIS

Após o término do "LAB_5", pode-se constatar a diferença nos resultados obtidos pelos dois métodos acima realizados. Ao passo que a imagem de isotropia em fenômenos naturais é um caso pouco freqüente de ser observado, um único modelo é suficiente para descrever a variabilidade espacial do fenômeno em estudo. Quando lidamos com a isotropia na tentativa de detectar uma estrutura de correlação espacial, utiliza-se a tolerância angular máxima (90 graus), tornando a direção insignificante (SPRING).

Já a anisotropia em propriedades naturais é um caso muito freqüente de ser observado, sendo facilmente constatada através da observação da superfície de semivariograma, indicando uma direção preferencial ficando clara a distinção entre os dois processos.