

Center for Earth Observation and Digital Earth Chinese Academy of Sciences



### Glacier monitoring by remote sensing techniques in western China

#### Liu Guang, Yan shiyong, Ruan zhixin

Centre for Earth Observation and Digital Earth (CEODE) Chinese Academy of Sciences (CAS)

5<sup>th</sup> ABCC workshop, November 19-20, 2012 Iguazu, Brazil





# 1. Introduction

- 2. Study Area and Results
  - Area study
  - Velocity monitoring
- 3. Some thoughts

# Introduction



- Qinghai-Tibet Platean, Earth's "Third Pole", with a total glacial area of 100,000 km<sup>2</sup>, act as a water storage tower for South and East Asia, releasing melt water in warm months to the Indus, Ganges, Brahmaputra and other river systems, providing fresh water to more than a billion people
- Glacier is important in function of climate change reflection and sea level change

# Introduction



- Accurate displacement measurements are needed to understand the dynamics of glaciers
- The Area change is a indicator of glacier change
- **Remote Sensing** is an effective way to study glaciers, Quality is important

# **Tibet Plateau**

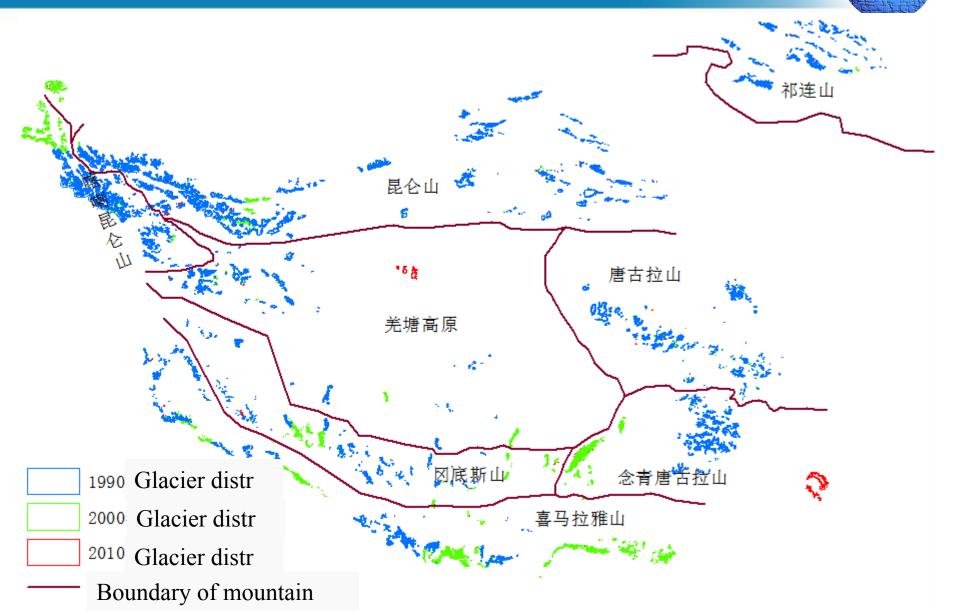




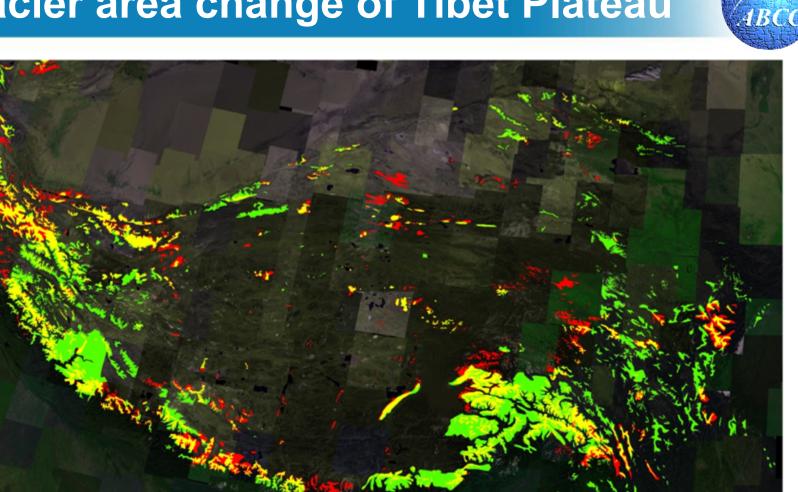
Source: Microsoft Encarta 2008



# Area change study - update


# Datasets

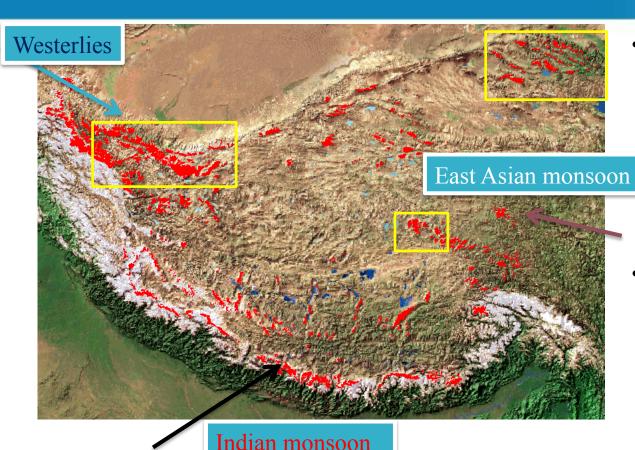



#### Landsat Satellite Images 5 and 7

| Nr. | Path | Row | Acquired date | Acquired date | Acquired date |
|-----|------|-----|---------------|---------------|---------------|
| 1   | 134  | 33  | 2010/8/5      | 2001/7/3      | 1992/8/27     |
| 2   | 134  | 40  | 2009/9/27     | 2001/10/23    | 1994/7/8      |
| 3   | 135  | 33  | 2008/9/15     | 1999/9/22     | 1988/7/28     |
| 4   | 135  | 38  | 2011/8/23     | 1999/7/21     | 1992/8/10     |
| 5   | 136  | 33  | 2010/8/27     | 2000/7/14     | 1993/8/27     |
| 6   | 136  | 37  | 2011/8/6      | 2000/7/30     | 1992/9/2      |
| 7   | 136  | 38  | 2011/8/30     | 2001/9/3      | 1992/9/2      |
| 8   | 136  | 38  | 2011/9/15     | 2003/7/23     | 1992/9/2      |
| 9   | •••  |     |               |               |               |

#### Glacier area change of Tibet Plateau - update




### **Glacier area change of Tibet Plateau**





Decrease No change Increase

# Glacier inventory on Qinghai-Tibetan Plateau -update

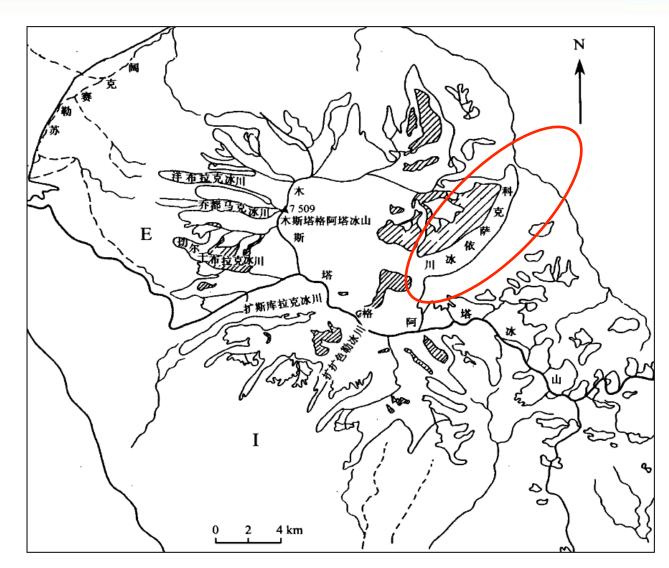


- Based on Landsat TM/
  ETM+ images in 1990,
  2000 and 2010 (more than 200 scenes)
  Glacier inventory
  covering major glacier
  distribution on QinghaiTibetan Plateau
- Preliminary statistics
  - West Kunlun Mountain
  - Qilian Mountain
  - West section of Tangula Mountain

|                        | Glacie   | er area cove | erage (km2) | Change rate |           |           |
|------------------------|----------|--------------|-------------|-------------|-----------|-----------|
|                        | 1990     | 2000         | 2010        | 1990-2000   | 2000-2010 | 1990-2010 |
| West Kunlun Mountain   | 10309.48 | 9530.03      | 1 9356.009  | 7.56%       | 1.83%     | 9.25%     |
| Qilian Mountain        | 1799.599 | 1720.95      | 1572.428    | 4.37%       | 8.63%     | 12.62%    |
| West Tanggula Mountain | 1236.666 | 1158.474     | 4 1122.322  | 6.32%       | 3.12%     | 9.25%     |



#### SAR and Optical monitoring glacier velocity- update

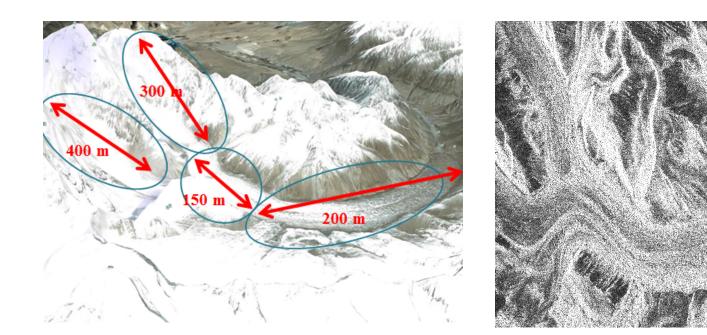

# **Study Area and Datasets**





# **Glacier distribution**





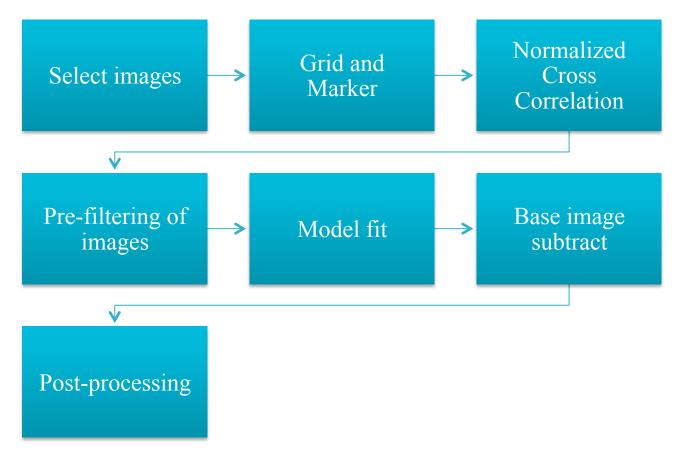

Since its high altitude and cold weather, there are snow perennially. More than 100 modern glacier around this area, the whole area is more that 345 km<sup>2</sup>

An Observation on Surface Ablation on the Yangbark Glacier in the M uztag Ata, China, PU jian chen, etc








Kuksai Glacier, with area of 86.5 km<sup>2</sup>, is the largest one around the Mt. Muztagh Ata. It is about 18 km long and with the maximum width 1.5 km. Its altitude varies slowly from 3,900 m up to about 4,900 m with moderate terrain. most of its surface is covered by debris.

# Methodology



#### **Glacier Movement Estimation**

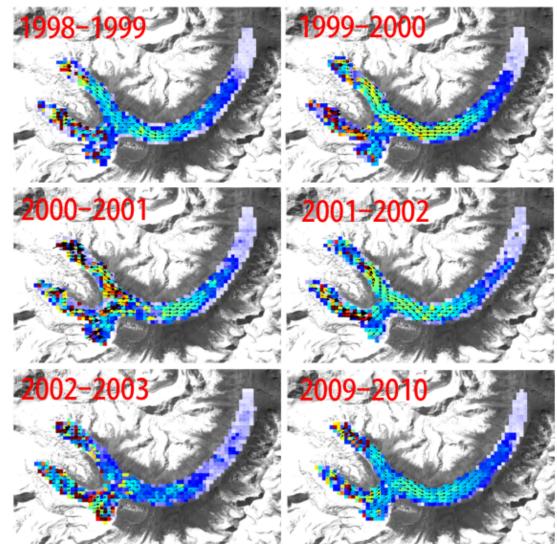
#### **Pixel Track Method**

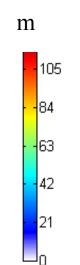


# Datasets



#### ALOS/PALSAR SAR Images


| Date       | Bpara(m)  | Bperp(m) | Path | Frame | Temporal baseline(day) |  |
|------------|-----------|----------|------|-------|------------------------|--|
| 01/14/2009 | 100       | 240      | 505  | 750   | 44                     |  |
| 03/01/2009 | 189       | 249      | 525  | 750   |                        |  |
| 09/01/2009 | 1 4 0 0 0 |          |      |       |                        |  |
| 10/17/2009 | 140.92    | -213.16  | 525  | 750   | 44                     |  |


#### Landsat Satellite Images

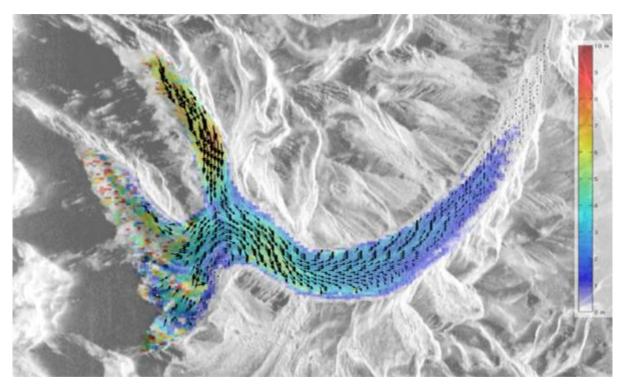
| Nr. | Path/Row | Acquired date<br>of Landsat5 | Acquired date<br>of Landsat7 |
|-----|----------|------------------------------|------------------------------|
| 1   | 149/33   | 29/08/1998                   |                              |
| 2   | 149/33   | 16/08/1999                   |                              |
| 3   | 149/33   |                              | 11/09/2000                   |
| 4   | 149/33   |                              | 30/09/2001                   |
| 5   | 149/34   |                              | 30/09/2001                   |
| 6   | 149/34   |                              | 03/10/2002                   |
| 7   | 149/34   |                              | 31/05/2003                   |
| 8   | 150/33   | 21/10/2009                   |                              |
| 9   | 150/33   | 08/10/2010                   |                              |

### **Glacier monitoring with TM Images**



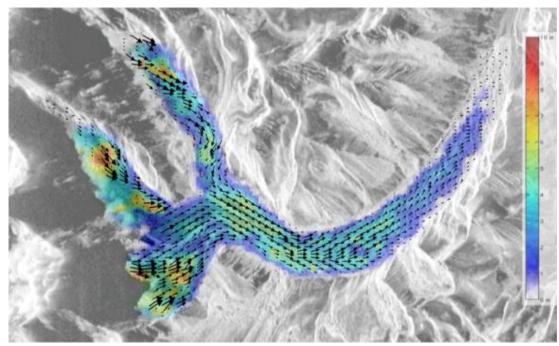





The surface debriscover of the glacier makes automated glacier outline mapping difficult, but provides useful features to monitor glacier movement

This study demonstrates that glacial movements can be routinely monitored using Landsat images, providing an opportunity and an input to detailedly study the glacier dynamics.

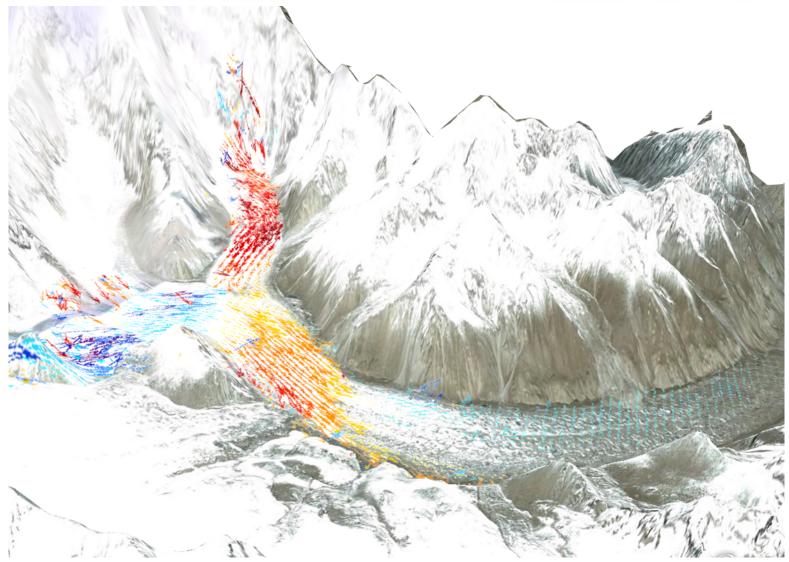
Fluctuations and movements of the Kuksai Glacier, western China, derived from Landsat image sequences, In Review


### **Velocity Field on Glacier Surface**

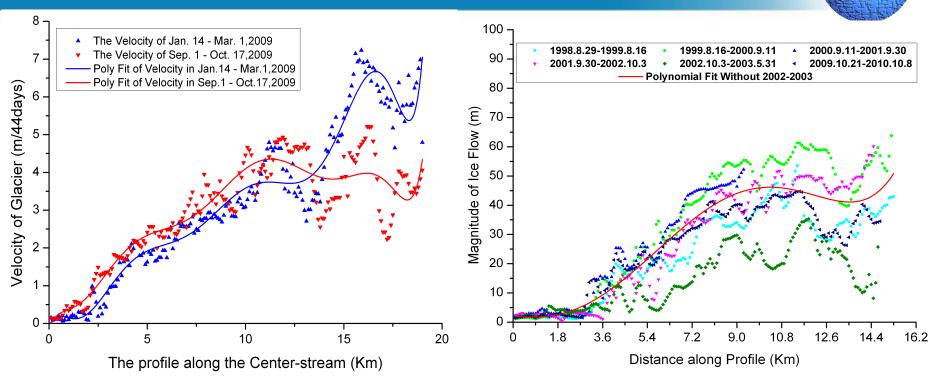
- Kuksai Glacier
- Temporal Baseline: 44days Jan-Mar,2009
- Total Average Velocity: 2.6m/44days



### **Velocity Field on Glacier Surface**


- Kuksai Glacier
- Temporal Baseline: 44days Sept-Oct, 2009
- Total Average Velocity: 3.0m/44days



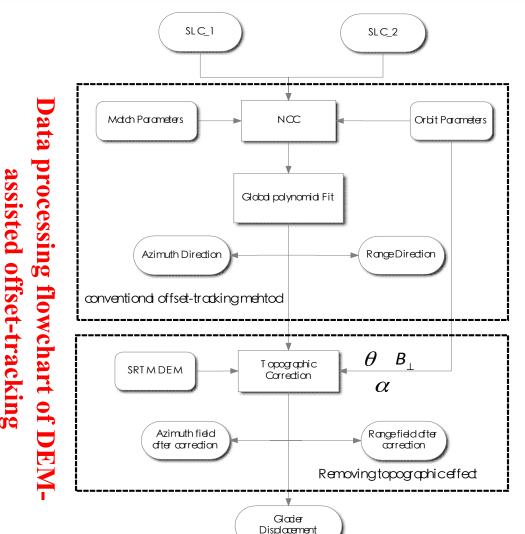

Monitoring Muztagh Kuksai Glacier Surface Velocity with L-band SAR Data in Southwestern Xinjiang, China, In Review

# **3D version**





### **Velocity Profiles-Kuksai Glacier**



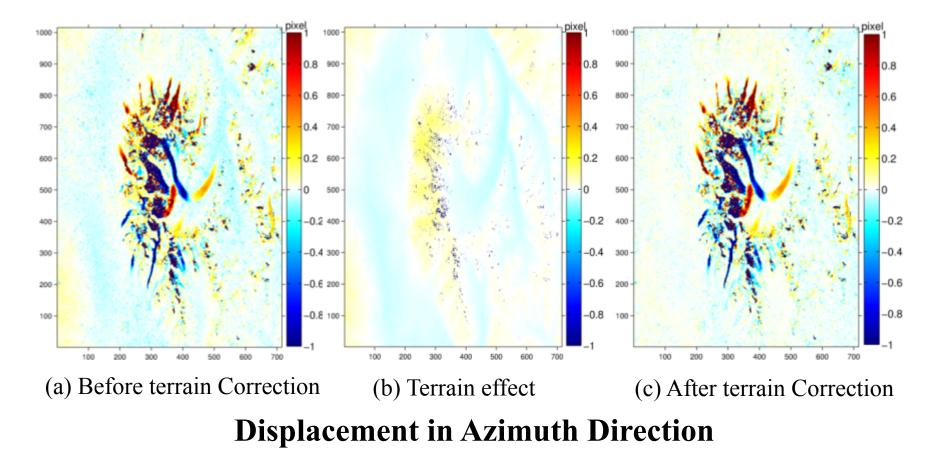

#### Velocity profiles along glacier from SAR images

Velocity profiles along glacier from TM images

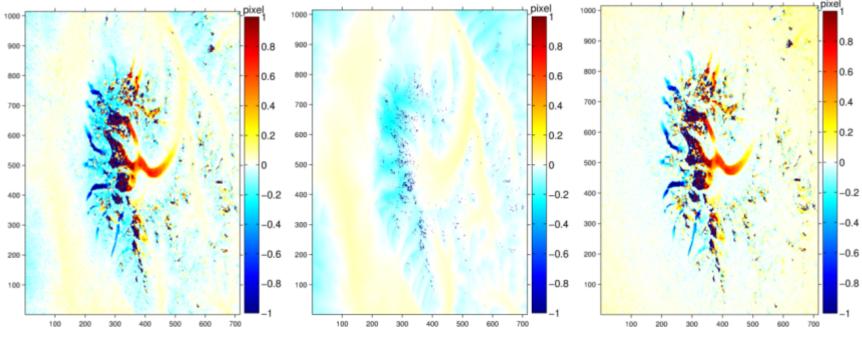
Results show the variability of the glacier movements in the middle and upper portions, especially in the 9-16km upstream from the glacier terminal, is much larger than that of the downstream part among different years. The cross validation is match.

# **Topographic effect correction**




In mountain area, the topography will effect the accuracy of the velocity estimation, especially in our study area of mountain glaciers

<u>IBC</u>


Mountain glacier displacement estimation using a DEM-assisted offset tracking method with ALOS/PALSAR Data, language revise

### **ALOS/PALSAR SAR Image Pair**

| Date      | B_para(m) | B_perp(m) | Path | Frame | B_temp(day) |  |
|-----------|-----------|-----------|------|-------|-------------|--|
| 2009-1-14 | 100.2     | 249.0     | 525  | 750   | 11          |  |
| 2009-3-1  | 189.3     | 248.9     | 525  | 750   | 44          |  |







(a) Before terrain Correction

(b) Terrain effect

(c) After terrain Correction

**Displacement in Range Direction** 



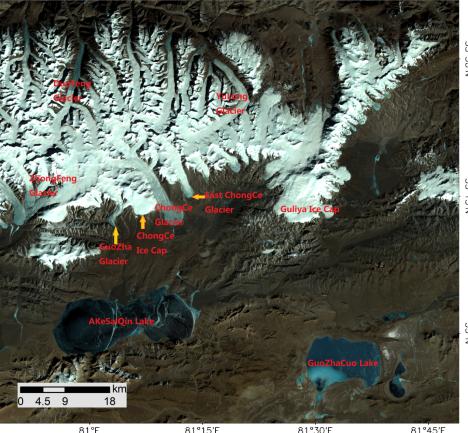
#### Glacier surface displacement with terrain correction in Mt. Muztagh Ata Jan-Mar, 2009

Topographic effects are reduced and the accuracy (0.98 m) is increased



### **InSAR and Offset Track combination**

#### Detecting Mountain Glacier Motion using ALOS/PALSAR data by combination of Radar Interferometry and Offset Teacking methods, In review


# Study site

- The eastern section of West Kunlun Mountain
  - Facing the Qinghai-Tibetan Plateau on the south, and bordering the Taklimakan **Desert on the north**
  - One of the most dense glacier distributions in China, and there are 3165 glaciers in this area.
  - There are 4 glaciers larger than 100km<sup>2</sup>, and Duofeng glacier is largest with length of 26.8km and area of 251.7km2

81°F 81°15′E

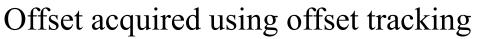
81°E

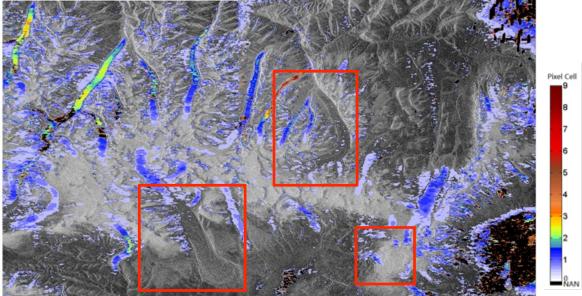




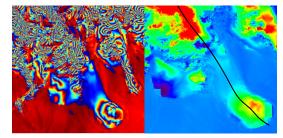
81°15′F

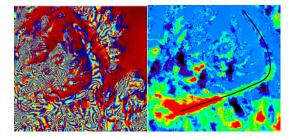
# Monitoring glacial dynamics

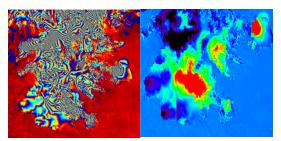

### • Problem


Glacier velocity changes a lot even of one glacier

- Techniques
  - Offset tracking
  - InSAR


| TABLE. 1.     PROCESSING DATA IN THE STUDY AREA |                    |                 |                               |                                           |  |  |  |  |  |
|-------------------------------------------------|--------------------|-----------------|-------------------------------|-------------------------------------------|--|--|--|--|--|
| Acquisition<br>time                             | Time<br>Span (day) | Track/<br>Frame | Perpendicular<br>baseline (m) | Resolution<br>in slant-range/ azimuth (m) |  |  |  |  |  |
| 2007.12.11<br>-2008.01.26                       | 46                 | 515/<br>690     | 411.05                        | 4.68 /<br>3.51                            |  |  |  |  |  |
| 2008.12.13<br>-2009.01.28                       | 46                 | 515/<br>690     | 286.66                        | 4.68 /<br>3.51                            |  |  |  |  |  |
| 2009.12.16<br>-2010.01.31                       | 46                 | 515/<br>690     | 613.49                        | 4.68 /<br>3.51                            |  |  |  |  |  |


# **Offset Maps Update**






#### Using InSAR complementary to offset tracking results

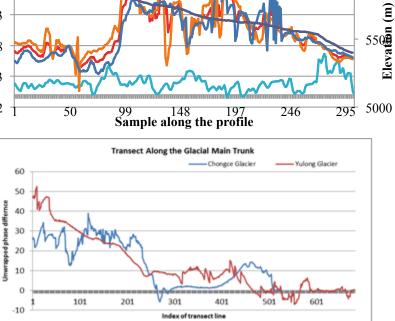




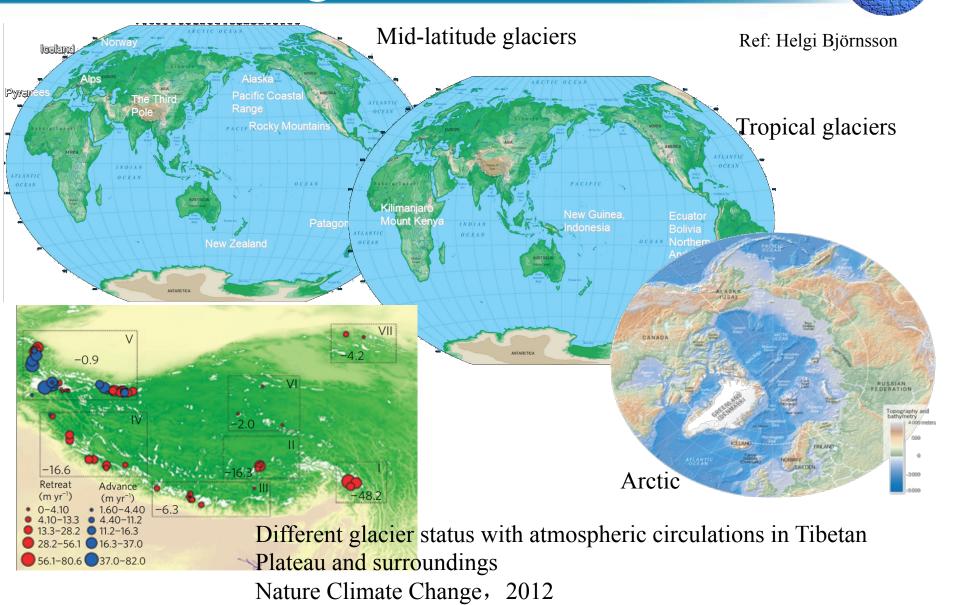


# **Glacier movement**




Elevation (m)

4000


6000

| Statistics of winter glacier motion field during 3 years. (The value larger than 95% of the velocity field is taken as the maximum, and less than 5% as the minimum.) |                                                        |              |                |              | Longitutinal profile of DuoFeng Glacier Flow<br>velocity(07-08) velocity(08-09) velocity(09-10) |              |                |                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------|----------------|--------------|-------------------------------------------------------------------------------------------------|--------------|----------------|------------------------------------------------------------------------------------------------------------------------------|
| velocity field                                                                                                                                                        | is taken as th                                         | ie maximu    | m, and les     | s than 5%    | as the mini                                                                                     | mum.)        |                |                                                                                                                              |
|                                                                                                                                                                       |                                                        |              | Gla            | acier flow v | elocity (cm                                                                                     | /day)        |                |                                                                                                                              |
|                                                                                                                                                                       |                                                        | 2007.        | .12.11         | 2008.        | .12.13                                                                                          | 2009.        | .12.16         |                                                                                                                              |
| Glacier                                                                                                                                                               | Velocity                                               | -2008        | .01.26         | -2009        | .01.28                                                                                          | -2010        | 0.01.31        |                                                                                                                              |
|                                                                                                                                                                       | direction                                              | Mean         | Max/           | Mean         | Max/                                                                                            | Mean         | Max/           | 50                                                                                                                           |
|                                                                                                                                                                       |                                                        |              | Min            |              | Min                                                                                             |              | Min            | <sup>1</sup> / <sub>2</sub> 4                                                                                                |
| 1.Duofeng                                                                                                                                                             | South<br>-north                                        | 9.82         | 19.57/<br>1.50 | 10.36        | 15.79/<br>1.57                                                                                  | 10.71        | 16.14/<br>1.57 |                                                                                                                              |
| 2.North                                                                                                                                                               | South                                                  | 6.35         | 20.14/         | 5.28         | 12.57/                                                                                          | 4.96         | 15.71/         | $-6 \frac{\phi}{1,75} \frac{3,5}{3,5} \frac{5,25}{5,25} \frac{7}{5,7} \frac{8,75}{10,5} \frac{10,5}{12,25} \frac{12,25}{40}$ |
| slope                                                                                                                                                                 | -north                                                 |              | 0.79           |              | 0.79                                                                                            |              | 0.86           | Distance (km)                                                                                                                |
| 3.Yulong                                                                                                                                                              | South<br>-north                                        | 1.46         | 4.29/<br>0.01  | 1.00         | 6.07/<br>0.00                                                                                   | 1.19         | 2.79/<br>0.29  | Longitutinal profile of Guozha glacier flow                                                                                  |
| 4.Guozha                                                                                                                                                              | North                                                  | 5.19         | 15.50/         | 5.79         | 16.64/                                                                                          | 5.79         | 14.36/         | elevation gradient velocity(07-08) velocity(08-09)                                                                           |
|                                                                                                                                                                       | -south                                                 |              | 1.21           |              | 1.29                                                                                            |              | 1.14           | velocity(09-10) elevation                                                                                                    |
| 5.Chongce                                                                                                                                                             | North                                                  | 4.18         | 10.21/<br>1.64 | 3.76         | 7.50/<br>0.86                                                                                   | 3.97         | 6.64/<br>1.50  |                                                                                                                              |
| 6.East                                                                                                                                                                | -south<br>North                                        | 2.66         | 3.93/          | 3.07         | 0.86<br>4.36/                                                                                   | 2.91         | 5.07/          |                                                                                                                              |
| Chongce                                                                                                                                                               | -south                                                 | 2.00         | 1.29           | 5.07         | 1.29                                                                                            | 2.71         | 1.14           |                                                                                                                              |
| Guliya ice                                                                                                                                                            | _                                                      | 2.44         | 16.00/         | 1.91         | 6.79/                                                                                           | 1.31         | 5.79/          |                                                                                                                              |
| cap                                                                                                                                                                   |                                                        | 2.11         | 0.36           | 1.91         | 0.29                                                                                            | 1.51         | 0.36           |                                                                                                                              |
| 8.Chongce                                                                                                                                                             | -                                                      | 1.93         | 14.50/         | 1.57         | 1.93/                                                                                           | 1.23         | 2.79/          | Velocity (cmt/day)                                                                                                           |
| ice cap                                                                                                                                                               |                                                        |              | 0.43           |              | 0.07                                                                                            |              | 0.29           | s many we wanted                                                                                                             |
| Average glacie                                                                                                                                                        |                                                        |              |                |              |                                                                                                 |              |                | -2 50 99 148 197 246 295 5                                                                                                   |
|                                                                                                                                                                       | ·                                                      | 5.88         | -              | 5.54         | -                                                                                               | 5.62         | -              | Sample along the profile                                                                                                     |
|                                                                                                                                                                       | /                                                      |              |                |              |                                                                                                 |              |                | Torona the Charlet Male Toron                                                                                                |
|                                                                                                                                                                       |                                                        | 4 01         | _              | 4 21         | _                                                                                               | 4 22         | _              | Transect Along the Glacial Main Trunk Chongce Glacier — Yulong Glacier                                                       |
|                                                                                                                                                                       | ·                                                      | 4.01         |                | 7.21         | _                                                                                               | 7.22         |                | 60                                                                                                                           |
| Average glacie<br>north slope (<br><u>south to</u><br>Average glacie<br>south slope (<br>north to                                                                     | (direction:<br>north)<br>er velocity on<br>(direction: | 5.88<br>4.01 | -              | 5.54<br>4.21 | -                                                                                               | 5.62<br>4.22 | -              | Transect Along the Glacial A                                                                                                 |

Yulong glacier: the upper section about 1.34-2.67cm/day; a long smooth motion on the middle part around 0.67 cm/day. Chongce glacier: upper section has the strongest motion about 1.34-2.00cm/day; the majority velocity on glacier tongue around 0.29 cm/day.

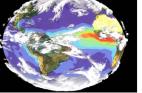


### Some thoughts



# Some thoughts




**Different glacier status with same laws?** 

- atmospheric circulations
- Types
- Different altitude
- Coverage
- Sizes
- Continents
- Mass balance

# Thanks













Center for Earth Observation and Digital Earth Chinese Academy of Sciences Add:No.9 Beiyitiao Road, Zhongguancun, Beijing China 100190 Tel:86-10-58887301 Fax:86-10-58887302 E-mail:office@ceode.ac.cn Web:www.ceode.ac.cn