

Center for Earth Observation and Digital Earth Chinese Academy of Sciences

Glacier Study of Qinghai-Tibet Plateau

Liu Guang, Zhou jianming, Yan shiyong, Ji Peng, Mang qixia and Ruan zhixin

> Centre for Earth Observation and Digital Earth Chinese Academy of Sciences (CAS)

September 24, 2010 Booth Street, Ottawa, CA

Qinghai-Tibet Plateau

Source: Microsoft Encarta 2008

Main Case Study Areas

Muztagh glacier

Dongkemadi glacier

Glacier area change of Qinghai-Tibet

- Data Source:
 - The dataset is download from USGS
 - The datasets are acquired in 1970 and 2000 separately
 - MSS(Multi-Spectral Scanner), Landsat-1, 2, 3
 - TM (Thematic Mapper) , Landsat-4, 5, 7
- Method

Glacier area change of Qinghai-Tibet 70° 75 800 90° 95° 65° 850 100° 105° **Glacier Dist. In 2005 From China Glacier Catalog** Ν **Glacier Dist. In 2000** Minter's Consider 250,000 500,000 1,000,000 例 冬 冰川(示意) 山峰 河流 湖泊 95° 100° 105

By remote sensing method, we see that in general, the glacier retreated quite a lot, especially the south part of Qinghai-Tibet plateau.

Glacier area change of Qinghai-Tibet

4BC

Decrease No change Increase

- Northern of Guo Zacuo,
 located at the Xinjiang,
 is one of glacial core
 areas
- The glacier types are complete, has the hanging glacier, cirque glacier, valley glacier and the flat topping glacier.
- These glacier provide rich and stable water sources for local rivers.

- 1991/10/17 Landsat 5 TM
- 2001/10/20 Landsat 7 ETM+
- 2004/9/10/ Landsat 7 ETM+
- 2009/10/2/Landsat 5 TM

The Landsat program offers the longest continuous global record of the Earth's surface; it continues to deliver visually stunning and scientifically valuable images

N-APE-SI

80°50'36*F

80°51'0'

80/14/9/30/

80" 49'30"

80.5000

Zhongfeng Glacier (No.4)

Gongxing Glacier (No.3)

80°51'30"E

20091002

ShiQuanhe Meteorologic Station data from 1991 to 2009

Annual mean temperature

No.	Name	2001-1991 area (km^2)	2004-2001 area (km^2)	2009-2004 area (km^2)
1	Quanshui	0.05	0	-0.05
2		0.14	-0.1	-0.02
3	Gongxing	-0.63	-0.25	-0.95
4	Zhongfeng	-0.29	3.12	-0.63
5		0.02	-0.02	-0.03
6		0.02	0	-0.02
7		0.05	-0.02	-0.01

Accumulated precipitation

ShiQuanhe Meteorologic Station data from 1991 to 2009

Annual mean temperature

Accumulated precipitation

Dongkemadi glacier

- Dongkemadi glaciers area in the central part of the Qinghai-Tibetan Plateau
- The Dadongkemadi glacier is 5.4 km in length, and the area is about 14.63 km².
- The glacier movement is slow for gentle slope.

Dongkemadi glacier

Exploring Glacier Boundary and Area

Method

The change of backscattering characteristic at glacier surface will cause serious decrease of coherence. Based on the decorrelation of InSAR technique, we can find the glacier boundary.

$$\gamma_{c} = \frac{E[M \cdot S^{*}]}{\sqrt{E[M \cdot M^{*}] \cdot E[S \cdot S^{*}]}}$$

Dongkemadi glacier Exploring Glacier Boundary and Area

The coherence of InSAR pair is related with spatial baseline, temporal baseline, still we can see clear edge from coherence .

 ALOS/PALSAR
 ENVISAT/ASAR

 Jun., 2006, Sep, 2006
 Jul, 2007
 Aug, 2007

 Jul, 2007
 Aug, 2007
 Image: Comparison of the comparison of

Landsat ETM+ 84.61 KM²

Dongkemadi glacier

Exploring Glacier Movement

InSAR phase:

$$\phi_{\text{int}} = \phi_{topo} + \phi_{defo} + \phi_{orb} + \phi_{atm} + \phi_{noise}$$

DInSAR phase: $\phi_{dif} = \phi_{defo} + \phi_{atm} + \phi_{noise}$

Dongkemadi glacier Exploring Glacier Movement

Glacier Surface Movement Map

area.

KekeShayi Glacier is about 8 km long, and the change of elevation is about 800 meters of the main body, this cause a rapid movement of the glacier than in dongkemadi

Glacier Movement Estimation

Pixel Track Method

Glacier Movement Estimation

RANGE

Azimuth movement

Range movement

meters

meters

2D Movement Map

090114_090301

090901_091017

2D Movement Map

meters

ABCC

meters

Thanks

Center for Earth Observation and Digital Earth Chinese Academy of Sciences Add:No.9 Beiyitiao Road, Zhongguancun, Beijing China 100190 Tel:86-10-58887301 Fax:86-10-58887302 E-mail:office@ceode.ac.cn Web:www.ceode.ac.cn