

Agricultural & Environmental Landscape Monitoring to Minimise Reef Impact

Water for a Healthy Country, Wealth from Oceans, Sustainable Agriculture Flagships

Dr Bronwyn Harch Deputy Director - Sustainable Agriculture Flagship

Outline

- Recap: "an icon Australia's Great Barrier Reef" & "the outlook"
- Issues for GBR
 - science strategy
 - impacts from remote sensing research
 - ongoing research projects
- Key issues for environmental earth observation for the GBR
- Major drivers for building capability
- Future science directions
- Collaborative investment aspirations
 - what should success look like

Recap: An icon - Australia's Great Barrier Reef

- world's largest coral reef system
- 3,000 individual reefs
- 900 islands
- stretches for 2,600 kilometres (1,616 mi)
- covers an area of approx 344,400 km²
- 28 catchments drain into GBR lagoon

"The Outlook" for the Great Barrier Reef

• The Great Barrier Reef Outlook Report 2009

- tabled in Australian Parliament
- must be prepared every five years

Key findings

- · recognised as one of the world's best managed reefs
- likely to survive better under the pressure of accumulating risks than most reef ecosystems
- current long-term outlook for the GBR is poor

• Priority issues reducing the resilience of the GBR

- climate change
- · continued declining water quality from catchment runoff
- · loss of coastal habitats from coastal development
- small number of impacts from fishing, illegal fishing & poaching

Key issues addressed

- Research partnerships help safeguard the Great Barrier Reef World Heritage Area, supports sustainable communities & enhances agricultural productivity
 - when & how could we best achieve an improvement in water quality to safeguard the Great Barrier Reef ?
 - how could we support communities & industries to achieve their natural resource management goals while fostering further sustainable development ?

Science strategy

Goal: To inform the protection & restoration of Australia's Great Barrier Reef from water quality impacts by underpinning catchment management & policy with integrated biophysical & socio-economic science

National Challenges

Protect & enhance coastal systems of high conservation value

Management of diffuse & point source pollution Understand the links between catchment management & aquatic ecosystem health

Science Challenges

Quantify relationships between catchment water quality stressors & aquatic ecosystem response

Develop **integrated monitoring approaches**, linked modelling & monitoring techniques, & integration frameworks to assess aquatic ecosystem health

Design & verify biophysical, catchment protection/restoration & socio-economic strategies to manage catchments for aquatic ecosystem health

Impacts from remote sensing research

- Informing selection & prioritisation of land management practices
 - decision support tool that uses remote sensing information to efficiently & cost-effectively identify grazing land likely to be a key source of pollutants due to its poor condition

Impacts from remote sensing research

- Monitor, report & adapt to changes identified through established "regional water quality improvement plans"
 - delivering a cost-efficient method to effectively monitor landscape health & marine water quality across large areas over 20+ years

Ongoing research projects

- Great Barrier Reef floodplain renewal
 - research to improve floodplain productivity for coastal communities through sensitive farming approaches that improve water quality & protect the Reef
- Great Barrier Reef sustainable grazing
 - research to support improved economic performance for grazing communities while reducing erosion & improving water quality
- Reef catchment futures research to inform decision making for a sustainable Reef through:
 - understanding the GBR catchment as a system
 - identifying key intervention points & the costs & benefits of different management actions leading to improved water quality in the GBR lagoon

Key issues for environmental earth observation (including consideration of the GBR)

On-ground observations

Satellite observations

Research goals

- Helping solve Australia's environmental issues notably the sustainable use of Australia's water resources & aquatic & vegetation ecosystems
- Delivering science & tools We achieve this by coupling process knowledge with remote earth observations to create new understanding & improved management tools
- Addressing issues of scale using models, satellite data & sparse in-situ observations to match observational & process scales, in both spatial & temporal domains

Major drivers for earth observation capability

- Impacts of climate, land use & water management on water availability & water quality
- Development of predictive tools to operationalise resource management
- Constraining model outputs using remotely sensed data
- Technological drivers
- Sustained delivery of accurate & calibrated earth observation products

Research challenges #1

Terrestrial Earth Observation

- Ecohydrological time series remote sensing (McVicar, Donohue, Van Neil, & Li)
- Model-data integration (van Dijk, Renzullo, Guerschmann, ...)

Trends in streamflow 1980-2008

Challenges

- Interactions between climate & vegetation
 & its role in coupling the water & carbon
 balances are poorly understood
- On-ground data is sparse
- Satellite observations are mostly indirect
- Existing biophysical models are underconstrained & need adaptation to 'accept' remote sensing products

Trends in vegetation biomass 1980-2006 Donohue et al., (2009)

Research challenges #2

Aquatic earth observation

- Shallow water habitats & inland waters (Dekker, Botha, Anstee, Park ...)
- Optically complex waters (Brando, Schroeder, Cherukuru ...)

<u>Posidonia</u> seagrass cover, Wallis Lakes, 1988-2001 – Dekker et al. 2005

Challenges

- Governing physical processes are complex - global ocean colour products lack accuracy in coastal environments
- In situ optical data are ultra-sparse
- The spatial processes driving turbidity, primary production & water quality in inland & coastal waters are dynamic & regionally variable
- Constraining of biogeochemical models is in its infancy
- Long-term trends in regional water quality & benthic habitats are understudied

Examples of aquatic work

Future science directions for environmental earth observation

- Key opportunities
 - Data assimilation & modeling tools
 - Multiple sensor data fusion
 - Generational increment in satellite capabilities
 - Integrated observing networks (from the ground to space)
 - Driving down the uncertainties
- 'Catchment to ocean' integrated applications
- Constraining & calibrating models for water & carbon accounting
- Separation of climate variability from climate change
- Development of cal/val facilities & expertise
- 'Future proofing' current EO data products & outputs
- Inland & estuarine water quality

Considerations for ongoing collaboration

stimulate new partnerships

- seed funding; co-investment by ABCC partners
- enhance relationships and productivity of teams in existing relationships
 - co-investment by ABCC govt & global institutions
- ABCC collaboration
 - enhancing national outcomes
 - partners in developing global systems science and knowledge

Key areas for collaboration

Applications

		A1 Carbon Cycle	A2 Water & Ecosystems	A3 Land Use & Land Cover	A4 Disaster & Resource Monitoring	A5 Environmental Monitoring	
Analytical Methodology	M1 fusion of radar & optical	X					X
	M2 Aaa					X	
	M3 BBB						
						X	

	Applications						
		A1 Carbon Cycle	A2 Water & Ecosystems	A3 Land Use & Land Cover	A4 Disaster & Resource Monitoring	A5 Environmental Monitoring	
	Australia						
Data Sharing	Brazil	Х				Х	
	Canada						
	China	Х				Х	

	Applications						
		A1 Carbon Cycle	A2 Water & Ecosystems	A3 Land Use & Land Cover	A4 Disaster & Resource Monitoring	A5 Environmental Monitoring	
Scientific Exchange - Australia	M1 fusion of radar & optical	X					X
	M2 AAA					X	
	M3 BBB						

What would success look like?

- 3rd party funding
- Increased rate of publication

Thank you

Contact Us

Phone: +61 408 737 901 Email: Bronwyn.Harch@csiro.au Web: www.csiro.au

