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Spatial autocorrelation in multi-scale land use models

K.P. Overmarsa,b,∗, G.H.J. de Koningc, A. Veldkampb

a Centre of Environmental Science (CML), Leiden University, P.O. Box 9518, 2300RA Leiden, The Netherlands
b Laboratory of Soil Science and Geology, Wageningen University, P.O. Box 37, 6700AA Wageningen, The Netherlands

c Institute of Soil Science and Forest Nutrition, University of Goettingen, Büsgenweg 2, 37770 Goettingen, Germany

Received 14 January 2002; received in revised form 8 January 2003; accepted 17 February 2003

Abstract

In several land use models statistical methods are being used to analyse spatial data. Land use drivers that best describe land use
patterns quantitatively are often selected through (logistic) regression analysis. A problem using conventional statistical methods,
like (logistic) regression, in spatial land use analysis is that these methods assume the data to be statistically independent. But,
spatial land use data have the tendency to be dependent, a phenomenon known as spatial autocorrelation. Values over distance
are more similar or less similar than expected for randomly associated pairs of observations. In this paper correlograms of the
Moran’s I are used to describe spatial autocorrelation for a data set of Ecuador. Positive spatial autocorrelation was detected
in both dependent and independent variables, and it is shown that the occurrence of spatial autocorrelation is highly dependent
on the aggregation level. The residuals of the original regression model also show positive autocorrelation, which indicates
that the standard multiple linear regression model cannot capture all spatial dependency in the land use data. To overcome this,
mixed regressive–spatial autoregressive models, which incorporate both regression and spatial autocorrelation, were constructed.
These models yield residuals without spatial autocorrelation and have a better goodness-of-fit. The mixed regressive–spatial
autoregressive model is statistically sound in the presence of spatially dependent data, in contrast with the standard linear model
which is not. By using spatial models a part of the variance is explained by neighbouring values. This is a way to incorporate
spatial interactions that cannot be captured by the independent variables. These interactions are caused by unknown spatial
processes such as social relations and market effects.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Various modelling approaches exist for the simu-
lation and exploration of land use change. Land use
change modelling, especially if done in a spatially-
explicit, integrated and multi-scale manner, is an
important technique for the projection of alternative
pathways into the future, for conducting experiments
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that test our understanding of key processes, and for
describing the latter in quantitative terms (Lambin
et al., 2000; Veldkamp and Lambin, 2001). Land use
change models represent part of the complexity of
land use systems. They offer the possibility to test the
sensitivity of land use patterns to changes in selected
variables. They also allow testing of the stability of
linked social and ecological systems, through sce-
nario building. While, by definition, any model falls
short of incorporating all aspects of reality, it pro-
vides valuable information on the system’s behaviour
under a range of conditions. Different modelling
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Fig. 1. Visualisation of positive spatial autocorrelation (left), no spatial autocorrelation (middle), and negative spatial autocorrelation (right)
in an imaginary 13× 13 grid. The different tones of grey indicate different values of a variable.

approaches have been adopted in the study of land
use/land-cover change (see reviews bySklar and
Costanza, 1991; Lambin, 1994; Riebsame and Parton,
1994; Kaimowitz and Angelsen, 1998; Lambin et al.,
2000; Veldkamp and Lambin, 2001). In several land
use models statistical tools are being used to analyse
spatial data, for example data organised as polygons
or grid cells. Examples of statistical approaches in
gridded spatial data are CLUE (Veldkamp et al.,
2001; Verburg et al., 2002) and GEOMOD (Pontius
et al., 2001). In these approaches the study area
is sub-divided into grid cells and described by a
pre-determined set of biophysical and socio-economic
variables. Through (logistic) regression analysis,
those variables are selected that best describe land use
patterns quantitatively, the so-called land use drivers
(Verburg et al., 1999).

Land use modelling often involves substantial
amounts of data with a spatial component. Theories
about spatial processes are constructed and hypothe-
ses tested. Much of this testing is done with con-
ventional statistical methods. The problem of using
conventional statistical methods in spatial land use
analysis, like linear regression based on ordinary least
squares (OLS) (in this study indicated with ‘standard
linear model’) and logistic regression using ROC,
is that these methods assume the data to be statis-
tically independent and identically distributed (iid)
(Cliff and Ord, 1981). But, spatial land use data have
the tendency to be dependent, a phenomenon known
as spatial autocorrelation, which can be defined as
the property of random variables to take values over
distance that are more similar or less similar than ex-
pected for randomly associated pairs of observations,

due to geographic proximity (Fig. 1) (Legendre and
Legendre, 1998).

Spatial dependency could be seen as a methodolog-
ical disadvantage, but on the other hand it is exactly
what gives us information on spatial pattern, structure
and processes (Gould, 1970). Spatial dependency con-
tains useful information but the appropriate statistical
methods have to be used to deal with it.

The effects of spatial dependence on conventional
statistical methods are various, for example, biased
estimation of error variance,t-test significance levels,
and overestimation ofR2 (Anselin and Griffith, 1988).
All the usual statistical tests have the same behaviour:
in the presence of positive autocorrelation, computed
test statistics are too often declared significant un-
der the null-hypothesis. Negative autocorrelation may
produce the opposite effect (Legendre and Legendre,
1998). This is caused by the fact that an observation
carries less information then an independent observa-
tion, since it is partly predictable from its neighbours
and a new sample point does not bring with it one full
degree of freedom (Cliff and Ord, 1981; Legendre and
Legendre, 1998).

Until recently (see, e.g.Nelson, 2002) often ordi-
nary statistics were used in studies dealing with spa-
tial data, although several techniques are available to
deal with spatial autocorrelation (Anselin and Griffith,
1988). A reason for this could be that the spatial mod-
elling techniques originate in the econometric sciences
and are not easy applicable to land use models.

The objectives of this paper are the following: (i) to
demonstrate the presence of spatial autocorrelation
in a case study for Ecuador at different spatial scales
(de Koning et al., 1998). Spatial autocorrelation is
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tested for different data sets at different aggregation
levels to get insight in the behaviour and extent of the
spatial patterns. In relation to spatial autocorrelation
it is important to consider the scale of the data. Both
resolution and the extent of spatial data influence the
pattern that can be observed. (ii) To evaluate a spatial
regression model and its scale dependency for this
case study.

2. Methods

2.1. Data and study area

The data set used for this study consists of spa-
tial explicit land use data, bio-geophysical data and
socio-economic data of Ecuador. This data set was
originally created byde Koning et al. (1998)to deter-
mine the factors, so-called land use drivers, that best
describe land use patterns and is based on maps (bio-
physical factors) and census data (land use data and
socio-economic factors). In the study ofde Koning
et al. (1998)significant driving forces (P < 0.05) were
selected using stepwise regression from a set of 23
potential drivers (Table 1) for four selected land use
types at three different aggregation levels. The highest
resolution in the data set are 5×5 min (9.25×9.25 km)
cells. By averaging data of 2× 2 cells, 3× 3 cells, up
to 6× 6 cells, higher aggregation levels were created.
The different aggregation levels were used to simu-
late different scales. The area of Ecuador was spatially
stratified on the basis of altitude defining three main
eco-regions called: Coast, Andes and Amazon (Fig. 2).

2.2. Detection of spatial autocorrelation

Spatial structures, like spatial dependency, can
be described through structure functions. The most
commonly used structure functions are correlograms,
variograms and periodograms. They can be used to
quantify the spatial dependency per distance class,
a so called lag. In correlograms autocorrelation val-
ues are plotted against distance classes. This can be
computed for both univariate (Moran’sI (Moran,
1950) or Geary’sc (Geary, 1954)) and multivariate
data (Mantel correlogram) (Legendre and Legendre,
1998). This study uses correlograms of the Moran’s
I (Eq. (1)). Correlograms are preferable over, for ex-

Table 1
Variables included in the stepwise regression analysis (de Koning
et al., 1998)

Variable Unit

Land use data
Percentage permanent crops –
Percentage temporary crops –
Percentage grassland –
Percentage natural vegetation –

Land use drivers
Percentage soils with texture class 1 (<35% clay) –
Percentage soils with texture class 2 (35–55% clay) –
Percentage soils with texture class 3 (>55% clay) –
Percentage soils with slope class 1 (<8% clay) –
Percentage soils with slope class 2 (8–16% clay) –
Percentage soils with slope class 1 (>16% clay) –
Percentage low fertility soils –
Percentage medium fertility soils –
Percentage high fertility soils –
Altitude masl
Total annual precipitation mm
Distance to nearest urban centre km
Distance to nearest road km
Distance to nearest river km
Total population per surface area km−2

Rural population per surface area km−2

Urban population per surface area km−2

Percentage of total population living in poverty –
Percentage of rural population living in poverty –
Percentage of total population that is illiterate –
Percentage of rural population that is illiterate –
Percentage of total population working in agriculture –
Percentage of rural population working in agriculture –

ample, semi-variograms for two reasons. First, the
significance of the correlation coefficient (in this case
the Moran’sI) can be tested and second, correlograms
are standardised, so different cases can be compared
(Legendre and Fortin, 1989; Meisel and Turner,
1998).

Moran’sI : for h �= i

I(d) = (1/W)
∑n

h=1
∑n

i=1whi(yh − ȳ)(yi − ȳ)

(1/n)
∑n

i=1(yi − ȳ)2
(1)

In Eq. (1) the yh’s andyi’s are the values of the ob-
served variable at sitesh and i. The values ofwhi are
the weights. The weightswij are written in a (n × n)
weight matrixW. W is the sum of the weightswhi

for a given distance class (Legendre and Legendre,
1998).
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Fig. 2. Location of the three eco-regions in Ecuador (for the 1×1
grid size).

The weight matrix depicts the relation between an
element and its surrounding elements. Weight can be
based, for example, on contiguity relations or dis-
tance. In a weight matrix based on contiguity, a value
unequal to zero in the matrix represents pairs of el-
ements with a certain contiguity relation and a zero
represents pairs without contiguity relation. Two ex-
amples of contiguity relations are rook case and queen
case. The first takes only full neighbours into account
and the latter all eight surrounding cells. The com-
plete matrices contain the contiguity relations of all
pairs of points. Besides this contiguity principle it is
also imaginable to make weight matrices based on ge-
ographic distances, like inverse distance. To compute
the outcome of spatial regression models the spatial
weight matrix should be row-standardised, instead of
equal weights, to yield a meaningful interpretation
of the results (Anselin, 1992). In a row-standardised
matrix the values are represented as fractions to ac-
complish that sum of all values in a row of the weight
matrix equals one. The row-standardised matrices are
also used to calculate the Moran’sI.

The value of Moran’sI generally varies between
1 and−1, although values lower than−1 or higher
than+1 may occasionally be obtained. Positive auto-
correlation in the data translates into positive values

of I; negative autocorrelation produces negative val-
ues. No autocorrelation results in a value close to zero
(Legendre and Legendre, 1998).

Spatial autocorrelation can be analysed on unmod-
ified data or on the residuals of a regression analysis.
If autocorrelation is detected on the regression resid-
uals, this can imply that the regression model should
have an autoregressive structure or that non-linear rela-
tionships between the dependent and the independent
variables (trend surface analyses) are present or that
one or more important regressor variables are miss-
ing (Cliff and Ord, 1981; Griffith, 1992; Miron, 1986;
Long, 1998).

2.3. Analysis of the presence of spatial
autocorrelation

Generally spoken, two main causes of spatial struc-
ture exist. First, spatial structure can be caused by a
dependence ofy upon one or several variablesx which
are spatially structured. The pattern is a reaction to an-
other variable. This is also called a trend or gradient.
Second, spatial structure can appear when the process
that has produced the values ofy is spatial in itself,
and reflects interaction between sites (Legendre and
Legendre, 1998; Cliff and Ord, 1981). Of course, in
reality both reaction and interaction might affect the
spatial structure.

It is useful to assess whether the dominant effects
are caused by reaction to external forces or by interac-
tion between neighbouring individuals. When reaction
is the major influence, a regression model is appropri-
ate, whereas interactive effects suggest the need for a
model with a spatially dependent covariance structure.
In order to decide for the most appropriate model, it is
useful to examine the residuals of a regression model
for spatial dependence. When the presence of spatial
autocorrelation has been demonstrated, a possibility
to deal with it is to draw a random sample that is not
autocorrelated and then apply conventional statistical
tests (Verburg and Chen, 2000). In fact, this is a loss
of information.

2.4. Spatial autoregressive models

The most general formulation of a spatial autore-
gressive model isEq. (2) (Anselin, 1988; LeSage,
1999). From the general model we can derive specific
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models by imposing restrictions (for interpretation of
the different models seeAnselin, 2002). SettingX = 0
andW2 = 0 produces a first-order spatial autoregres-
sive model, explaining variation iny as a linear com-
bination of contiguous or neighbouring units with no
other explanatory variables. SettingW2 = 0 produces
a mixed regressive–spatial autoregressive model. This
model has additional explanatory variables in the ma-
trix X to explain variation iny over the spatial sample
of observations. This model is also called the simulta-
neous model (Anselin, 1988) or simultaneous spatial
autoregression (Kaluzny et al., 1997) and is originally
based on the work ofWhittle (1954). SettingW1 = 0
results in a regression model with spatial autocorrela-
tion in the disturbances.Anselin (2002)describes this
model as a standard regression model with spatially
filtered variables. A model known as the spatial Dur-
ban model contains a spatial lag in both the dependent
variable and the independent variables.

y = ρW1y + Xβ + u u = λW2u + ε

ε ∼ N(0, σ2In) (2)

In Eq. (2), y contains an× 1 vector of cross-sectional
dependent variables,X represents ann × k matrix of
explanatory variables, andW1 andW2 are knownn×n

spatial weight matrices. Rho (ρ) is a coefficient on the
spatially lagged dependent variable andλ is a coeffi-
cient on the spatially correlated errors (LeSage, 1999).
Beta (β) is k × 1 vector with linear regression coeffi-
cients like in a standard linear regression model. The
error term (ε) is ann × 1 vector of independent iden-
tically normally distributed variables with zero mean
and varianceσ2.

In case of a row-standardisedW1, the spatial part of
the mixed regressive autoregressive model functions as
an extra variable equal to the (weighted) mean of ob-
servations from contiguous cells. If we assume spatial
dependence between the observations in the data sety,
some part of the total variation iny across the spatial
sample is explained by each observation’s dependence
on its neighbours. “The parameterρ would reflect that
in the typical sense of regression” (LeSage, 1999).

In the case study presented here the mixed regre-
ssive–spatial autoregressive model is used. To estimate
the parameters of this model Maximum Likelihood
estimation is applied, since OLS estimation for spatial
autoregressive models is biased (Anselin, 1988).

2.5. Measures of fit in spatial models

In the presence of spatial autocorrelation there is not
much meaning to giving each observation equal weight
in a measure of fit. Thus, the traditionalR2 measure
of fit, based on the decomposition of the total sum of
squares into explained and residual sums of squares, is
not applicable to the spatial lag model. Instead, a num-
ber of so-called pseudoR2 measures can be computed.
The pseudoR2 that is used in this study is defined as
the ratio of the variance of the predicted values over
the variance of the observed values for the dependent
variable. In the standard regression model, this vari-
ance ratio is equivalent to theR2, but in the spatial lag
model it is not (Anselin, 1992). The pseudoR2 is a
general guide to assess fit, but does not have the type
of meaningR2 has in the standard regression model
(SpaceStat support, 2000). So, the traditionalR2 and
the pseudoR2 cannot be compared, but it is possible
to compare the pseudoR2 of different spatial models.

The proper measures for goodness-of-fit for the spa-
tial model are based on the likelihood function. These
include the value of the maximised log likelihood
(LIK), the Akaike Information Criterion (AIC) and the
Schwartz Criterion (SC). The likelihood-based mea-
sures are directly comparable with those achieved for
the standard regression model. The model with the
highest LIK, or with the lowest AIC or SC has the
best goodness-of-fit (Anselin, 1992). The LIK is not
a standardised indicator likeR2, and therefore cannot
be interpreted as an absolute value.

2.6. Analysis

We analysed the data in two different ways. (1) We
tested the data for spatial autocorrelation at multiple
resolutions; (2) we constructed spatial regression mod-
els that incorporate spatial autocorrelation at multiple
resolutions.

To calculate the Moran’sI statistic, SpaceStat
(Anselin, 1998, 1999) is used, in combination with
an extension of SpaceStat for Arcview (Anselin and
Smirnov, 1999). The weight matrices are calculated
based on distance (Anselin, 1999). All pairs of cen-
troids (distances between the centres of gravity) of
the grid cells are classified into lags. The lag size
chosen is 10 km, resulting in lag distances of 0–10,
10–20 and 20–30 km, etc. Within a lag the weights
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are equal. For higher aggregation levels the same lag
distribution was used. In those cases the first few
lags can be empty since the cell size exceeds the
boundaries of the first lags. By using the same lag
distribution it is possible to compare the Moran’sI of
different aggregation levels for exactly the same lag.

Correlograms are constructed and compared for all
combinations of the three eco-regions, three aggrega-
tion levels and the four land use types. The residuals of
the regression models constructed byde Koning et al.
(1998)are evaluated as well.

To calculate mixed autoregressive-regressive mod-
els SpaceStat (Anselin, 1998, 1999) is used as well.
For every combination of land use, aggregation level
and eco-region a mixed regressive autoregressive
model is calculated. First, a spatial model is con-
structed using the independent variables that were se-
lected byde Koning et al. (1998)in combination with
a spatial part using a weight matrix based on conti-
guity relations of the first lag. Other weight matrices
were tested, but the first lag weight matrix proved
to be most powerful. By applying this method some
of the originally selected variables turned out to be
insignificant. Insignificant variables are removed one
by one until a model with solely significant variables
remained.

3. Results

3.1. Results of the testing for spatial autocorrelation

3.1.1. Correlograms of the 1× 1 grid level
In Fig. 3correlograms of the Moran’sI (distance as

the upper distance of a lag) of the surface percentage
within cells of the four land use types for the 1×1 ag-
gregation level are presented for the three eco-regions.
All three land use types show positive spatial autocor-
relation in all eco-regions, which decreases gradually
with distance. The correlograms of eco-regions Coast
and Amazon show small differences in Moran’sI
between land use types, while in eco-region Andes
somewhat larger differences occur.Fig. 4 shows the
correlograms of the selected driving factors for per-
manent crops (1× 1 grid) in Coast and Andes. As the
land use data, all driving factors show positive spa-
tial autocorrelation, which decreases gradually with
distance.

Fig. 3. Correlograms with Moran’sI comparing different land use
types in three eco-regions, grid size 1× 1.
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Fig. 4. Spatial autocorrelation in the variables used in the standard linear model of permanent crops, grid size 1× 1, of Coast (full line)
and Andes (dashed).

3.1.2. Correlograms of the three different
aggregation levels

The effect of spatial scale on spatial autocorrelation
for the different land use types is analysed by com-
paring three aggregation levels. The correlograms of
the different aggregation levels (two examples are pre-
sented inFig. 5) show clear differences in Moran’sI
between the aggregation levels. At higher aggregation
levels, temporary crops in the coastal area have higher
Moran’s I indices (Fig. 5). In the example for perma-
nent crops in the Andes (Fig. 5) the same phenomenon
can be observed, but this disappears for distances over
40 km, because over 40 km the patch size is smaller
than the cell size and the values of Moran’sI are low
and insignificant (P < 0.001). At the 5× 5 aggrega-
tion level a different pattern appears with the highest
Moran’s I at a distance of 90 km, but this value is sta-
tistically not significant (P < 0.001).

3.1.3. Spatial autocorrelation in the residuals
The residuals of the standard linear regression

models for different land use types constructed byde
Koning et al. (1998)are tested for spatial autocorre-

lation. Fig. 6 shows the Moran’sI of the residuals
together with the Moran’sI of the land use types as
presented inFig. 3 “Coast”. The spatial autocorrela-
tion in the residuals is less than in the original data,
though still significant autocorrelation is present.

Spatial autocorrelation in the first lag of the resid-
uals (Table 2), which can be used as an indicator to
use the standard linear model, of aggregation level 1 is
significant for all land use types in both eco-regions.

Table 2
Moran’s I of the first lag

Coast 1× 1 3 × 3 5 × 5

Residuals of permanent crops 0.5399 0.2160 0.0035
Residuals of temporary crops 0.5232 0.2617 0.0129
Residuals of grassland 0.5179 0.5005 0.2867
Residuals of natural vegetation 0.3823 0.3358 0.1831

Andes
Residuals of permanent crops 0.2653 0.1744 0.0125
Residuals of temporary crops 0.3482 0.2396−0.0028
Residuals of grassland 0.3369 0.0908 0.2059
Residuals of natural vegetation 0.3571 0.0717 0.0743

Numbers in bold are not significant (P < 0.05).
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Fig. 5. Comparison of the Moran’sI for different aggregation
levels.

Coast shows higher autocorrelation than Andes. The
Moran’s I of the residuals for the 5× 5 grid is not
significant for the first lag for any of the cases, except
for grassland in eco-region coast. Spatial autocorrela-
tion in the residuals extents to 40–50 km (Fig. 6) and
a cell of the 5× 5 grid is of the same extent, therefore
autocorrelation at this aggregation level disappears.

3.2. Results spatial autoregressive models

In this paragraph some examples are presented to il-
lustrate the difference between the standard (multiple)

linear model based on OLS and the mixed regressive
autoregressive model.Table 3 shows the results for
eco-region coast, grid size 1×1, for permanent crops.

Table 3, (A) shows the original standard linear
model, with variables that were selected byde Koning
et al. (1998). The output contains the measure of fit
(R2), coefficient estimate, standard error,t-test value
and associated probability. The LIK is given for com-
parison with the spatial models. Applying the mixed
autoregressive regressive model (Table 3, (B)), using
the same variables as the standard linear model, re-
sults, as expected, in smaller values of the estimated
regression coefficients. This is because a part of the
prediction is now based on the autoregressive term.
The significance of the parameters also decreases and
one variable “percentage of rural population that is
illiterate” is not longer significant (P < 0.05). The
LIK of the mixed autoregressive regressive model
is higher than the LIK of the standard linear model
indicating a better goodness-of-fit.

From the mixed autoregressive regressive model
1, the insignificant variable is dropped to construct
model 2. This results in a model with only signi-
ficant (P < 0.05) variable estimates (Table 3, (C)).
The pseudoR2 drops from 0.5412 to 0.5394 and the
LIK from −3551.6 to−3552.3. So, the goodness-of-fit
drops only slightly by excluding this variable.

In the mixed autoregressive regressive model the
autocorrelation in the residuals disappeared (Fig. 7).
The difference in spatial autocorrelation between the
two different spatial models is negligible. The maps
of the residuals of the standard linear model and the
mixed regressive autoregressive model 2 (Fig. 8) give
an impression of the functioning of the spatial model.
The standard linear model (left) shows large residu-
als with a clear pattern (spatial autocorrelation). The
spatial model (middle) shows small residuals with no
clear pattern (no spatial autocorrelation). A total of
17% of the residuals is switched from positive to neg-
ative or the other way around. Overall, the residuals
are considerably lower when using the spatial model.

The residuals of the standard linear model for the
case of grassland at the 3× 3 aggregation level in
the Andes do not show significant autocorrelation
(Moran’s I = 0.0908, seeTable 2). However, ap-
plying a spatial model results in a significant spatial
component (P < 0.05). So, the Moran’sI gives no
ground to apply a spatial model, but the spatial model
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Fig. 6. Correlograms with Moran’sI comparing different land use types and their residuals after standard linear regression (eco-regions
Coast, grid size 1× 1).

itself yields a significant spatial component. The two
criteria can both be used to make a decision to use
a spatial model or not. In another case with insignif-
icant spatial autocorrelation (Moran’sI = −0.0028)

Fig. 7. Spatial autocorrelation in the residuals of two models (calculated inTable 2).

in the first lag (temporary crops, 5× 5, Andes), it is
not necessary to consider a spatial model, because the
coefficient of the spatial part is not significant (see
Table 4).
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Table 3
Calculated model parameters of three different models for permanent crops in the coastal area with grid size 1× 1

Variable Coefficient S.D. t-value Probability

(A) Linear model
Constant −1.971 2.534 −0.778 0.437
Percentage soils with texture class 1 (<35% clay) 19.997 1.409 14.188 0
Distance to nearest road (km) −0.338 0.037 −9.127 0
Percentage of rural population working in agriculture 0.885 0.128 6.907 0
Percentage soils with slope class 3 (>16%) 10.849 1.563 6.939 0
Percentage high fertility soils 6.951 1.557 4.465 0
Percentage of rural population that is illiterate −0.541 0.165 −3.272 0.001
Altitude (masl) −0.024 0.003 −8.611 0

R2 0.325
LIK −3821.2

Variable Coefficient S.D. z-value Probability

(B) Mixed autoregressive regressive model 1
ρ 0.731 0.024 30.441 0
Constant −0.202 1.728 −0.117 0.907
Percentage soils with texture class 1 (<35% clay) 6.608 1.050 6.293 0
Distance to nearest road (km) −0.110 0.026 −4.178 0
Percentage of rural population working in agriculture 0.215 0.089 2.419 0.016
Percentage soils with slope class 3 (>16%) 3.991 1.083 3.685 0
Percentage high fertility soils 2.225 1.073 2.074 0.038
Percentage of rural population that is illiterate −0.141 0.113 −1.252 0.211
Altitude (masl) −0.010 0.002 −4.993 0

PseudoR2 0.541
LIK −3551.6

(C) Mixed autoregressive regressive model 2
ρ 0.734 0.024 30.755 0
Constant −0.926 1.624 −0.571 0.568
Percentage soils with texture class 1 (<35% clay) 6.552 1.050 6.240 0
Distance to nearest road (km) −0.121 0.025 −4.851 0
Percentage of rural population working in agriculture 0.176 0.083 2.108 0.035
Percentage soils with slope class 3 (>16%) 3.691 1.059 3.485 0
Percentage high fertility soils 2.218 1.073 2.068 0.039
Altitude (masl) −0.009 0.002 −4.824 0

PseudoR2 0.539
LIK −3552.3

Table 4lists some output of models for all possible
combinations following the same procedure as before.
Again it is illustrated that spatial autocorrelation in
most cases is lower in eco-region Andes than in the
Coast area. In general,ρ’s decrease with aggregation
level. Only a fewρ’s are not significant. If the signif-
icance of the spatial part of the model (ρ) is taken as
a criterion whether or not to apply a spatial model, 20
out of 24 models would qualify for applying a spatial
model. The models of 5× 5 permanent crops/coast,

permanent crops/Andes and temporary crops/Andes
do not have a significantρ. Those are the same cases
that have a patch size smaller then the cell size.

If the weight matrix is row-standardisedρ can be
interpreted as the percentage of the prediction that is
predicted with the spatial part. Looking at theρ’s in
Table 4 it is clear that a large part, 21–74%, of the
prediction is due to the spatial part. The other vari-
ables, which are considered to be independent driving
factors, make up the remaining part.
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Fig. 8. Residuals of the standard linear model (left) and the mixed autoregressive regressive model 2 (middle) and the original values (right).

Table 4
Summary of spatial models for combinations of two different eco-regions, four land use types and three aggregation levels

Eco-region Land use Aggregation level ρ Number of variables (number of variables
in the standard linear model)

Coast Permanent crops 1 0.734 6 (7)
Coast Temporary crops 1 0.736 6 (7)
Coast Grassland 1 0.679 6 (7)
Coast Natural vegetation 1 0.580 5 (7)
Andes Permanent crops 1 0.478 4 (7)
Andes Temporary crops 1 0.602 6 (7)
Andes Grassland 1 0.555 4 (7)
Andes Natural vegetation 1 0.590 7 (7)
Coast Permanent crops 3 0.470 7 (7)
Coast Temporary crops 3 0.568 2 (5)
Coast Grassland 3 0.708 2 (5)
Coast Natural vegetation 3 0.520 4 (6)
Andes Permanent crops 3 0.292 5 (5)
Andes Temporary crops 3 0.312 5 (5)
Andes Grassland 3 0.286 3 (5)
Andes Natural vegetation 3 0.186∗ 6 (6)
Coast Permanent crops 5 0.079∗ 4 (4)
Coast Temporary crops 5 0.212 5 (5)
Coast Grassland 5 0.449 2 (3)
Coast Natural vegetation 5 0.328 3 (3)
Andes Permanent crops 5 −0.094∗ 3 (3)
Andes Temporary crops 5 0.076∗ 4 (4)
Andes Grassland 5 0.415 6 (6)
Andes Natural vegetation 5 0.296 6 (7)

∗ Not significant (P > 0.05).
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4. Discussion

The detected spatial autocorrelation can be used
to describe and compare the spatial structure of the
data. The distance at which the values of the Moran’s
I in the correlogram approach zero can be interpreted
as average patch size. A comparison of patch sizes
of the land use types between different eco-regions
shows that Coast has patch sizes of 80–100 km, Ama-
zon 60–100 km and Andes 40–80 km. The values
of the Moran’s I are clearly different for the three
eco-regions. This means that the regions have differ-
ent patterns and different spatial characteristics and
that it is relevant to make the stratification for the three
regions. In fact, any stratification that can be made
with prior knowledge has to be made on the base of
the assumption that the differences (yh − yi) for any
distanced must have zero mean and finite variance
(identically distributed) over the study area, inde-
pendently of the location where the differences are
calculated (Legendre and Legendre, 1998). The dif-
ferences between eco-regions exist in all aggregation
levels. Within an eco-region, differences in Moran’s
I between land use types are less pronounced. An
exception is the patch size of permanent crops in the
Andes, which is clearly smaller than the patch size of
the other land use types, indicating a different spatial
structure.

The spatial structures of the land use types show
similar characteristics as its potential driving factors.
In both the land use data and the data of the driving
factors eco-region Coast has high values of Moran’sI
with large patch size and Andes has moderate values
with smaller patch size. So, the characteristics of the
driving forces are reflected in the land use type that
is explained by these variables. This is an indication
that the land use is, at least partly, a reaction upon its
driving factors.

According to de Koning et al. (1998)the occur-
rence of patterns in land use/cover candisappear or
emergegoing from one scale to the other. For ex-
ample, it is possible that a certain data set has a lot
of variability at a very detailed scale (low aggrega-
tion level), in which a certain pattern exists that can
be seen and detected by aggregating the data. This
would increase spatial autocorrelation with increas-
ing spatial scale. On the other hand, it is possible
that the aggregation level exceeds the level of the

pattern. In that case no spatial autocorrelation will be
detected.

In the results of this study higher aggregation
levels show higher Moran’sI. There are various in-
terpretations possible to explain this: (1) At the low
aggregation level the pattern is too noisy and through
averaging the data is smoothed and a larger scale
pattern becomes clear. (2) Averaging the data is a
linear operation. However, at the lowest aggregation
level the slope of the Moran’sI tends to decrease
with increasing distance, which is in fact a non-linear
relation. So, the mean Moran’sI of two points on the
fine scale graph will always lie on the concave side
along the original graph when the average is calcu-
lated. The autocorrelation of the values of aggregated
cells will, therefore, be higher than the average auto-
correlation of those cells. This effect increases with
higher aggregation levels (Rastetter et al., 1992).

The residuals of the standard linear regression are
less autocorrelated than the original data. So, the driv-
ing factors used in the regression equation capture part
of the pattern, and land use is, at least partly, a reaction
upon its spatially autocorrelated driving factors. Also
the extent of the autocorrelation decreased from 100
to 50 km. However, there is still significant autocorre-
lation present in the residuals, which indicates that the
regression equations are not sufficient to explain all
spatial patterns. This can be the result of spatial inter-
actions, which can be caused by, for example, social
relations like imitation or market effects like the clus-
tering of producers to gain benefits from production
at a larger scale (economies of scale).

The visual presentation of the residuals of the mod-
els inFig. 8provides a clear insight in the differences
between the models. If we consider location A in
the original values (Fig. 8, right) and in the standard
linear model (Fig. 8, left) low original values result
in large negative residuals. The regression model
predicts, based on the driving factors, a higher land
use then is occurring at present. Near B (Fig. 8) the
situation is the other way around. In other words, the
predicted values have a smoother character (closer to
the mean) than the original values. With independent
data residuals would be randomly distributed.

Comparing the residuals of the spatial model (Fig. 8,
centre) with the original values (Fig. 8, right) it is clear
that extreme residuals (both positive and negative) of
the spatial model occur only at places where original
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values are high (location B). But, the residuals are
randomly distributed and do not show spatial auto-
correlation anymore. This is what would be expected
from a regression analysis. The residuals are the out-
liers of the observed situation. Using the spatial model
the prediction of land use area in a cell depends partly
on the area of that land use in neighbouring cells.
The model is not just based on independent variables
(drivers), but also on the pattern of land use itself.

Basically, the test for spatial autoregression in the
residuals can be used to decide to use a standard
linear regression model or a model that accounts for
autocorrelation (Legendre and Legendre, 1998). But,
as shown in this study, there will be cases in which
the application of a spatial model will lead to a sig-
nificant ρ (thus a significant spatial part), while the
Moran’s I does not show any spatial autocorrelation.

By using spatial models, a part of the variance is
explained by neighbouring values. This can be seen as
unsatisfactory, because the explanation of a variable
using the value of the neighbouring cell seems trivial.
The aim of most land use/cover studies is to identify
independent factors or proxies that explain land use
(driving factors) and to make a good prediction based
on those explaining factors. However, including a spa-
tial part in the model is a way to deal with spatial
interactions that cannot be captured otherwise.

Besides spatial interactions, trends or the omission
of regression variables could cause the importance of
the spatial part (as shown inTable 4). In that case,
other driving factors, which are not yet taken into ac-
count, play a role in the occurrence of land use. If
these variables have a spatial pattern, this is detected in
the residuals as autocorrelation. Although omission of
explaining variables and spatial interaction cannot be
clearly distinguished from each other through analysis
of residuals, the application a spatial model is recom-
mended, because it is a statistically sound model for
spatially dependent data. Another way to improve the
model is to include new variables or transform vari-
ables until spatial autocorrelation in the residuals is
not present anymore.

5. Conclusion

Moran’s I can be used to identify and quantify spa-
tial dependency (spatial autocorrelation) in spatially

explicit land use studies. Positive spatial autocorre-
lation was detected in the land use data and in the
driving factors of the case study of Ecuador. The
residuals of the standard linear model were also auto-
correlated, which indicates that the standard multiple
linear regression model cannot capture all spatial
autocorrelation in the land use data.

Spatial autocorrelation can be very different at dif-
ferent aggregation levels, even though they are based
on the same data. Theoretically, spatial autocorrelation
can increase and decrease going from one aggregation
level to another. In this study, the Moran’sI increased
with higher aggregation levels. This is the result of
the smoothing character of averaging data and by the
fact that the relation between Moran’sI and distance
is not linear.

Land use models that select drivers of land use pat-
terns through regression, often overestimate their role
in the presence of spatial autocorrelation. Spatial au-
toregressive models are suited to deal with spatial data
and provide a solution that is statistically sound. This
study demonstrated that different conclusions can be
drawn from the same data using spatial or conventional
statistics, especially with regard to the goodness-of-fit,
the significance of regression coefficients and the rel-
evance of the land use drivers. In the standard linear
models used byde Koning et al. (1998)the residuals
of the models still showed spatial autocorrelation, es-
pecially in low aggregation levels. To overcome this,
mixed regressive–spatial autoregressive models were
applied. Their residuals have no spatial autocorrela-
tion and a better goodness-of-fit. In most cases one
or two of the variables of the standard linear model
turned out to be insignificant and consequently were
removed from the model.

Within any spatially explicit study of land use
change spatial autocorrelation will occur, depending
on the spatial scale. Therefore, identification and
quantification of spatial autocorrelation in land use
studies using spatial data should be a standard pro-
cedure. Furthermore, the residuals of standard linear
regression analyses of spatially explicit land use stud-
ies should be tested for spatial autocorrelation. If the
spatial autocorrelation in the residuals cannot be ex-
cluded by adding regression variables or incorporating
a trend, a spatial regression model is most appropriate.

The findings of the spatial analysis with correlo-
grams and the application of spatial models can lead
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to better insight in the data and processes that deter-
mine land use (change) and can give cause to unravel
its complexity even more from a spatial perspective.
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