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Abstract—A general framework for processing high and very-
high resolution imagery in support of a Global Human Settlement
Layer (GHSL) is presented together with a discussion on the re-
sults of the first operational test of the production workflow. The
test involved the mapping of 24.3 million km² of the Earth surface
spread in four continents, corresponding to an estimated popula-
tion of 1.3 billion people in 2010. The resolution of the input image
data ranges from 0.5 to 10 meters, collected by a heterogeneous
set of platforms including satellite SPOT (2 and 5), CBERS 2B,
RapidEye (2 and 4), WorldView (1 and 2), GeoEye 1, QuickBird
2, Ikonos 2, and airborne sensors. Several imaging modes were
tested including panchromatic, multispectral and pan-sharpened
images. A new fully automatic image information extraction, gen-
eralization and mosaic workflow is presented that is based on mul-
tiscale textural and morphological image features extraction. New
image feature compression and optimization are introduced, to-
gether with new learning and classification techniques allowing for
the processing of HR/VHR image data using low-resolution the-
matic layers as reference. A new systematic approach for quality
control and validation allowing global spatial and thematic consis-
tency checking is proposed and applied. The quality of the results
are discussed by sensor, band, resolution, and eco-regions. Critical
points, lessons learned and next steps are highlighted.

Index Terms—Built-up density, CSL, global human settlement
layer, linear regression, PANTEX, urban limits.

I. INTRODUCTION

T HIS paper addresses the general issue of the possibility to
extract global geo-information layers from High-Resolu-

tion (HR)/Very High-Resolution (VHR) input image data. More
precisely, the possibility to extract a Global Human Settlement
Layer (GHSL) at scale 1:50K using optical sensors ranging from
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0.5 to 10 m of spatial resolution. A new multi-scale image pro-
cessing paradigm based on discrete field of image descriptors
(DFID) and a new inter-scale learning and classification mech-
anism are discussed under the hypothesis of a realistic global
scenario.
The experimental setting and the results presented in this

paper are extracted from the first operational test of the Image
Query (IQ) system1, tasked with the production of the first
public release of the JRC GHSL during June-July 2012. The
design and implementation of the system supporting the test
took approximately 12 months. At this stage the focus was
on the strategies for multi-scale image features compression,
storage and retrieval. The material presented in this paper
focuses more on learning and classification techniques and the
human settlements analysis. While both, the system design and
the GHSL outputs, were assessed during the test reported here,
the present paper concentrates on the description of the GHSL
production workflow and the GHSL results. Only some gen-
eral basic characteristics of the IQ system and computational
requirements will be illustrated.
The experiment discussed here included both detection and

an initial characterization of built-up areas based on average size
(scale) of built-up structures. The dataset covers parts of Europe,
South America, Asia and Africa for a total mapped surface of
more than 24,300,000 (Fig. 1). In particular, the task in-
volved the processing and evaluation of more than 15,000 satel-
lite scenes collected from 10 different satellite platforms and
sensors having spatial resolution in the range of 0.5–10 meters
(Fig. 2). The test involved the processing, indexing, and classi-
fication of around records containing the image ele-
ments (pixels) and their attributes (features) (Table I). The pur-
pose of the test was two-fold: i) to study the feasibility and the
system requirements necessary for the production of image-de-
rived information layers supporting crisis management in real-
istic scenarios [1] and ii) to design and evaluate one specific
image information retrieval task involving the production of
globally consistent outputs. The realistic data, time and informa-
tion use scenarios applied in this experiment are derived from: i)
direct experience of the authors in supporting information needs
for operational crisis management activities performed inside
their institutional mandate and ii) the participation of the authors
in a number of R&D and pre-operational projects exploring the

1The IQ system has been designed and developed within the Global Secu-
rity and Crisis Management Unit of the European Commission’s Joint Research
Center.
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Fig. 1. Geographic distribution of the HR/VHR input images processed during the experiment.

Fig. 2. Spectral coverage of sensors used in the study. The satellites cover a wide spectral range in the visible and NIR part of the spectrum. The spatial coverage
includes various resolutions from 50 cm airborne to 10 m panchromatic images of SPOT 2.

exploitation of remote sensing (RS) technologies for civil secu-
rity applications. Some references to these activities are briefly
summarized in Section IV.
The interest of this study for the remote sensing community

relies on the potential new solutions regarding two general is-
sues of the RS community, namely: i) the capacity to derive
globally/regionally-consistent information fromHR/VHR input
imagery, and ii) the capacity to perform such image information
extraction taking into account the constraints of crisis scenarios
with respect to time and data/metadata quality. Both issues are
today only in parts addressed in literature and were never tested
before with such a complex and representative set of HR/VHR
data.

Under the proposed perspective, a processing strategy with
some chances of success must address three main intercon-
nected challenges: input data volume, input data intrinsic
inconsistency, and fully automatic processing chain. The chal-
lenges are addressed mostly in Section III and some additional
aspects are discussed in the next section of the paper.
In general, the paper is organized as follows. Section II

presents the rationale behind the GHSL production including
information needs and remote sensing potential. The key
methodological choices regarding image information extrac-
tion are described in the Section III. Section IV summarizes
the use scenarios and the derived GHSL definitions and tech-
nical specifications. Section V describes the input data, the
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TABLE I
IMAGE DATASETS USED IN THE EXPERIMENT

workflow as well as the system managing it. Pre-processing,
feature extraction, and learning/classification are detailed in
Sections VI–VIII respectively. Quality control is described in
Section IX. Results are then discussed in Section X. The paper
concludes in Section XI with a summary, critical points, and
the way forward.

II. RATIONALE

A. Information Needs

The information on human settlements is crucial for a wide
range of applications including emergency response, disaster
risk reduction, population estimation and analysis, or urban and
regional planning, just to name a few. Urbanization plays a cen-
tral role in this context. Urbanization pressures have an envi-
ronmental impact, indicate population growth, and relate to risk
and disaster vulnerability.
In 2011 the global population passed the level of 7.0 billion

and more than half of the population is living in urban areas.
Between 2011 and 2050, the world population is expected to
increase by 2.3 billion and the urban population to increase to
2.6 billion, passing from 3.6 billion in 2011 to 6.3 billion 2050
[2]. The population growth expected in urban areas will be con-
centrated in the cities and towns of the less developed regions.
Asia, in particular, is projected to see its urban population in-
crease by 1.4 billion, Africa by 0.9 billion, and Latin America
and the Caribbean by 0.2 billion. Population growth is there-
fore becoming largely an urban phenomenon concentrated in
the developing world [3]. The figures alone are alarming enough
and make us understand that we are facing major challenges to
manage the urban development in a sustainable way. A central
issue in this respect is the availability of up-to-date information
on the extent and quality of the urban settlement. In particular
in less developed countries such information is largely unavail-
able. Cities are often growing at a pace that cannot be controlled
by the local or regional mapping agencies.
Apart from the general need for human settlement informa-

tion and hence population, there is a particular lack of infor-
mation on refugees or internally displaced persons (IDP) and
the urban poor, which are living often in informal, sub-standard
slum settlements. Despite the fact that they are neglected both
by the classical topographic mapping methodologies and by the

land-cover/land-use standard classification schemata, the tem-
porary human settlements of refugee/IDP camps are crucial for
effective crisis management operations. In 2011, there were an
estimated 26.4 million people displaced internally by conflict2

and 15.2 million refugees around the world, including 4.8 mil-
lion Palestinian refugees3. These numbers do not include IDPs
related to natural disasters and other forced migration issues.
The total number of refugees and IDPs was estimated in 2009
as 67 million of people4.
The information about the quality of the (urban) settlement

can provide precious input for understanding the vulnerability
of population living on our planet. Effective crisis management
and sustainable planning activities need consistent monitoring
of BU areas, in particular of the urban poor. These sometimes
large parts of the urban areas are characterized by sub-standard
housing without access to water and sanitation and tenure inse-
curity. According to the UnitedNations, due to rising population
and the rise especially in urban populations, the number of slum
dwellers is rising. One billion people worldwide live in slums
and the figure is projected to grow to 2 billion by 20305.

B. Remote Sensing Sources

Satellite imagery today could potentially provide informa-
tion about the built environment worldwide, due to advances in
computational and storage capacity, as well as data availability
and cost. As demographic pressure increases at global level,
our ability to monitor, quantify and characterize urbanization
processes around the world is becoming paramount. Despite
this potentiality of remote sensing technologies, there are few
global data sets that can be used to map the human settlement.
Examples include the night-time lights of the world based on
the DMSP-OLS sensor [4], MODIS500 based on land use/land
cover classifications [5], [6] and global population data sets like
LandScan [7] or the gridded population of the world [8]. Since
2011, the Suomi National Polar-orbiting Partnership (SUOMI
NPP) satellite produces night-lights at 750 m spatial resolution6.
An overview, comparison and analysis of eight global data sets
is provided by Schneider et al. [6]. While these data sets are
useful for global analysis, they have the tendency to under-rep-
resent small, scattered rural settlements with their low spatial
resolution between 500 and 2000m. In addition, they represent a
single snapshot in time that does not allow a regular monitoring.
Or, if they are updated, like the LandScan data set, they are not
directly comparable due to changing input sources. Although
high resolution (HR, 1–10 m spatial resolution) and even very
high resolution (VHR, ) data with an almost global cov-
erage are available with different sensors (e.g., SPOT, CBERS,
RapidEye, IKONOS, QuickBird, WorldView 1 and 2) no con-
sistent global coverage exists. Mapping andmonitoring of urban
areas at HR and VHR scales are mostly limited in terms of

2URL: http://www.internal-displacement.org/ publications/global-overview
3UNHCR Global Trends 2001, URL: http://www.unhcr.org/4fd6f87f9.html
4World Savvy Monitor, 2009, URL: http://worldsavvy.org/monitor/index.

php? option=com_content&view=article&id=441&Itemid=847
5‘Slum Dwellers to double by 2030’, UN-HABITAT report,

April 2007. URL: http://www.unhabitat.org/ downloads/docs/
4631_46759_GC%2021%20Slum%20dwellers%20to%20double.pdf
6http://npp.gsfc.nasa.gov/index.html
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temporal and spatial coverage and remain at the stage of case
studies for individual or few cities often providing only a single
time-step [9]–[11]. The largest case study analyses 54 cities all
around the world [12].
The lack of a consistent global layer with HR/VHR spatial

resolution can be attributed mainly to two reasons. First, the data
availability of HR/VHR satellite data. Most, if not all, HR/VHR
satellite missions are operated on a commercial basis and conse-
quently a global coverage is costly. The only relevant exception
is the CBERS 2B platform releasing 2.5-m-resolution panchro-
matic data with a very open data sharing policy in Brazil. Sec-
ondly, to date no system has demonstrated the capacity to ex-
tract automatically global information layers about human set-
tlements from HR/VHR satellite data with the necessary accu-
racy and cost-effectiveness. In the global perspective, the avail-
able automatic information procedures have the following ne-
cessities: i) collecting representative training sets, ii) expensive
ad hoc parameter setting and tuning, iii) maintaining costly com-
putational infrastructures, and iv) collecting specialized input
information not available globally. As a consequence, so far
only time-expensive manual or semi-automatic operational pro-
cedures were available.

III. METHODS

A. Problem Setting

As already introduced, under the perspective of global/re-
gional processing of HR/VHR image data it is mandatory to ad-
dress the three main challenges: input data volume, input data
intrinsic inconsistency, and fully automatic processing chain.
It is trivial to notice that the image data volume increases

exponentially with increasing spatial resolution: to pass from
500 m to 0.5 m of spatial resolution means an increase of six
orders of magnitude of input data volume. The question is, if
efficiency and effectiveness of a given processing workflow is
also increasing with the same order of magnitude. Furthermore,
it is necessary to observe that also the input data inconsistency,
such as spatial inconsistency and spectral class variability, in-
creases proportionally to the increasing spatial resolution. The
two effects have different causes, but together with increased
input data volume they may lead the data processing complexity
to failure.
From the thematic point of view, it is now well known

that increased spatial resolution of sensors leads to increased
spectral variability of the thematic classes: this is due to the
changed scale of observation of the image information or
targets. Changing scale of observation to 0.5 m of spatial res-
olution may reveal that just an apparently simple building roof
may become a complex universe made of gutters, chimneys,
water tanks, windows, terraces, and even trees of roof gardens.
They are composed of a plethora of different materials, such as
clay tiles, corrugated metal, plastic, asphalt, concrete and so on.
Illumination incidence angle, surface slope, shadows, spatial
pattern of the elements of these surfaces (for example tiles) and
their degree of obsolescence may change dramatically their
spectral reflectance/absorption characteristics. As a result, the
spectral variability of the class building roof will also increase,

which weakens the inferential models supposed to recognize
building roofs from image data. Attempts to separate the
problem in sub-problems by recognizing the different elements
separately, will easily bring to explosion of the number of target
classes and their specific instances. This fact typically leads to
the degradation of the model generality and applicability across
different scenes and/or different geographical places, and to the
explosion of the cost needed for the collection of reference data
aimed at training and testing purposes.
From the spatial point of view, it is worth noting that VHR

data would need high accuracy Digital Surface Model (DSM)
and field-collected Ground Control Points (GCP) in order to
reach a RSM displacement tolerance in the order of 2–3 m. This
means that also at the best conditions with 0.5 m of input res-
olution, a ground displacement error of 4–6 pixels must be ex-
pected. Moreover, because of the increased agility of the VHR
platforms and sensors, VHR image data can be collected vir-
tually with any viewing (off-nadir) angle, with the effect of in-
creasing image apparent local displacements due to parallax and
panoramic distortions [13]. In practice, for normal building in
the range of 5 floors and common off-nadir angles this can be
translated in additional expected apparent displacement in the
order of 10–20 pixels. Moreover, in the perspective of this study
global available DSM (90-m-resolution SRTM) must be used,
and no field GCPs are available for all the scenes under process.
Consequently, expected spatial inconsistencies at least of the
order of 30–50 pixels must be expected in the information ex-
tracted from the available VHR images.
As it is evident from the above observations, VHR data input

are intrinsically spatially inconsistent showing always displace-
ment errors greater than the pixel size and under the specific
operational constraints discussed here, they may be often in the
order of 30–50 times the pixel size. This fact has direct effect
in increasing the complexity of the reference data collection
and in decreasing the expected accuracy and repeatability of
the image information retrieval tasks, especially in the frame
of monitoring activities.
A fully automatic processing chain is required for repro-

ducible, cost-effective and sustainable image information
retrieval in the conditions addressed by this study focusing
on large areas with HR/VHR spatial resolution. Nevertheless,
increasing input resolution and input inconsistency/variability
typically decreases the stability of the inferential models trans-
lating image data in thematic information and dramatically
increases the number of free parameters to be tuned. Moreover,
more detail typically calls for more expensive training and
testing reference data collection, then conflicting with the ne-
cessity of minimizing human intervention in the classification
process. It is worth noting that all the above mechanisms may
show additional multiplicative effects on the whole computa-
tional complexity of the image information retrieval.
The solving strategy proposed in this study relies in the fol-

lowing basic principles: i) strong push on fast computational ca-
pacity through new efficient multi-scale feature extraction and
learning/classification algorithms; and ii) design of image infor-
mation extractionmethods focused on robustness and generality
issues. In particular, the following general principles were ap-
plied during the study:
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• Maximization of the inferential model stability by drastic
reduction of the number of free parameters to be tuned;

• Minimization of the data inconsistencies/complexity
i) by systematic comparison of both input and output
with stable, globally complete, lower resolution reference
image data and information; and ii) by the introduction of a
new hierarchical processing schema named Discrete Field
of Image Descriptors (DFID), distinguishing between the
input resolutions (scales) of the feature extraction and of
the learning/classification phases;

• Full multi-scale approach including the definition of a new
explicit inter-scale information generalization rule set;

• Integration in the workflow of available crowd source and
open source repositories of geographical features.

B. Problem Solving

The IQ infrastructure supporting the experiment allows the
search and retrieval of image information contents based on
similarities with respect to radiometric, textural and shape
(morphological) image descriptors. From this point of view it
can be considered to belong to the general family of well-es-
tablished content-based image retrieval (CBIR) concepts and
systems [14]. Relevant applications of the CBIR paradigm
to the problem of content retrieval from remotely sensed
imageries can be found in the Knowledge-driven Informa-
tion Mining (KIM) system proposed by Dactu and others
[15] and the Geospatial Information Retrieval and Indexing
System (GeoIRIS) proposed by Chi-Ren Shyu and others [16],
[17]. The IQ shares with KIM and GeoIRIS the similar basic
philosophy, but with some key innovations related to i) the
image features processing and compression, ii) the learning
and classification/ranking mechanisms and iii) the whole data
representation architecture. These innovations are crucial for
permitting the management of the data volume and complexity
of the GHSL experiment.
In particular, the image features processing cost was radically

reduced through the introduction of innovative hierarchical de-
composition algorithms in particular concerning the multi-scale
morphological (shape) image descriptors that are notoriously
computationally intensive [18], [19]. With the new approach an
increased efficiency of two-three orders of magnitude was es-
timated with respect to the state-of-the-art of multi-scale seg-
mentation techniques. With the same volume of data and pro-
cessing capacities, this may mean passing from some hours (or
even years for global data sets) to minutes just for the feature ex-
traction processing cost. Moreover, the indexing and compres-
sion of image features was solved by an innovative absolute
clustering approach combined with spatial aggregation tech-
niques [20]: this approach allows avoiding the use of traditional
per-scene statistical clustering creating instabilities and incon-
sistencies in case of multi-scene heterogeneous input datasets.
Furthermore, while traditionally the CBIR paradigm requires

human interaction for sorting the image information, the IQ
system has been designed for handling (if requested) massive
unsupervised learning tasks. This is obtained by substituting
human-driven examples with examples extracted from broad

scale classification outputs globally available. Some details
about these new techniques of inter-scale learning are detailed
in Section VIII. Although in the experiment discussed here we
addressed only the problem of detection of human settlement,
the new inter-scale learning approach can be generalized for
automatic fine-scale recognition of other land use land cover
classes possibly available in broad-scale reference datasets.
Finally, the standard data representation philosophy in the

CBIR paradigm was radically revised in order to cope with the
challenges of the GHSL production using fine-scale input image
data. The CBIR paradigm was initially built around the natural
entity of image as individual document to be sorted through the
use of image-derived features organized in relational databases.
Multimedia and medical initial applications areas fit well with
this apparently ‘natural’ approach. In reality it assumes an
implicit and intelligent action behind the image data collection:
an intelligent focusing and zooming of the sensor to a specific
subset of the real world. This is often not applicable in remote
sensing, where framing and zooming of satellite scenes are
largely dictated by automatic mechanisms and technological
constraints including sensor platform characteristics and or-
biting parameters; this decreases dramatically the amount of
‘sense’ that can be retrieved in the specific scene cut. KIM and
GeoIRIS partially address this issue by subdividing the satellite
scenes in sub-parts or tiles that are consequently indexed and
searched instead of the original scenes. In this way, we increase
the probability to frame well a hypothetical image information
target to be found in satellite images. Nevertheless, the tile
size parameter remains an a priori parameter to be decided
at the time of image data ingestion in the system, influencing
the size of the image information targets that can be queried.
Moreover, in this approach the tile geometry (origin, resolution,
and projection) is dictated by the geometry of the input image:
in a multiple scene/sensor scenario as the one tested during the
GHSL experiment, this makes it difficult to compare the same
image information query output, in the same place, but from
different sensor/time input scenes. The approach proposed in
this experiment relies on a consistent hierarchical multi-scale
tessellation of the globe; thus overcoming the above drawbacks
(Section IV).
From the point of view of the image information represen-

tation, the methodology proposed here can be defined as based
on a Discrete Fields of Image Descriptors (DFID). This is in
analogy to the discrete fields approach in physics, where com-
plex phenomena difficult to be modelled in deterministic way at
the micro scale, show much more stable statistical behavior, if
summarized at the macro scale. Accordingly, radiometric, tex-
tural, and morphological (shape) descriptors calculated at the
geometry (resolution, coordinate of the origin, projection) of
the input imagery, are aggregated to the geometry of the global
discrete field by analytical projective mapping transforms. The
scale of the discrete field, thus the size of the cells, it is de-
fined by the spatial resolution of the input data and their spa-
tial uncertainty. This includes the implicit generalization may
be introduced by specific image descriptors, as for example the
window size and the structuring element size in the textural and
morphological descriptors, respectively. The entities that will
be classified are the cells of the discrete field organized in tiles
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Fig. 3. The general Discrete Field of Image Descriptors (DFID) concept.

in order to optimize the I/O through raster database (DB) oper-
ations. These cells are described by the image descriptors in-
herited from images processed at the original resolution, but
then summarized at the size of the discrete field cell. Fig. 3 de-
picts the proposed DFID concept. Inside and between the dis-
crete fields, which may have different scales, various informa-
tion collection and distillation processes may be discerned. In
the proposed approach the most important ones are related to
aggregation and summarization from detailed to broader scales
and, symmetrically, learning and classification from broad to
more detailed scales. The first kind of information processes
can often be formalized by deductive and deterministic pro-
cessing chains, as for example the generalization protocol dis-
cussed in the Section VIII-E. On the other side, the second kind
of information process is typically made by inductive statistical
chains, as for example the learning techniques discussed in the
Section VIII.
Regarding the pixel-oriented image analysis methodology,

the proposed DFID provides a more consistent approach for in-
tegrating in the same classification task heterogeneous image
descriptors: in particular for integrating textural and morpho-
logical (shape) multi-scale descriptors together with traditional
radiometric descriptors that have a ‘natural’ representation at
the scale of the pixel.
With respect to other image analysis methodologies based on

image segmentation and classification, as the so-called object-
oriented image analysis (OBIA)[21], [22], the proposed DFID
method demonstrates several key advantages: i) explicit man-
agement of spatial uncertainty, ii) stabilization of the inferential
models, iii) possibility of a second-level pattern analysis of the
results, and iv) reduction of memory requirements.
The DFID method allows complete and consistent manage-

ment of the spatial uncertainty embedded in the image informa-
tion at any scale, which is one of the main drawbacks of OBIA
methods assuming spatial uncertainty always negligible respect
to the image pixel size. As discussed before, these conditions
are illusory in real HR/VHR image data processing scenarios
and theymay become completely misleading in case of thematic
information targets having a size comparable with the expected
input spatial uncertainty and apparent observable displacement.
In the operational constraints discussed here, the image informa-
tion retrieval methodologies based on preliminary image seg-
mentation steps will face the computational problem in the post-

processing trying to filter and re-aggregate spurious image seg-
ments resulting from misplacement of input data collected by
different sensors and/or the same sensor in different times.
Moreover, the DFID method stabilizes the inferential infor-

mation extraction model by first aggregating several image ob-
ject/region instances in the same cell and then taking the clas-
sification decision based on the whole aggregated attributes.
This is compatible with somewell-establishedmachine learning
methodologies as for example the bag-of-the-words approach.
The increase of the number of instances makes the statistical in-
ference more stable. At the level of the cell, omission and com-
mission recognition errors may compensate reducing the whole
error rate. The OBIA paradigm instead takes the classification
decision typically at the level of the single object/region that
is more risky from the statistical point of view: potential errors
made at this point are thus directly propagated in the subsequent
inferential steps.
Furthermore, DFID allows computationally-efficient multi-

scale pattern analysis of the image information retrieval results.
The same mathematical tools allowing pattern analysis on lat-
tice or raster structures can be translated to the analysis of DFID.
Finally, DFID significantly reduces the memory required for

storage of image-derived information and consequently the I/O
efficiency of the whole image information retrieval workflow.
Internal estimations show memory requirements reduction of
one to two orders of magnitude for comparable image informa-
tion (detail) stored using the DFID and OBIA approaches.
The experiment presented here describes the JRC GHSL pro-

duction test of December 2011, which was partially reported in
[20] with the focus on the new multi-scale morphological de-
composition techniques applied during the experiment. The cur-
rent test significantly improves the precedent one regarding i)
the capacity to handle a much larger input data complexity and
volume, ii) the capacity to measure the consistency with respect
to available global information layers, and iii) the capacity to
validate the GHSL output.
Specific parts of the feature extraction and image classifi-

cation steps included in the current IQ GHSL workflow were
previously tested for automatic recognition and analysis of BU
areas. In particular, the so-called PANTEX image feature [23]
derived from anisotropic rotation-invariant grey level co-oc-
currence matrix (GLCM) textural contrast measurements and
the characteristic-saliency-level (CSL) featuremodel [20] based
on Differential Morphological Profiles (DMP) [24] and derived
morphological decomposition techniques [18], [19], [25], [26].
The capacity to discriminate built-up (BU) from non-built-up

(NBU) areas of the PANTEX features was previously assessed
in a number of experiments including multi-temporal SPOT
panchromatic data [23], [27], and a set of 56 globally-repre-
sentative VHR optical scenes representing large cities [12].
Strong correlation between PANTEX image features and local
density of building footprints was proven in [28], [29] using
cadastral data as reference. Observing the reality at the range of
scales (resolution) of this study, the physical reasons behind the
correlation between PANTEX measurements and the presence
of BU areas can be resumed as follows: i) the fact that BU
areas are generally made by relatively small patches of het-
erogeneous materials and the fact that BU structures generally
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cast shadows and ii) the fact that the human settlement areas
show a strong dominance of objects with square corners. The
PANTEX measures the local contrast then is sensible to local
dissimilarity of material and presence of shadows creating
high local reflectance variations. Moreover, because of his
embedded anisotropic composition rule the PANTEX method
can be considered as a corner detector. As a consequence,
man-made objects generally receive high scores with this
image-derived measurement. Similar techniques were also
tested successfully using radar data input [30]. The current
experiment expands those findings to a much more general
scenario. Moreover, the capacity to detect and describe the
characteristics of the single BU structures using DMP and
DMP-derived image features were also previously tested in
a number of experiments including optical data [31]–[33],
hyperspectral data [34], and radar data [35]. These techniques
demonstrated also effectiveness in characterization of BU areas
as automatic detection of post-conflict damage assessment [36],
[37] post-earthquake damage assessment, [38], [39], destroyed
buildings and rubble detection [40] and more generally in
image information mining tasks [16], [41]. Similar techniques
integrating morphological and textural image features were
also experimented in a first implementation of the JRC GHSL
concept that was using ENVISAT 75-m radar input imagery
[42], [43]. ENVISAT input datasets are not included in this IQ
GHSL test focusing on processing input imagery with spatial
resolution better than 10 m.
In the experiment discussed here only textural and morpho-

logical image descriptors were used for detection and character-
ization of BU patterns. This is due to the fact that at the time of
the experiment only a subset of the highly heterogeneous input
image data was suitable for a consistent spectral calibration with
the available methods.

IV. GHSL CLASSIFICATION SCHEMA

A. Use Scenarios

Since the aftermath of the Indian Ocean tsunami in 2004,
the JRC offers operational support to European Commission
foreign policy services engaged in post-disaster damage and
need assessment by providing remotely-sensed data interpre-
tation. These activities were requested in a number of disaster
and crisis scenarios all around the globe. The GHSL concept
and requirements were developed in support to damage and
need assessment and discussed with other international players
such as the UN agencies and the World Bank and formalized
in the post-disaster need assessment (PDNA) agreements and
operational protocols. The GHSL technical specifications were
also discussed with the Global Disaster Alert and Coordination
System (GDACS) hosted by the JRC in order to produce more
accurate exposure information layer for the automatic impact
and alert modelling in GDACS. In addition, the JRC is con-
tributing to collecting user requirements and in exploring tech-
nical feasibility of information extraction from remotely-sensed
data in support to crisis management and disaster mitigation
scenarios. The GHSL concept was customized inside applica-
tions involving population estimation, vulnerability, risk, expo-
sure mapping, and damage and needs assessment in a number

of projects funded in the 6th and 7th Framework Programme for
Research of the European Union. The human settlement layer
specifications were discussed in particular in the projects Global
Monitoring for Security and Stability (GMOSS)[44], GMES
services for Management of Operations, Situation Awareness
and Intelligence for regional Crises (G-MOSAIC)7, the GMES
emergency response services (SAFER)8, and the GMES GE-
OLAND9.
The GHSL concept and technical specifications were dis-

cussed also with JRC partners having global information needs
on human settlements. In particular, intensive exchange of
know-how regarding the possibility of automatic analysis
of human settlements using remotely sensed data was done
with World Bank interested in globally consistent exposure
mapping [45], with UN-Habitat, engaged in slum mapping and
analysis, and with UNHCR offices interested in the estimation
of population in refugees and IDP camps [46].
Finally, the broader societal impact of the GHSL concept both

for technical-scientific and day-to-day users point of views were
discussed in the frame of the new Digital Earth 2020 vision
development [47], [48].

Definitions

The basic information contents of the current version of
GHSL rely on the definition of BU structure (building) and BU
areas: they are the necessary for a quantitative description of
human settlement using HR and VHR remotely sensed data
input [49]. BU areas are the spatial generalization of the notion
of building defined as: ‘areas (spatial units) where buildings can
be found’. The working definition of BU structure (building)
used in this experiment setting is as follows:

‘buildings are enclosed constructions above ground which
are intended or used for the shelter of humans, animals,
things or for the production of economic goods and that
refer to any structure constructed or erected on its site’.

This working definition is adapted from the data specification
on buildings delivered by the Infrastructure for Spatial Informa-
tion in Europe (INSPIRE)10. taking in to account the specific
GHSL constraints and user requirements. In particular, by con-
trast to the INSPIRE definition, the GHSL definition does not
include underground building notion for obvious limitations of
the considered input data.
Moreover, GHSL notion does not impose the permanency of

the BU structure on the site as instead INSPIRE does, following
the classical topographic mapping tradition. The GHSL notion
of BU structure is more inclusive, accepting to describe also
structures belonging to temporary human settlements as refugee
or internal displaced people (IDP) camps.
Finally, in a different way than INSPIRE, the GHSL repos-

itory includes also BU areas falling in the ‘slum’ or informal

7URL: http://www.gmes-gmosaic.eu/
8URL: http://www.emergencyresponse.eu/gmes/en/ref/home.html
9URL: http://www.gmes-geoland.info/
10INSPIRE Infrastructure for Spatial Information in Europe, ‘D2.8.III.2

Data Specification on Building – Draft Guidelines’, INSPIRE Thematic
Working Group Building 2012 URL: http://inspire.jrc.ec.europa.eu/documents/
Data_Specifications/INSPIRE_DataSpecification_BU_v2.0.pdf
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settlement concept: the area of a city characterized by sub-stan-
dard housing and squalor and lacking in tenure security, also
called ‘shanty town’, ‘squatter settlement’ and similar.
It is worth noting that the GHSL definition is only partially

fitting with other similar available definitions already pop-
ular in the RS community as the USGS ‘Urban or Built-up
areas’11, ‘Impervious Surfaces’ [50], ‘Urban Soil Sealing’12,
CORINE ‘Artificial Surfaces’13 and similar ones. Compared
to these land-use/land-cover (LULC) definitions, the GHSL
classification schema is more general not assuming any em-
bedded urban/rural dichotomy (BU structures are mapped
independently if they are falling in any ‘rural’ or ‘urban’ area
definitions) and more focused on quantitative support to crisis
management, risk and disaster mitigation activities requiring
detailed mapping of buildings, population and their vulnera-
bilities with a multi-scale approach. Furthermore, the GHSL
classification scheme with its simplification and reduction
of the embedded abstraction was designed to facilitate the
semantic interoperability and multi-disciplinary across-appli-
cation sharing of data and results. This includes the sharing
of data between different Agencies (UN, WB, EC) working
in similar areas, but not necessarily sharing exactly the same
abstract definitions[49].

B. Technical Specifications

This section includes a brief description of the GHSL tech-
nical specifications regarding format, scale, information pro-
duction, and quality control. These specifications summarize the
GHSL production guidelines used internally to coordinate the
experiment.
1) Format: GHSL information is released through standard

protocols defined by the Open Geospatial Consortium (OGC).
In particular, Web Map Service (WMS) and Tile Map Service
(TMS) platforms release the GHSL product as output of a spe-
cific query to a spatial DB, then including time and dynamic
information queries. The native storage format and structure of
the GHSL information is tile-based: the basic spatial unit is a
surface tile, which is the representation of a given portion of the
earth surface with a given size and projection. The tile entity is
organized in a hierarchical multi-scale structure following the
TMS standard.
While satellite-derived image features are stored and

managed in the local (UTM) metric projection, the global
mosaic, classification and GHSL representation are adopting
a global metric projection, that is the Spherical Mercator
(EPSG:900913) with the WGS84 Datum.
2) Scale: GHSL information is built and provided with three

nominal scales of reference, namely local, regional and global
scales. They correspond to specific parameters regarding the
TMS zoom level, the spatial unit of reference and the tolerance
admitted in the geo-coding of the information. Table II describes
the relation between these parameters in the design of the GHSL
product. The current experiment develops the output and the
evaluation protocols exclusively at the regional and continental

11URL: http://landcover.usgs.gov/urban/umap/htmls/defs.php
12URL: http://www.eea.europa.eu/articles/ urban-soil-sealing-in-europe
13URL: http://www.eea.europa.eu/publications/ COR0-landcover

TABLE II
GHSL SCALES, SPATIAL UNITS AND TOLERANCES

TABLE III
GHSL DESCRIPTORS AND SCALES

scales, with the purpose to enlarge at the maximum the available
universe of data under test. In fact, only a minimal part of the
available image data was fitting the local-scale 1:10K quality
specifications.
3) Information Contents: Assuming the collection of the two

basic information from imagery: namely the built up area pres-
ence and the BU structure size for a given GHSL
scale, then the derived GHSL variables are listed below:
• ( ): It is the surface of the spatial unit cal-
culated analytically from the projection and scale parame-
ters;

• ( ): It is the total surface BU in the
specific spatial unit:

• (%): It is the percentage of BU surface
in the specific spatial unit:

• AverageSurfaceOfBuildings ( ): It is the average
size of buildings expressed as average surface of
building footprints candidates in the specific spatial
unit:

• NumberOfBuildings: It is the number of BU
structures estimated in the specific spatial unit:

It is worth noting that because of the hierarchical characteris-
tics of the TMS structure used to store the final geo-information
layer, the information located in the broader scales can be cal-
culated from aggregation of the same information potentially
available in more detailed scales. If this information is valid
the general hierarchical relation

by aggregation (sum, average) is valid from detailed
to general representation. Moreover, the spatial hierarchy is not
only reflected in the aggregation rule, but also in the number of
available descriptors. The number of abstract semantic layers
available is increasing by increasing level of spatial generaliza-
tion, and by passing from local to global scales. Table III sum-
marizes the number of descriptors available in this version of
the GHSL at the different scales.

V. EXPERIMENTAL SETUP

A. General Objectives

As already introduced, the general objective of the experi-
ment was to test the capacity to extract globally/regionally con-
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sistent information layers from remotely-sensed imageries, in
realistic data and use scenarios in the frame of crisis manage-
ment applications. This means realistic data characteristics (res-
olution, volume, quality) and suitable response time. Specifi-
cally, the capacity to extract information about the presence of
BU structures and their characteristics were tested.
Although several information layers at different scales were

extracted during the test, only one specific output will be dis-
cussed in this paper, that is the automatic estimation of the pres-
ence of BU structures at scale 1:50K. The reason of this choice is
that only for this product a suitable reference data set was avail-
able for validation purposes at the time of writing the present
paper. The collection of reference data suitable for validation
of the automatic characterization of BU areas at scale 1:10K is
planned for the year 2013.
From the point of view of the thematic information extracted

during the experiment, it is well known that urban areas and
human settlements in general are one of the most challenging
classes to be detected in remotely sensed image data input. This
is due to the intrinsic heterogeneity of the surface materials con-
tributing to the built environment, to the confusion with the
same surface materials also available in natural areas, and to the
effect of the built spatial patterns and illumination/shadow pa-
rameters in data gathered by the remote sensors. The approach
in the current study was to maximize the generality and robust-
ness of the information retrieval process, versus maximization
of the accuracy based on specific sensor and/or geographical
places characteristics. In practice, the main question that was
addressed during the experiment was: ‘is it possible to apply ex-
actly the same image info extraction algorithm to the entire het-
erogeneous input data universe representing the complexity of
the HR/VHR info extraction, without the need of manual tuning
of the processing parameters?’. Other questions as for example:
‘how can we optimize the recognition performance having the
specific sensor available in the region of the globe’, even
if in principle relevant were not addressed in the current study.
With the focus on global consistency issues, no intense

benchmarking of specific set of parameters was applied in the
experiment design. The only exception is the benchmarking
of three different learning strategies as described later in this
section. The general schema of the experiment is consequently
defined as made by i) a heterogeneous HR/VHR input dataset,
ii) the same image features calculated for the whole input,
iii) alternative learning and classification strategies, and iv) the
same reference data used for evaluation of the output.

B. Input Image Data Available

The satellite and airborne data used in this paper were ac-
quired by optical sensors with a spatial resolution of 10 m or
better in order to allow detection of single buildings or groups
of buildings. The data are hosted in the Community Image Data
Portal (CID)14. The CID Portal is a web portal to search and ac-
cess remote sensing data and derived products hosted at JRC for
a variety of applications.
In this study, we use in total 11,438 panchromatic and

multispectral satellite data sets from SPOT 2 and SPOT 5,

14URL: http://cidportal.jrc.ec.europa.eu/

RapidEye, CBERS-2B, QuickBird-2, GeoEye-1, WorldView 1
and WorldView 2. In addition, airborne data sets covering
entire Guatemala were available as RGB imagery. The number
of data sets per sensor and the area covered is detailed in
Table I. The dataset under test covers parts of Europe, South
America, Asia and Africa for a total mapped surface of more
than 24,300,000 km . The input data volume is estimated in
the order of 4.00+12 picture elements (pixels), stored in ap-
proximately 30 terabytes of disk space taking in to account the
various number of bands, bit depth and compression formats
applied in the available input scenes.
The different data sets cover a wide range of spatial reso-

lutions from 50 cm airborne data sets to 10 m of the SPOT 2
sensor. Radiometrically the entire visible and near infrared part
of the spectrum is covered with wide panchromatic bands and
up to eight multispectral bands of WorldView 2. Fig. 2 depicts
the spatial/spectral distribution of sensors used in this study. In
addition some data sets consist of pan-sharpened multispectral
images with the spatial resolution of the panchromatic band. It
is important to note that no information were available about
the pan-sharpening workflow applied for the production of these
data, including visual enhancement filtering and the parameters
necessary for eventual band calibration. Also concerning multi-
spectral airborne data, no detailed information about the spectral
characteristics of these data was available.
Around 50% of the VHR input data used in this experiment

was available only in lossy data compression format: in partic-
ular JPEG, MrSid, and ECW formats were used in input during
this experiment. It is worth noting that these formats introduce
artifacts both in the radiometric and structural (texture, shape)
image information descriptors, thus introducing robustness
challenges in the whole image processing workflow.
Concerning the geo-coding, the input quality condition was

highly heterogeneous: the expected RMS absolute positional ac-
curacy was ranging from 3–5 meters of ortho-rectified data, 25
meters of raw VHR data, up to 40 kilometers in the CBERS 2B
case.
The available input image data was collected in arbitrary and

heterogeneous seasonal conditions, with arbitrary and hetero-
geneous sun/sensor elevation and azimuth parameters. In some
20% of the input data no precise information about collection
parameters was available, especially in case of large mosaics of
VHR input data made by third parties.

C. Global Reference Data

Several additional data sets were used in the workflow as
ancillary data. For the orthorectification of some of the satellite
data we used the TerraColor15 as reference layer. This is an
orthorectified global imagery base map at 15 m spatial resolu-
tion built primarily from Landsat 7 satellite imagery. The Open
Street Map16 (OSM) data were used to extract a high resolution
land-sea border. During the processing low-resolution (LR)
global data sets are used for reference purposes. One of the data
sets is urban class of the MODIS500 Land Cover Type product

15URL: http://www.terracolor.net
16URL: http://www.openstreetmap.org/
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Fig. 4. The general IQ GHSL processing workflow.

[6]. In addition, the LandScan (2008 and 2010)17 high resolu-
tion global population data sets were used. The LR reference
data were used for learning and consistency checking purposes
before and after the classification steps, respectively. During
the learning, LR reference data substitute manual training set
collection by a new inter-scale learning mechanism detailed
in Section VIII. Also, LR reference information contribute
to global consistency checking and optimization of several
alternative outputs done at the end of the image information
extraction workflow, during the mosaic and integration phase
(Section V-E). During the global consistency checking, the
active visual training collection loop is activated. See details
in Section IX. Accordingly with the DFID paradigm exposed
in Section III-B, no deterministic masking of HR GHSL infor-
mation is done using LR information as input. Only statistic
inferential chains are admitted from LR to HR information
scales. Consequently, the GHSL output is considered infor-
mation extracted from HR/VHR input image data. The only
exception to this general rule is the land ‘mask’ applied to
GHSL output that is extracted deductively from the OSM refer-
ence data. Consequently, the seawater vs. land dichotomy was
not extracted from the input imagery by the proposed image
information extraction workflow, but instead derived from an
external source assumed as suitable for the purpose.

D. General Workflow

The main ingredients of the IQ workflow characterizing the
GHSL experiment here discussed are four: i) the input image
data, ii) the reference set, iii) a pre-processing chain, and iv) a
processing one (Fig. 4).
The reference set has the crucial function to support the

optimization of the spatial and thematic consistency during
the GHSL production. Before the first run of the workflow the

17copyright by UT-Battelle, LLC, operator of Oak Ridge National Laboratory
under Contract No. DE-AC05-00OR22725 with the United States Department
of Energy.

BUREF layer is produced by merging two globally available
datasets: LSPOP and MODIS500. Details on this step are avail-
able in Section IX-C. Independently from that initial choice, the
whole system is designed having an incrementally evolutionary
approach: the output of any given image information extraction
run/experiment, if passing validation and consistency check
will contribute to improve (thematic accuracy, spatial/temporal
completeness) the available BUREF layer. The expectation is
that this retro-action mechanism will contribute in enhancing
step-wise the overall reliability and completeness of the GHSL
output.
The pre-processing module basically performs two functions:

i) checking and optimization of the spatial consistency of the
input image data and ii) checking and flagging eventual occlu-
sions and no-data areas in the same images. The spatial consis-
tency is optimized by using an available reference set having
15-m spatial resolution and an expected RMS spatial tolerance
of around 20 m, while the occlusions and no-data areas are de-
tected by an internal recognition mechanism. Details on these
steps are available in Section VI. Because of the characteristics
of the spatial reference layer available, the current GHSL pro-
duction is not fitting the 1:10K local scale specifications, and
consequently only the 1:50K regional and 1:500K global scales
will be delivered.
Note that no spectral calibration steps are implemented in the

current workflow. This fact means that all the subsequent pro-
cessing steps work with spectrally uncalibrated satellite image
data input. This choice was dictated by the fact that an impor-
tant part of the input image data volume was not suitable for
being radiometrically calibrated with existing tools, requiring
the availability for each scene of parameters needed for top-of-
atmosphere reflectance calculations. Apart from some VHR op-
tical sensors, in particular this information was unavailable for
pan-sharpened multispectral SPOT 5 image data and not pos-
sible for airborne/satellite mosaics that were instead playing an
important role in the current experiment, both as volume of data
involved and interest of users in the output.
The absence of radiometric calibration forced to exclude from

the workflow the image descriptors derived from band combina-
tions using sum, ratios operators as typically the NDVI indicator
for example, that may significantly increase the BU/NBU dis-
crimination in case of availability of multispectral image data.
New spectral calibration methods able to process a more com-
plete range of input data are under study and will be applied in
next IQ GHSL workflow releases.
On the other side, the capacity to extract image informa-

tion without using band combinations can be seen as a ben-
efit of the proposed workflow, generalizing the same processing
strategy to multi-spectral and mono-band panchromatic image
data input.

E. Parameter Sets and Task Loop

The whole processing is governed by a specific parameter
set: in the experimental results discussed in this paper, three dif-
ferent parameter sets were put under test for benchmarking pur-
poses. They are almost identical except for the option related to
the learning and classification mechanisms activated during the
workflow. More specifically, ‘learning on LandScan’, ‘learning
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on MODIS500 by area matching’ and ‘learning on MODIS500
by ROC optimization’ were coded as parameter sets 142, 145,
and 146, respectively. Details on these techniques are discussed
in Section VIII.
The task loop governing the experiment processes indepen-

dently with the sameworkflow each band of each input scene for
each selected input parameter set. As a consequence, for each
input scene , classification outputs will be available with

and equal to the number of bands available for the
specific scene and equal to the number of tested parameter
sets. Because several input scenes may contribute to the same
DFID tile area with different sensor or collection parameters,
the total number of outputs for each location can be estimated
as , with equal to the number of scenes con-
tributing to the specific place. In the general setup, all these
potentially alternative outputs are sorted according to an explicit
cost function including quality measurements and user-driven
requirements as for example specific date or sensor constraints.
This is done in the ‘consistency check/scoring’, ‘validation’ and
‘mosaic/tiling’ steps of the processing phase in the workflow
(Fig. 4). In the current experiment, the scoring was performed
exclusively according to the global quality measurements de-
scribed in Section IX without additional constraints included in
the cost function.

VI. PREPROCESSING

A. Positional Accuracy

The positional accuracy of each input scene and the posi-
tional consistency between any pair of overlapping scenes are
fundamental quality measurements needed during the genera-
tion of the GHSL layer and for any subsequent use. This is a
challenging issue given the heterogeneity of the input data sets
and the absence of global reference layers matching the highest
resolution of the input imagery (i.e., 50 cm). The best optical
imagery reference layer with reported accuracy across the globe
and freely available is the Landsat 7 nearly global coverage [51].
This freely available imagery needs to be mosaicked to ease ac-
curacy measurements of arbitrary HR/VHR images across the
globe. Although we have developed a method for mosaicking
large data sets [52], [53] and have applied it at continental scale
for Europe with Landsat data [54] and IRS LISSIII plus SPOT
4/SPOT 5 imagery [55], at global level we currently use Terra-
Color as our imagery reference layer.
1) Positional Accuracy Against TerraColor: Except for

CBERS-2 HRC imagery (see next paragraph), we have as-
sumed that the geo-location of the input imagery as indicated
by the image metadata is correct. The positional accuracy is
determined using normalized cross-correlation measurements
[56]. That is, given a square template cropped from the input
image at a given position, normalized cross-correlations are
calculated between this template and equivalent templates
cropped in the reference image with center pixel falling within
a search window centred on the same position as that of the
original template. The vector separating this position from the
position at which the maximum value of the cross-correlation
occurs is used as a local estimation of the translation vector
between the input and reference images at that position. If the

normalized cross-correlation is not circular enough or does not
high enough, the estimated translation vector is deemed unreli-
able and discarded. The mean, RMSE, and standard deviation
of the horizontal and vertical displacements are then reported.
Sub-pixel measurements are obtained thanks to a quadratic
interpolation of the correlation function [57]. Because the spa-
tial resolution of TerraColor is 15 m, only errors above 1.5 m
(the theoretical smallest displacement that can be measured
with sub-pixel measurement using quadratic interpolation is a
10th of the resolution of the reference) are significant. This is
enough for assessing the quality of the final GHSL layers since
they are delivered at a maximum scale of 1/50000.
For the special case of CBERS-2 HRC imagery, the geo-

location of the input imagery is unreliable with the scene center
displaced by up to 40 km [58], [59]. In this case, we have used
the procedure described above to automatically find tie points
necessary to correct the geo-location of the input CBERS im-
agery. This is achieved by sub-sampling the CBERS images at
the resolution of TerraColor. Displacement vectors are then ex-
tracted by considering as reliable only those vectors that clearly
cluster in well defined region of the - space. The CBERS
image is then warped using the affine transformationmodel with
least square estimation of the transformation parameters given
the final set of tie points.
2) Relative Positional Accuracy (Consistency): The relative

positional accuracy (i.e., consistency) between any pair of over-
lapping images is calculated similarly to the positional accuracy.
It is a consistency measurement in the sense no reference is used
but merely a comparison between two data sets in their overlap-
ping domain.

B. Cloud Detection

Precise cloud detection remains a difficult topic per se due
to the absence of formal definition of a cloud that can be trans-
lated into an image processing chain with well defined param-
eter values. For instance, ‘What is the threshold level to declare
whether there is a thin cloud or not?’ or ‘Where is the precise
location of the boundary of a cumulus?’ are questions that will
probably never be answered. Nevertheless, cloud masks indi-
cating the image areas most affected by clouds can be generated
by a wide variety of methods. For example, cloud detection in
medium resolution imagery with sensors offering a wide range
of spectral bands including thermal bands is usually based on the
Automatical Cloud Cover Assessment (ACCA) method [60].
This type of method requires not only a wide range of spectral
bands but also precise Top-Of-Atmosphere (TOA) reflectance
values. The parameters necessary for TOA reflectance calcula-
tions such as sensor gain and offset parameters and solar irradi-
ance at the given wavelengths are not always precisely known
for HR/VHR satellite data. Experiments detailed in [55, ch. 3]
have shown that ACCA can be adapted for sensors with green,
red, near-infrared, and shortwave infrared bands such as SPOT
4 HRVIR, SPOT 5 HRG, and IRS-LISS III sensors. However,
for VHR data that sometimes contain only one panchromatic
channel, this path is not viable. Therefore, an ad hoc method
for generating cloud masks has been developed. More precisely,
rather than relying on calibrated data, we have developed a
method that translates a visual definition of a cloud into an
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Fig. 5. Cloud detection from panchromatic data: example on a 2.5-m CBERS-2 HRC scene over Brazil.

image processing chain. There are actually two chains, the first
for situations where only 1 VHR band is available, the other for
all other cases (i.e., multi-band HR/VHR data).
1) Panchromatic VHR Data: This technique was originally

developed for CBERS-2 HRC panchromatic images. It exploits
the fact that the cloud boundaries consist of a smooth transition
from bright to darker regions spanning over many pixels.
Smooth transitions are detected using point-wise arithmetic
differences between thick morphological gradients [61] of
increasing size. The non-zero values of the resulting image
delivers a mask of the cloud boundaries. The holes of this mask
are than filled by a morphological reconstruction by erosion
called the fillhole transformation [62]. Finally, a dilation by a
disk of fixed radius (15 m) is applied to make sure that most
pixels corrupted by the detected clouds are indeed covered by
the cloud mask. Fig. 5 shows a CBERS-2 HRC image and its
corresponding cloud mask.
2) Multispectral HR/VHR Data: For multispectral HR/VHR

data (typically 4 channels), the adaptation of the ACCAmethod
proposed in [55, ch. 3] did not provide satisfactory results
in many cases due to the unavailability of precise calibration
parameters. For this reason, we have developed a method
taking into account the multispectral nature of the input data
relying on a visual characterization translated into an image
processing chain. The method relies on fact that clouds appear
has regional maxima [62] in all visible and infra-ref channels
of multispectral images. Therefore, the point-wise intersection
of the extended regional maxima obtained for each channel
is used at the basis of an image processing chain delivering a
mask of potential clouds.

VII. FEATURE EXTRACTION

This section gives an overview of the different types of
features collected from the available imagery in order to shape
a medium level semantic layer registering human presence
through the evidence of built-up.

A. Textural Features

The textural image features used in this study are derived
from grey-level co-occurrence matrix (GLCM) contrast textural
measurements [63]. The GLCM matrix is a matrix con-
taining the relative frequencies with which two pixels linked by
a spatial relation (displacement vector) occur on a local domain
of the image, one with gray level and the other with gray level
, with , where is the number of gray-levels
with which the image has been coded. The contrast textural mea-
surement is formalized as follows:

where is the number of gray levels present in the image,
and is the th entry of the co-occurrence matrix.
The contrast textural measures calculated using anisotropic
displacement vectors are combined in a rotation-invariant
image feature called PANTEX [23] by using extrema opera-
tors. PANTEX was demonstrated strongly correlated with the
presence of buildings [12] and their spatial density [28]. The
capacity of PANTEX to discriminate BU/NBU areas is mainly
linked to the fact that it is a corner detector [64] and that the BU
areas generate high local image spectral heterogeneity because
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TABLE IV
PANTEX PARAMETERS USED IN THE STUDY.

of heterogeneity of materials used and because of buildings
are generally casting shadows. In this study, PANTEX method
was improved by adding i) an a priori weighting mechanism
substituting the usual standardization step before the integration
of different displacement vectors and ii) the parametrization of
the radius used for generating the displacement vector list.
The basic parameters necessary to calculate the PANTEX fea-

ture are the window size and the list of displacement vec-
tors used for generating the GLCM. is analytically de-
rived from the GHSL scale of the expected output that in this
experiment is set at the 1:50K GHSL technical specifications.
Consequently, 50 meters that is corresponding to the
spatial unit of the GHSL regional scale. The will be trans-
lated in corresponding number of image pixels by ratio with the
image spatial resolution information. In this study, the displace-
ment vectors are generated assuming a radius of 10 m that corre-
sponds with the maximum size of the image pixel tested during
the experiment, and fits well with a priori knowledge regarding
the expected size of the majority of the BU structures. Table IV
summarizes the and the number of displacement vectors
for the most common image resolutions used in the study.

B. Morphological Features

Radiometrical and textural features describe material prop-
erties and object patterns respectively, and are used as indica-
tors of man presence. For each given scene both feature sets are
employed as markers to validate building footprint candidates.
The latter are summarized in separate information layer that is
a product of a multi-scale morphological analysis protocol re-
ferred to as the “mtDAP”.
The mtDAP protocol [18] computes the Differential At-

tribute Profile (DAP) vector field [25] from the input imagery.
DAPs are nonlinear spatial signatures that are used extensively
in remote sensing optical image analysis in ways analogous to
spectral signatures. The DAP of a pixel is the concatenation of
two response vectors. The first registers intensity differences,
i.e., contrast, within a top-hat scale-scape of an anti-extensive
attribute filter , and the second intensity differences on the
bottom-hat scale-space of an extensive attribute filter . The
pair defines an adjunction with typically being a
connected attribute opening and being a connected attribute
closing.
The mtDAP can be configured with any morphological at-

tribute filter but in this case, simple area openings and closings
prove to be sufficient. The area attribute is used to order objects
based on size and it is computed incrementally. The protocol

consists of three core modules; the hierarchical image represen-
tation using a Max-Tree and a Min-Tree structure [65], the at-
tribute zone tree-polychotomy scheme and the spatial signature
export module. A brief description of each module follows.
Hierarchical image representation schemes aim at organizing

the image information content into meaningful structures or
components and registering component transitions through
their nesting properties. Examples in morphological image
analysis are the Max-Tree [65], the Component-Tree [66], the
Alpha-Tree [19], etc. This work makes use of the Max-Tree
structure for computing anti-extensive attribute filters on
gray-scale images. The Max-Tree is a rooted and uni-directed
tree in which every node corresponds to a single peak
component that associates to a set of flat zones [67]. A peak
component at level is a connected component , i.e., a
connected set of maximal extent, of the binary set given by
thresholding the input image at level . A flat zone is an image
region consisting of iso-tone and path-wise (or otherwise) con-
nected image elements. If the full extent of a peak component
coincides with a single flat zone, the component is referred to as
a regional maximum. The leaves of a Max-Tree correspond to
the regional maxima of the input image and every node points
to its parent that corresponds to the first superset of
at level . The root node corresponds to the image
background and points to itself.
The Max-Tree treats bright structures as foreground informa-

tion with respect to a darker background. The inverse is rep-
resented by a Min-Tree structure, i.e., foreground information
are dark components resting against a brighter background. The
Min-Tree is equivalent to a Max-Tree on the inverted input
image.
Computing both structures on the input image offers the pos-

sibility of evaluating the significance or extent of the contribu-
tion of each connected component to the structured image in-
formation content with respect to the nesting order. This is the
key idea behind the DAP decomposition which assumes size as
the dominant criterion for ordering components. To obtain the
DAP vector field, i.e., the set of all DAPs for a given image,
the mtDAP protocol uses the Max-Tree to compute the top-hat
scale-space of an area opening and the Min-Tree to compute
the bottom-hat scale-space of an area closing. Instead of reit-
erating the same operator configured with a varying attribute
threshold for each scale-space, the mtDAP employs the “one-
pass” method [18] which generates an area zone polychotomy
of each respective tree; each node is assigned a unique area zone
identifier in a single pass through each structure.
The DAP vector field can be visualized as a 3D set in which

every - plane, corresponding to a particular scale of the de-
composition, stores in each pixel position the pixel’s contrast
computed in the respective top-hat or bottom-hat. An example
is shown in Fig. 6(c) in which the top volume set corresponds
to the top-hat scale-space and the bottom volume set to the
bottom-hat scale-space. Exporting the DAP vector field requires
a single pass through the image definition domain during which,
for each pixel visited its node ID is retrieved. Visiting the re-
spective node gives access to the area zone ID and contrast with
respect to the zone’s highest attribute boundary. The type of the
tree is used to decide onwhich of the two volume sets the pixel is
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Fig. 6. Example of DAP vector fields: (a) the input image; (b) the color repre-
sentation of the DAP vector field using the CSL model; (c) the DAP vector field
in color-map projection in which the two volumes correspond to the opening
top-hat and closing bottom-hat scale-space respectively; (d) a cross-section of
the two.

be reported, the area zone ID to decide on which plane it belongs
to and the contrast to assign a value on the corresponding coor-
dinates on that plane. A cross-section through the two volume
sets is shown in Fig. 6(d) where the scale-based responses of a
sample set of pixels are shown.

C. Features Compression and Storage

The (scale) resolution of DAPs, i.e., vector length and the
between-scale spacing, is a critical parameter in their utiliza-
tion as feature descriptors. It is typically set either empirically
or based on the outcome of some statistical learning procedure.
Evidently, higher spatial input resolution offers a more detailed
profile for each pixel under study. A drawback in this case is
that by increasing the vector length the number of DAP vector
field planes (Fig. 6(c)) increases proportionally, i.e., .
When dealing with large data-sets this can be prohibitive and to
counter the resulting data explosion a compression model was
devised to radically reduce the dimensionality of the DAP de-
scriptors. It is called the Characteristic-Saliency-Level or CSL
Model [20] and is a medium abstraction semantic layer that can
be projected on the HSV color space for the visual exploration
of BU extracted from VHR satellite imagery (Fig. 6(b)).
The CSL model is a nonlinear mixture model consisting of

three characteristic parameters extracted from the DAP of each
pixel. That is the minimum scale at which the maximal contrast
response is observed in the DAP (the characteristic), the contrast
value (the saliency) and the highest peak component level from
which this value is computed. The model is computed directly
from the polychotomy of the two tree-based data structures and
with no need for exporting the DAP vector fields. It reduces

radically the dimensionality of the DAP vector field to a three-
band representation in a statistical-model free approach, i.e., it
avoids clustering based on the statistical distribution of the DAP
features of a given image. It does not require manual tuning and
its computation is independent of the length of the DAP. This
makes it suitable for user-independent applications like the one
described in the population of the GHSL.
The color-mapped CSL model provides a pool of building

footprint candidates like in Fig. 6(b). Warmer colors indicate
higher confidence that a particular structure is a building. The
selection of candidates employs the thresholded PANTEX BU
indices as markers in order to draw the final high-level semantic
layer containing all targeted BU.
Both the compressed multi-scale morphological (CSL) and

textural (PANTEX) image descriptors are aggregated and stored
with the spatial resolution corresponding to the finest scale sup-
ported by the specific image information query, that in this case
is equal to a grid of 10m, corresponding to the GHSL 10K specs.
They are then ready to feed the subsequent image information
queries and classification with the maximum of spatial detail.
With this schema, the heterogeneous set of input sensor/plat-
forms with different resolutions generates raw image features
also heterogeneous in spatial resolution but then they are spa-
tially standardized to the 10-m nominal grid. In many cases also
this operation of spatial aggregation will introduce a compres-
sion of the data space with positive effects in the overall per-
formances of the system (storage, indexing, and retrieval). For
example, an input image feature generated with VHR image of
0.5-m resolution, if aggregated to 10 mwill show a compression
factor of 1:400.
The parameter set governing the CSL feature extraction was

maintained constant for the whole process discussed in this ex-
periment. A vector of 127 hierarchically increasing scales was
set for a total of 254 scales in the , domains. The vector
explored the set of image structures having a surface from 10
to 15,000 square meters that where considered enough to cover
most of the target BU structures studied in the experiment. Con-
sequently, an inter-scale step equal to 118 m was applied. Of
course, during the processing of the input images these values
are rescaled and rounded accordingly with the specific size and
then surface of the input pixels.

VIII. LEARNING AND CLASSIFICATION

A. Learning Approach

In this experiment, a new inter-scale learning and classifica-
tion paradigm was introduced with the objective of allowing a
fully automatic processing chain for heterogeneous and not-cal-
ibrated input data set. The general idea behind this new approach
is to move the calibration step from the input data—where it is
placed classically—to the image-derived features (descriptors)
before the actual classification. The general objective is to sta-
bilize as much as possible the classification parameters against
the complex input data used in this experiment.
The classical methodologies for standardization of image-de-

rived features rely on observation of the statistical distribution
of the values of the features in the specific scene. This strategy
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was tested; but we rejected it during the experiment design, be-
cause it provided unstable results in multiple-scene, heteroge-
neous input data scenarios. In particular, scene-relative stan-
dardization approaches assume homogeneous (or at least com-
parable) distribution of land cover classes in each scene. This
condition was largely violated in the discussed experiment set,
where fully ‘urban’ scenes were processed together with scenes
with only few buildings in some remote rural areas.
In the proposed approach, the high-resolution (HR)

image-derived descriptors are rescaled through learning
procedures that use low-resolution (LR) globally available in-
formation layers as reference. Of course, a correlation between
the HR image descriptors and the LR global reference layers
must be assumed. The role of the LR reference information
layers is to increase the consistency and comparability of HR
classification outputs produced from heterogeneous HR/VHR
sources. It is worth noting that in the proposed approach this
objective is achieved exclusively by the learning procedures
described in this section; no a priori masking of HR data is
performed with the LR reference information.
Image-derived features that are standardized with respect to

an explicit objective function can be used for a fully automatic
classification chain. Consequently, the advantage of the pro-
posed methodology is that the collection of training samples can
be avoided. This is particularly important for the whole exper-
iment and in particular for testing the sustainability of global
HR/VHR image information retrieval. Nevertheless, it is evi-
dent that between HR image descriptors and LR reference layers
there is a scale gap that may introduce geo-spatial generalization
issues. In order to mitigate the scale gap effects, three different
modalities of learning and classification are implemented in the
experiment: i) adaptive learning, ii) meta-learning, and iii) dis-
covery.
In the ‘adaptive learning’ modality, the system optimizes the

decision thresholds in the input features using a given refer-
ence layer. The ‘meta-learning’ modality is used to study the be-
havior of these decision thresholds in the set of scene processed
and to detect regularities: for example, typical thresholds for a
given sensor in specific regions. The output of the meta-learning
is then exploited during the ‘discovery’ modality that can be ac-
tivated in order to have the chance of recovering image informa-
tion lost because of errors (such as incompleteness or inconsis-
tencies) in the reference data, or different scale generalization
of the image-derived information and in the available reference
data. In practice, the adaptive learning optimizes consistencies
between the image information under processing and the ref-
erence data, while the meta-learning and discovery modes take
the risk of the image information recognition also in cases where
reference data is not available with the necessary thematic, spa-
tial precision.
The typical workflow combining the three modalities will be

as follows: i) run adaptive learning in all available scenes and
classify the outputs respect to the matching with the reference
and the amount of available reference data, ii) run meta-learning
in the set of successfully classified scenes with available refer-
ence data, and iii) run discovery mode in the set of scenes under
a given threshold of quality detected after the adaptive learning
phase.

B. Adaptive Learning on Textural Image Features

The PANTEXmethod [23] (see also Section VII-A) provides
measurements correlated with BU density.
Nevertheless, PANTEX absolute values depend on specific

image contrast and sharpness provided by a specific sensor/band
in the specific scene under processing. While the measure has
a high discrimination power of BU/NBU area in a variety of
conditions [49], the optimal classification threshold depends on
the general image contrast characteristics. To alleviate this diffi-
culty, a normalization of the image grey-level distribution with
a unique global classification threshold was tested in [49] with
a rather limited success. As opposed to this signal-driven ap-
proach, we propose in this section to make use of global refer-
ence data to infer the optimal classification threshold per image.
In all the cases described below, we applied first a binary

mask on the input image in order to exclude noise or mis-
leading information:

otherwise

where and refer to the computed cloud mask and
the OpenStreetMap land mask, respectively. All these images
have the same dimensions, and the indices and refer to rows
and columns, respectively. Then, the PANTEX is adjusted as
follows:

otherwise.

The computation of the threshold is differentiated in each of
the following cases.
1) PANTEX Learning on LandScan: The parameter set

‘142’ of the workflow includes the learning of image-derived
PANTEX best thresholds for the discrimination of BU from
NBU areas from LandScan population density reference layer.
Let the image of the density of people be denoted by and
the PANTEX feature existing in the bounding box of be
denoted by . Both datasets have different resolutions, such
that one pixel of encompasses several pixels of
. Examples of both images are given in Fig. 7(B) and (C).
While the spatial correlation is obvious, the links between both
information must be modelled carefully. As the uncertainty
exists about the information of which can be fused into , a
statistical model is employed.
It is well admitted that the BU spatial density increases with

the density of people. Also, the BU density reaches a saturation
after that the population density exceeds a break point. Indeed,
the human settlements grow vertically after having filled the
earth surface to accommodate more and more people. This ob-
servation led to a model between the BU density bounded
by and the density of population in a cell :

where determines the population density breakdown point.
The breakdown point depends from the world location, but
it can be inferred from the observations and in the specific
scene under processing.
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Fig. 7. Learning the best HR PANTEX rescaling from low-resolution refer-
ences. (A) input image, (B) PANTEX feature at DFID 10m resolution, (C) popu-
lation LandScan data 1Km resolution, (D)MODISUrban data 500m resolution,
(E) PANTEX rescaled according to LandScan (param.set 142), (F) PANTEX
rescaled using MODIS500 reference (param.set 146).

By analyzing the formation of the PANTEX measurement, a
statistical model of the realizations of is selected. Assuming
that the input image grey levels follow an identical Gaussian
distribution, and assuming a given displacement vector linking
pairs of input image pixels, the differences (contrast) between
the pairs of pixel values follows also a Gaussian distribution.
The GLCM contrast textural measurement processed in the
PANTEX feature is described in the Section VII-A. It is a linear
combination of the squared local differences, such that it follows
a -distribution or more generally a Gamma distribution.
Finally, the PANTEX is a nonlinear merge of those measure-
ments but does not allow for a close distribution form. Experi-
mentally, the PANTEX values distribution is well approximated
by a Gamma distribution in pure BU or pure NBU areas. Thus,
the distribution of the PANTEX values can be modelled as a
mixture of Gamma distributions in an unknown environment:

,
where are the prior probabilities of BU and
NBU, is the PANTEX measure at location , and and

are the Gamma distribution parameters in the BU and
NBU areas.
The prior can be assimilated as a density of BU by as-

suming uniform spatial distribution of buildings inside the given
spatial unit under analysis, and it is approximated by . By
injecting, the information from the density of population, the
probability distribution of the pixels falling into is
structured as follows:

where the Gamma distribution parameters depends on the loca-
tion .
In summary, the joint probability of both observations and
is structured and parametrized in the following way:

(1)

where is the distribution of the density population
values which can be approximated by histogram. The param-
eters , , , of this model can be inferred by
Expectation Maximization [68]. No spatial constraints are
imposed in this model, while the data seem to be spatially
correlated. To gain in robustness, the multi-dimensional image
formed of the parameters , is low-pass filtered at
each iteration of the Expectation Maximization. This process
benefits from the context, giving higher confidence in the
estimates. While the parameters capture the link between
both data and , it also embeds crucial information for
classifying the pixels of into BU or NBU. In particular for
a pixel belonging to a cell , its classification is given by

.
Finally, this method allows to make use of an additional

source of information presented as a density of population in
order to derive location adaptive decision for detecting BU in
unknown environments. As the density of BU is not derived
from the observation only, the algorithm does not fall in
unwanted local maxima.
2) PANTEX Learning on MODIS500: In this study two op-

tions were tested using the MODIS500 ‘urban areas’ as refer-
ence. TheMODIS500was generated by automatic classification
of MODIS multispectral data using regression trees techniques
and dedicated models fitting with specific characteristics of the
different ecological regions [6]. The source has the main advan-
tage of being the most detailed and the most consistent global
information layer available today being produced from the same
sensor and the samemethodology.Moreover, somework on val-
idation of this source was also reported in [6]. Nevertheless, two
main drawbacks were expected in using this source for training
of the HR image descriptors used in this study: i) the resolution
of the sensor and the techniques used for image information ex-
traction would presumably underestimate the detection of scat-
tered and/or vegetated settlement patterns, introducing a bias in
favor of non-vegetated compact and large settlements, ii) during
the integration phase problems in the geo-coding of the source
were reported with estimated error greater than 2–3 times the
pixel size (1.5 kilometers) respect to the HR,VHR data avail-
able.
The options included in the ‘145’ and ‘146’ parameter sets

implemented two methods for learning from the MODIS500
source: respectively, ‘by area matching’ and ‘by ROC optimiza-
tion’. The option ‘by area matching’ minimizes the difference
between the total surface of the BU areas estimated in the refer-
ence and in the PANTEX-derived layers, by exploring a range
of thresholds in the PANTEX image features. The threshold in
this case is computed as follows:
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where denotes the cumulative sum of a 10-bin histogram
over the PANTEX values and

denotes the estimation of pixels that
may indicate NBU cells; the user-defined parameter is a factor
that expresses the expected inter-scale bias in detection of BU
areas originated by generalization issues. In the experiment this
parameter was set as . The option ‘by ROC optimiza-
tion’ instead selects the PANTEX threshold that minimizes
the Equal Error Rate (see Section IX-D) estimated in the ROC
analysis using the MODIS500 as reference. While the option
‘by area matching’ requires only spatial consistency at level of
scene, the option ‘by ROC optimization’ would theoretically
require spatial consistency at least greater than half of the refer-
ence pixel size, then 250 meters. In both cases the assumption
is that the majority of the information in the scene is correctly
represented by the reference layer; nevertheless, the method
is robust against large deviations of the reference, empirically
estimated in the order of 30% of variations admitted in the LR
reference data. Fig. 7(A), (B), (D), (F) show a sample of input
image at 2.5-m resolution, the image-derived PANTEX feature
aggregated at the DFID of 10 m resolution, the corresponding
MODIS500 data, and the PANTEX feature after the learning
on MODIS500.

C. Adaptive Learning on Morphological Image Features

The morphological characteristics of the image information
used in the workflow are formalized through the CSL model
storing in compact way multi-scale morphological image de-
composition.
The ‘C’ or characteristic layer of CSL includes the scale and

the (opening, closing) domain of morphological response [20].
In other words: it is stored here the best recognized estimation
of the size of the image structures and their behavior (brighter,
darker) respect to the relative background. It is a double scale-
space decomposition in respect to the original image and their
inverse. This layer is invariant to multiplicative and additive
transforms of the input image data, and then doesn’t require
learning and/or standardization steps also if used with non-cal-
ibrated heterogeneous image data input.
The ‘S’ or saliency layer of the CSL model instead reports

about the amount of contrast explained by the specific scale
transform collected by the characteristic layer. In other words,
it is the amount of confidence – based on the available contrast
between the image structure and their background – that can be
given to the specific scale inferred by the CSL model for this
given structure. From another point of view, this saliency can
be interpreted as a measure of the fitting of the image structures
respect to a specific image information query defined in by a
range of scales of the target structures. In this sense the saliency
plays an important role in driving the integration between mor-
phological descriptors and other image features for optimization
of the image information discrimination.
The ‘L’ or leveling layer of the CSL model was designed in

order to keep the radiometrical information of the image: in the
levelling it is stored the residual contrast of the image not ex-
plained by the range of scales included in the morphological
decomposition. By composition of the levelling and the other

two CSL layers, it is possible to reconstruct an approximation
of the original input image without having access to the whole
original multi-scale decomposition, then introducing a compres-
sion in the morphological multi-scale image features. Being the
levelling designed for exploitation of the radiometrical image
descriptors it is not used in this study where those descriptors
are not exploited for discrimination of BU/NBU areas. In this
workflow it is simply discharged
Being the saliency linked to the contrast of the image (as

the levelling not used here), it is obviously very sensitive to
multiplicative transforms of the input data and consequently
if calculated from non-calibrated heterogeneous image data
input, needs to be standardized before integration with the
other information layers. This is the role the adaptive learning
implemented in the workflow discussed here. Several options
are under study and available in IQ GHSL workflow parameter
sets, combining available reference layers at different scales
and extrapolating typical saliency behaviors in BU and NBU
reference areas. During this study those options were not
benchmarked and consequently they are not discussed here.
During this study, the adaptive learning of the saliency layer

was performed by observation of the average and standard devi-
ation values of the saliency in the AOI of the image defined by
the BU reference areas if they were available. If they were not
available, as typically in the case of the ‘discovery’ learning and
classification phase, as BU reference area it was used the one
inferred by the PANTEX adaptive learning. In this case an in-
ternal retro-action mechanism between textural and morpholog-
ical image information descriptors was established, while usu-
ally the approach taken here maintained two parallel indepen-
dent learning paths for the two descriptors.

D. Information Fusion

During this phase, the image descriptors standardized
during the learning phase are merged in order to produce the
final information layer. This is done accordingly with the
‘image information query’ defined by the user at the begin-
ning of the process. In the current experiment, three options
were implemented: i) intersection by closing, ii) intersection
by reconstruction, and iii) simple intersection. The ptx, slc
being the PANTEX and CSL saliency layers, respectively,
after the learning step optimizing the BU/NBU recognition
with a target resolution fitting the 1:10K GHSL specs, and

being the structuring element with a scale
corresponding to the spatial displacement admitted in the
GHSL technical specs for the local, regional and global scales,
respectively. The ‘intersection by closing’ is calculated as

, while the intersection by reconstruction
is calculated as . The simple
intersection option is given by point-wise . In the
results discussed here this option is not benchmarked and only
the ‘intersection by closing’ was selected after some tests using
the input scenes where visual reference data was available. In
these tests, this option provided the best compromise between
omission and commission error rates generated by, respectively,
the ‘simple intersection’ and ‘intersection by reconstruction’
options.
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E. Multi-Scale Generalization Protocol

The multi-scale generalization protocol is used by the IQ
system in order to manage the trade-off between the precision
and the computational cost of the multi-scale information rep-
resentation, from local to global spatial units. While the most
accurate way to summarize from local to global scales is often
an aggregation based on local statistics (mean, stdev), this may
have a prohibitive computational cost if applied to global high-
resolution datasets served using standard WMS/TMS technolo-
gies and protocols. This fact may force to pre-calculate and store
all possible image information extraction outputs before the user
query, then reducing dramatically the system interactivity and
increasing drastically the required information storage volume.
In order to mitigate these issues, in this prototype the output
geo-information at the local scale is prepared already at dif-
ferent successive generalization scales compacted in the same
layer by the means of the multi-scale generalization protocol.
In this way, this compact layer can be spatially queried at dif-
ferent scales, by using fast computational resampling algorithms
as for example the ‘nearest-neighbor’ algorithm. This will pro-
vide a fast approximation of more computationally expensive
and more precise aggregation options.
In Fig. 8 we show a sub-sample of the city of Sanaa, Yemen,

used to test the generalization and multi-scale composition op-
tions discusses here. In Fig. 9, we show the effect in the global
representation of the different generalization and multi-scale
composition options. (Fig. 9(a)) the ‘best’ representation of the
city of Sanaa, by aggregating building footprints from local to
global scale using local average operator. (Fig. 9(b)) The same
city as represented in the global scale by using nearest-neighbor
resampling of the building footprints at scale 1:10K. Note how
information is degraded especially in the small and scat-
tered BU structures and urban fringes. (Fig. 9(c)–(e)) show
the same global-scale representation of Sanaa, generated by
nearest-neighbor resampling of the building footprints pro-
cessed with the proposed multi-scale generalization protocol.
Note how these representations better match the ‘reference’
one made by local average (Fig. 9(a)), while using much faster
spatial resampling techniques.
Let the be the result of the image information

query with a target resolution fitting the 1:10K GHSL specs,
and let be the structuring element with a
scale corresponding to the spatial displacement admitted in the
GHSL technical specs for the local, regional and global scales,
respectively.
Three options are implemented in the IQ system for handling

spatial generalization i) by dilation, ii) by closing, and iii) by
hybrid approach.
They are formalized as follows:
• by dilation:

• by closing:

• by hybrid approach:

In the current experiment, only the hybrid approach was
tested providing a compromise optimizing the target scale of
1:50K that was the focus of the test. Because of the needs of
compression of the output mosaic and simplification of the
WMS infrastructure delivering the final information during the
prototypal design, the three GHSL scales are fused in only one
layer. The fusion is performed by the summing of the three
scales so that .

IX. QUALITY CONTROL AND VALIDATION

In this section we describe the techniques applied for quality
control (QC) and validation during the experiment. As gen-
eral rule, QC of any given information layer should be done
by systematic comparison against the same information pro-
vided by an independent source of equal or better characteris-
tics respect to the information under test. For geo-information
this means equal or better scale detail and equal or better the-
matic reliability, the two aspects being interlinked by the gen-
eralization issues. For the information discussed in this paper,
this would mean the access to a hypothetical global topographic
source having 1:50K or more detailed scale and validated the-
matic contents compatible with the information under test. We
recall here that GHSL thematic specifications require the de-
tection of single, even if isolated BU structures. At the time
of the running of the experiment, no such source was avail-
able for different reasons including license and confidentiality
issues, and technical issues mostly related to completeness and
semantic consistency of the reference information with respect
to the GHSL. This is typically the case of OSM sources that
were evaluated and rejected at the time of the experiment de-
sign. On the other side, a standard sampling approach exploiting
a pure visual interpretation validation schema would face the
following difficulties in the discussed operational conditions:
i) large number of samples to be collected and unacceptable esti-
mated time cost (several person years), ii) largely unknown uni-
verse (fine-scale settlement patterns) to be stratified at the scale
under analysis, including the combination of all the collection
parameters (sensor, season, geographical place) potentially in-
fluencing the final output.

A. Validation Strategy

The strategy designed for solving the GHSL validation is
based on active linking of two different measurement sets,
namely: accuracy measures using visually collected reference
samples, and ii) consistency measures using LR global reference
sets. The strategy is inspired to the artificial intelligence ‘active
learning’ approach also called ‘optimal experimental design’ in
the statistic literature, translated to the global multi-scene eval-
uation case [69]. In particular, an iterative process exploiting
inter-scale information systematic comparison is established
in order to maximize the impact of a minimized number of
visually labelled samples. The process is summarized next:
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• : initialization
1) collection of a fist arbitrary set of visual reference
data with the correct scale and semantic,

2) collection of complete and consistent broader
scale global reference data having similar semantic,

3) ranking of the best -derived agreement measure-
ments using as reference

4) Asses over the whole universe under
study and rank agreement and anomalies

• : first release
1) collection of visual reference data with the correct
scale and semantic in the extreme disagreement area of

2) improve by integration of labelled sam-
ples

3) Asses over the whole universe under
study and rank agreement and anomalies

• : th release
1) collection of visual reference data with the cor-
rect scale and semantic in the extreme disagreement
area of

2) improve by integration of la-
belled samples

3) assess over the whole universe under
study and rank agreement and anomalies

Assuming similar thematic contents and globally consistent
behavior of the broad scale reference data, the expectation is
that the low agreement areas are the most interesting for op-
timization of the visual labelling activities. In these areas we
concentrate both the errors of the information under test and
the errors or generalization effects of the broad scale reference
data. Integrating the samples visually labelled at the iteration
in the global reference data used at each iteration , would
step-wise increase the overall reliability of the reference data
and then the overall reliability of the derived quality measure-
ments. Moreover, this mechanism will decrease the probability
to select the same areas as priority to be visually analyses.
At the time of the experiment reported here, only the initial

iteration of the validation process was implemented and it is
consequently reported in this paper.

B. Visual Reference Data

During the study the accuracy measurements are derived ex-
clusively from comparison of the GHSL output with visually in-
terpreted samples using HR/VHR input data sources. The visual
reference data collection was done by implementation of the
GHSL 50K dichotomic validation protocol [70] that includes
the following steps: i) collection of spatial samples by a random
systematic grid procedure and ii) interpretation of each sample
by visual inspection of the corresponding part of image. The
adopted sampling approach uses an absolute origin in the global
projection, and then applies a systematic grid step that in this
case is equal to one kilometer. For each sampling grid step,
a cell with a fixed size is selected that in this case was equal
to 200 200 meters. Each sample cell is subdivided in 4 4
sub-samples with the size of 50 50 meters, fitting the size and
location of the GHSL 50K ‘regional’ spatial units. Given the

adopted dichotomic protocol, the interpreter was asked to check
if the specific sub-sample was intersecting a visible building
in the image with four possible coded answers : yes, no, I’m
not sure, and no data available. Only the simple yes–no an-
swers were used in this study, and only images with 2.5 meter
input resolution or better were considered suitable candidate for
this validation protocol. Cross-comparisons of parallel valida-
tion campaigns done by different operators on the same set of
images were used in order to control the consistency and relia-
bility of the human interpretation task.
For this experiment, approximately 95,000 built-up (BU)

and 700,000 not-built-up (NBU) samples were visually col-
lected using the adopted protocol. The samples were collected
mainly from 2.5-m-resolution, pan-sharpened SPOT 5 and
0.5-m-resolution aerial RGB imagery. The total ground surface
processed employing this visual interpretation protocol was
over 700,000 km .

C. Global Reference Data

The global reference data set (BUREF) is used for ranking
of the GHSL output alternatives and for optimization of a
given user-defined function, that in this case maximize con-
sistency between GHSL outputs and LR reference data. After
the evaluation of several potential alternatives, the BUREF
has been built by the combination of the MODIS 500 Urban
Land Cover (MODIS500) and the LandScan 2010 layers. In
particular, the BUREF used in this experiment was derived
from LandScan population layer 2010 by rescaling it between
[min, max] thresholds expressing the amount of population
for NBU and BU areas, respectively. The model assumes an
increasing positive relation between the probability to be BU
and the number of people living in a given area. In order to
estimate these thresholds, MODIS500 was used as training
set discriminating between urban and not-urban subsets in
the LandScan data. The [min, max] parameters are estimated
locally with a sliding window size of 500 kilometers. In order
to increase spatial consistency of the model, an overlapping
parameter of 50% in the sliding window size was applied.

D. Quality Measurements

In this study, the same quality metrics are used for accuracy
analysis and for global consistency checking, by changing the
reference data used. In particular, accuracy analysis is done by
application of the quality metrics using visually collected sam-
ples as reference, while global consistency is measured using
BUREF as reference. Given continuous measurements and
their respective classes , their classification
power is best captured by the Receiver Operational Character-
istics (ROC) [71], which represents the probabilities of missed
detection and false alarm for various classification thresholds:

(2)

(3)
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Fig. 8. Test of the generalization and multi-scale composition options in the city of Sanaa, Yemen. From left to right: i) in white building footprints at 1:10K
scale, generalization by ii) dilation, iii) closing, and iv) hybrid approach. White, pink, and green show, respectively, the contribution of the ‘local’, ‘regional’, and
‘global’ scales to the final GHSL product.

The ROC curve is the parametric function
, which is a convex. In order

to compare two types of measurement producing two ROC
curves, the metrics of the Area Under the Curve (AUC), the
Equal Error Rate (EER), and the Minimal Error Rate (MER)
are proposed and can be interpreted as quality statistic:

(4)

(5)

(6)

The smaller these quality metrics are, the better is the classifica-
tion or discrimination performance of the type of measurement.
After the evaluation of several alternatives by regression

analysis, the Minimal Error Rate (MER) measurement using
BUREF as reference was the one best approximating the agree-
ment obtained using the available visual reference data [72].

Consequently, this was the measurement adopted for the global
evaluation of the GHSL output during the initialization phase
of the validation process reported in this paper.

X. RESULTS

In this section, we discuss the results of the proposed auto-
matic image information retrieval process respect to two basic
perspectives, namely i) accuracy measurements and ii) consis-
tency analysis. The first is supported by visual reference data
collection using HR/VHR image data input, while the second
is supported by global LR reference layers. The same GHSL
output discussed here has been evaluated also in other more spe-
cific tests not included in this paper. In particular, the GHSL
output of 628 SPOT satellite scenes covering the major urban
agglomerations in Europe was systematically compared with
the high resolution European Soil Sealing Layer produced by
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Fig. 9. Test of the effect in the global representation of the different generalization and multi-scale composition options of the GHSL outputs in the city of Sanaa,
Yemen. From left to right: 1) building footprints from cadastral maps 1:10K aggregated to the global GHSL scale using local average; 2) the same using fast
‘nearest-neighbor’ resampling algorithm, 3) using ‘by dilation’, 4) ‘by opening’ and 5) ‘hybrid’ generalization options and also fast ‘nearest-neighbor’ resampling
algorithm.

the European Environment Agency18. The test provided an av-
erage 90.8% 3.9 of average agreement rate between the two
sources [73]. In Brazil, a stratified random sampling procedure
and visual reference data collection was applied to evaluate the
GHSL output of more than 3000 input CBERS scenes [74].
The assessment provided an average agreement rate of 94% 6.
Finally, a systematic comparison between the GHSL output of
2288 input CBERS scenes and the land cover of China derived
from Landsat data was performed [75]. This test provided an
average 98.13% 5.6 of agreement rate in the best of the bench-
marked parameter sets.
Fig. 10 demonstrates a typical example of the type of infor-

mation extracted from remote-sensing images in this experi-
ment. The same scene is identified in two other available global
sources that are used as a reference for visual comparison. The
top-left image shows the “presence of buildings” layer of the
GHSL over the city of Brasilia. It is produced from image data
by the CBERS 2B sensor and the output image is shown at a
1:50K “regional” scale specification. Pixel brightness is propor-
tional to the percentage of BU presence in the specific spatial
units. Dark-green polygonal contours correspond to the foot-
prints of satellite scenes that were used to make up the final
mosaic. The final result for each spatial unit is made of the
“best” information extracted from all the available processed
scenes. The top-right image shows a zoom into the central re-
gion of the same city. The image shows the “average building
size” GHSL information layer at a 1:10K “local” scale specifica-
tion. Color-coding follows the blue-green-yellow-red order on
increasing size of the BU structures. The bottom-left and right
images show the same city represented in the MODIS500 and
BUREF reference layers respectively, at the 1:50K “regional”
scale specifications.
Comparing the output of the GHSL produced from HR image

data against the other two low resolution layers, a noticeable

18EEA Fast Track Service Precursor on Land Monitoring – Degree of soil
sealing 100 m URL: http://www.eea.europa.eu/data-and-maps/data/eea-fast-
track-service-precursor-on-land-monitoring-degree-of-soil-sealing-100m-1

TABLE V
ERROR RATES (EER AND MER) FOR THE GHSL OUTPUT (BUFINAL) AND THE

VISUAL REFERENCE DATA FOR EACH PARAMETER SET.

gain is observed with respect to the detail of the extracted in-
formation. Moreover, the quality of the GHSL scenes offers
the option of addressing the internal characterization of BU
areas by automatic analysis of the morphological characteristics
of the BU structures. Recognition and characterization of BU
structures is evidently not possible using low-resolution input
images.

A. Accuracy Analysis

The accuracy of the GHSL output produced during the exper-
iment was estimated by using a total of approximately 95,000
and 700,000 samples of BU and NBU classes, respectively, col-
lected by visual interpretation of HR/VHR input images. The
collection of these samples was following a random systematic
grid approach as defined in the GHSL reference data collection
protocol (see Section IX-B). The results of this analysis are pre-
sented in Table V. The first rows describe the surface and the
number of available reference data sets. Due to some failure in
the processing of specific parameter sets in specific scenes, there
is a difference on the number of samples per set. The error rates
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Fig. 10. City of Brasilia. top-left: the “presence of buildings” GHSL layer represented at 1:50K scale with the footprints of input scenes (CBERS 2B) in dark-
green; top-right: a zoom into the city center. The image shows the “average building size” GHSL layer at 1:10K scale. Increasing BU size is mapped on the
blue-green-yellow-red color map; bottom-left and right: the same city represented by the MODIS500 urban layer and BUREF respectively.

are listed with respect to three different parameter sets bench-
marked during this study: namely 142, 145, and 146. Each re-
lates to a set of options activated in the learning and classifica-
tion steps as described in Section VIII.
The adopted validation protocol show an estimated EER

and MER of the final GHSL built-up layer of approximately

17% and 9% respectively. This corresponds to a total accuracy
of more than 90%, i.e., (1-MER). All three learning-and-clas-
sification options evaluated using the proposed protocol ap-
pear to be consistent and have only minor differences in per-
formance. Option 142 ranks best with respect to the EER
metric (17.26%), and option 145 performs best with respect



2124 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 6, NO. 5, OCTOBER 2013

TABLE VI
ERROR RATES (EER AND MER) FOR THE GHSL OUTPUT (BUFINAL) AND THE

GLOBAL REFERENCE DATA FOR EACH PARAMETER SET

to the MER metric (8.57%). Option 146 has the lowest rank in
both metrics.
In order to allow an assessment of the feasibility to use the

global reference layers for the quality assessment, the two
quality metrics were also computed for the MODIS500 and the
BUREF data sets taking into account only the areas, where also
visual reference information is available for the same satellite
input imagery and using the same visual validation protocol.
The results are listed in Table VI.
Despite minor differences that are being investigated further,

two main observations are made: i) the quality metrics com-
puted using the visual protocol and using the low-resolution ref-
erence layers appear to be substantially consistent and ii) there
is an almost systematic overestimation of the average error in
both error metrics using the low-resolution references, if com-
pared against the corresponding metrics using the visual refer-
ences, which we assume to be more reliable than the low-resolu-
tion reference. The first observation supports the use of global,
low-resolution reference layers for an automatic evaluation and
ranking of the automatic image information extraction output.
This is backed by obtaining almost the same ranking, if bench-
marking the three learning-and-classification options on low-
resolution reference layers, or if using the much more expen-
sive visually collected reference data.
The second observation refers to a general issue when using

LR reference layers for evaluating HR classification outputs.
Any disagreement measure between HR and LR reference set
always integrates two components, namely: i) error issues in
both sources and ii) scale and generalization issues. This second
type of mismatch can be deemed ‘added value’ of the HR, VHR
automatic recognition procedure with respect to the available
LR information layers.
The above observations lead to two different findings: i) a

positive one that stems from the fact that we can expect a very
conservative assessment of the global GHSL output quality
using agreement measures respect to LR reference data, and
ii) a negative one that can be linked to the risk of discarding
GHSL outputs showing low agreement metrics, but in fact

TABLE VII
AVERAGE BUREF AGREEMENT BY SENSOR

providing a dominant ‘added value’ with respect to the LR
references. In the ‘discovery’ phase of the learning and clas-
sification processing chain we try to mitigate this risk in the
cases where LR references show clearly unreliable behavior;
typically in cases of low-density scattered settlements, which
cannot be detected with LR sensors such as MODIS. In any
case, it is expected that the GHSL general validation strategy
(see Section IX-A) would step-wise contribute to separate
these two kinds of disagreement and consequently increase the
overall reliability of the GHSL quality control procedure.

B. Global Consistency Statistics

Tables VII–IX show the estimated average consistency of the
whole GHSL output produced during the experiment using the
MER measure and the 1-km-resolution BUREF layer as refer-
ence. This is the quality metric that showed the best matching
with the visual validation protocol figures [72]. The tables show
the analysis of the results ordered by the type of sensor, by band,
and by sensor resolution, respectively. The agreement metric
reported in these tables is defined as the inverse of the error
metric: . In all three tables the
results are listed by decreasing values of the metric; best
ranks appear at the top of each list. Both average and standard
deviation (stdev) of the metric are shown. All values of
the metric presented in these tables represent the average
computed between all the available adaptive learning-classifi-
cation options (3).
1) Agreement by Input Sensor: The analysis of the results by

sensor (Table VII) shows a cluster of sensors providing good
BUREF fitting performances with . These include
RapidEye 1 and 5, Aerial, CBERS-2B and SPOT 5. A medium-
performance cluster of sensors with between 85% and
90% includes the SPOT 2, Ikonos 2, and RapidEye 2 sensors.
A lower performing cluster of sensors, i.e., with between
80% and 85%, includes the WorldView 1 and 2, QuickBird 2,
and GeoEye 1 sensors. Table VII allows for an interesting obser-
vation. In the cluster of good-performing sensors, if VHR aerial
image data are excluded all the rest come from traditional HR
platforms such as CBERS and SPOT if compared against the
more recent VHR platforms such as WorldView and GeoEye.
Aerial image data was processed at 0.5m resolution and because
of this, resolution cannot explain sufficiently the low ranking of
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TABLE VIII
AVERAGE BUREF AGREEMENT BY IMAGING TYPE AND BAND

TABLE IX
AVERAGE BUREF AGREEMENT BY CLASS OF RESOLUTION

the new VHR satellite platforms. Evidently the proposed work-
flow for automatic image information retrieval is influenced by
other sensor characteristics than remain to be further investi-
gated for improving the overall performance.
2) Agreement by Input Bands: Analyzing the results with

respect to the estimated output divided by the different
bands used as input (Table VIII), three main clusters with
distinct behavior are observed: i) a top ranking cluster with

including the PAN and GREEN, RED and NIR
bands in pan-sharpening imaging mode (PSH); ii) a medium
ranking cluster with ranging from 85% to 90% that
includes all listed bands in multispectral imaging mode (MUL),
and iii) and a low-ranking cluster with ranging from
75% to 80% that includes all their bands in PSH mode. It is
interesting to note that except for the BLUE band all other
bands in the lowest ranking cluster are the new bands of the
WorldView-2 satellite. This behavior of the sensor needs to be
analyzed in more detail. Possible explanations could be linked
to the fact that there only a limited number of 20 scenes was
processed that might be influenced by other characteristics.
Another source of error might be linked to the pan-sharpening
of these new bands. Some algorithms are not providing good
results for this new band constellation.
3) Agreement by Input Spatial Resolution: The ranking of

the agreement obtained by different classes of input image
spatial resolution (Table IX) shows a top performance of the
class C ranging from 1 to 2.5 m spatial resolution with

equal to 92.9% 8.8%. Class C consists of SPOT 5 and CBERS
2B data and all the multispectral data from the VHR sensors.
The second best is class E with spatial resolution ranging from
5 to 10 m and achieving 92.13% 8.12%. Class E con-
sists of SPOT 1,2 data and multispectral SPOT 5 and RapidEye
data. Interestingly, the worst ranking achieved according to the
metric, is class A containing all VHR data, i.e., with image

resolution of 0.5 m or better. Fine-level of details seems to de-
crease of the signal/noise ratio that can be observed. The re-
liability of the GHSL automatic image information extraction
workflow under test is maximized for resolutions in the range
of 1 to 2.5 m and based on this observation future releases of the
workflow will be configured with a standard resolution of input
imagery to approximately 2.5 m before any feature extraction.
4) Agreement by Eco-Regions: It can be assumed that sim-

ilar landscapes including color and pattern of the specific land
covers, may introduce similarities in the behavior of any given
automatic image information recognition strategy, i.e., they can
introduce a dominant characteristic of the background of the
image, but they can also probably contribute in the explanation
of the specific materials and patterns used to make human set-
tlements. Consequently, it is of interest to test the robustness
of a specific global automatic image information retrieval task,
against bias introduced by dominant landscape patterns avail-
able at a local scale. On the other side, under given constraints
it could be possible to extrapolate the performances of a given
automatic image information extraction task to images repre-
senting the same landscape.
Fig. 11 shows the average obtained by the current IQ

GHSL workflow after extrapolation to the WWF eco-regions.
According to this analysis, Brazil, Europe and China are well
placed in the high confidence area with 80% together
with large parts of the Sub-Saharan and Southern Africa.
Middle East, Sahara and North African areas apparently show

systematic problems with the current image information extrac-
tion strategy, producing average in the range 70% to 80%.
One of the known reasons behind these poor performances is
the presence of scattered vegetation and very bright soil back-
ground thatmight create false alarms in the textural image feature
and/or miss detection in themorphological image query. Similar
issues were already addressed in the same areas by a method ap-
plyingmorphologicalfilteringbefore the image textural analysis.
It demonstrated a drastic increase of the performance of the auto-
matic recognition of BU structures in arid areas having as back-
ground bright soil and scattered vegetation [76]. This method
was not implemented in the current workflow. The latter is fo-
cused more on general-purpose processes of morphological and
textural features, without chaining them deductively prior to the
learning phase. It is expected however that such type of observa-
tionscan lead to“regionally-adaptive” image informationextrac-
tion workflows taking into consideration the local and regional
landscape and background conditions for each scene to be pro-
cessed.This is currently under investigation.
Red regions in Fig. 11 correspond to major inconsistencies

between the current GHSL outputs and the available reference
layers. Such outputs are rejected during the first iteration of the
IQ GHSL workflow and are ignored in the compilation of the
final GHSL mosaic. According to the general GHSL validation
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Fig. 11. Estimated BUREF Agreement of the current GHSL output by WWF
eco-region.

strategy (Section IX-A) these areas will be included as priority
for the next run of the visual reference data collection campaign
and then integrated accordingly with the validation results.

C. Discovery of New Information

A total of 2895 CBERS 2B satellite scenes accounting for
3.19 E + 06 km of ground surface where selected for testing the
“discovery” modes of the IQ GHSL learning and classification
workflow. For this set of scenes all adaptive learning methods
failed in areas of unavailable reference information on the pres-
ence of BU areas. That is because most of these scenes are cover
remote rural areas away from towns or cities. In the first itera-
tion of the IQ workflow the BUREF layer consisted of a com-
bination of low-resolution globally available layers (LandScan,
MODIS500) in which low density rural areas are poorly repre-
sented. During the “meta-learning” phase, the statistical distri-
butions of the best thresholds on image features were analyzed
in the satellite scenes where the adaptive learning phase was
providing high reliability. The satellite scenes chosen for the
“meta-learning” phase where selected by a query listing all the
CBERS 2B scenes where at least 20% of surface was under-
stood as BU in the available BUREF, and producing an output
with BUREF MER less than 10%. The thresholds learned from
this phase were then applied blindly to the satellite scenes suit-
able for the “discovery” phase.
The sum of the new BU surface discovered in the HR input

images during this phase was estimated as 1.00 E + 05 km . This
was with an average and Stdev fitting of 98.57% and 2.42%with
respect to the BUREF respectively. Fitting was measured as the
inverse of the MER using BUREF as reference.

D. Mosaic Quality Assessment

According to the general approach applied in this experi-
ment, the output of the image information extraction task is
the mosaic of all the DFID cells ranked by the cost function
or ‘query’ defined by the user (Section III-B). In this schema,
multiple input image data may contribute to the same DFID
cell: this is because different data collections may be avail-
able coming from different combinations of platform/sensor,
date, and pre-processing parameters. Moreover, with the work-
flow applied here several output alternatives may be generated
for each input scene according the number of bands and the

Fig. 12. Ranking of all the scenes processed during the experiment by
increasing agreement optimized among all the processed options
(band, learning parameters) available on the same scene. This is the process
implemented for the composition of the final GHSL mosaic, taking the best
of the available processed pieces of information. The blue dots represent the
worst agreement available on the same corresponding scenes.

number of parameter sets benchmarked during the experiment
(see Section V-D). All these output alternatives are evaluated ac-
cordingly to a global cost function expressing the general objec-
tive of the experiment. In this case, the general objective being
the test of the capacity to generate globally consistent infor-
mation layers from heterogeneous HR/VHR input data, a cost
function maximizing the global consistency was implemented.
In particular, the disagreement of the GHSL output respect to
the BUREF was adopted for this purpose during the experiment
(see Section IX). For each DFID cell of each output option the
global cost function is evaluated, all the cell-options belonging
to the same place are ranked and only the best one minimizing
the cost function is retained.
Fig. 12 shows a simulation of the effect of this mechanism in

the data processed during the experiment. All the input images
processed during the study are represented with two dots red
and blue, showing respectively the best and the worst scoring of
all the available output options, according to the adopted global
cost function. In the Fig. 12 they are ranked from left to right
by increasing cost of the best option. The spread and density
of the blue dots below the optimized red line shows the deci-
sion space explored by the system during the composition of
the final image information layer. Thanks to this optimization
mechanism, the final mosaic is expected to have a rejection of
10% of the mapped surface, selecting 90% as the min-
imal quality threshold.

XI. CONCLUSIONS

A. Summary of the Results

A proof-of-concept of the possibility to build a new Global
Human Settlement Layer (GHSL) derived from HR and VHR
optical remotely-sensed data was presented. The test involved
24.3 millions of square kilometers of test areas spread in four
continents, automatically mapped with the image data collected
by a variety of optical satellite and airborne sensors with a
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spatial resolution ranging from 0.5 to 10 m. In this mapped area
the total number of people living in 2010 was estimated to be
1,268,448,973 (LandScan). It is the largest known test of auto-
matic image classification involving such kind of image input.
Several imaging modes were tested including panchromatic,
multispectral and pan-sharpened images. A new multi-scale
framework was introduced, integrating the automatic image
information retrieval with global available geo-information
layers derived from other satellite sensors or GIS modelling.
For the first time was demonstrated the capacity of automatic
information extraction from remotely sensed data at detailed
scale in global realistic scenarios, and the capacity to control
the global consistency of the output both spatially and themati-
cally. The robustness of the adopted image features was tested
globally with a high variety of input data quality including
extremely challenging “worst-case” scenarios. New multi-scale
morphological and textural image feature compression and
optimization methods were introduced, together with new
learning and classification techniques allowing the processing
of HR, VHR image data using low-resolution reference data.
The validation of the automatic results by a visual inspection

protocol provided an accuracy rate of more than 90%. These
results are consistent with other independent validation cam-
paigns testing the same classification output with comprehen-
sive reference data available in Europe [73], Brazil [74], and
China [75]. The average agreement between the automatic high-
resolution output generated by the experiment and the avail-
able low-resolution representation of the urban areas was es-
timated at 91.5%. Because of the comprehensive and system-
atic approach of the experiment, a comparative study across
HR/VHR sensors, bands and across different geographic areas
can be made using precisely the same image information ex-
traction methodology and a consistent global reference layer.
The observation of the anomalies in the global agreement ratio
will focus the attention on specific sensors and specific geo-
graphical areas for further analysis, validation campaigns and
methodological improvements.

B. Critical Points

Twomain critical points where highlighted during the experi-
ment, namely: i) the incapacity to exploit radiometrical descrip-
tors – in particular band radios – as input of the classification
process, and ii) the general structure of the processing flow, that
was largely based on the ‘scene’ data granularity.
It is already known by several internal tests that the inclu-

sion of radiometric image descriptors in the adopted classifica-
tion process would increase the overall reliability of the auto-
matic image information retrieval. In particular, the inclusion
of a vegetation presence index made by band ratios would dis-
criminate image structures falling in the textural and morpho-
logical criteria defined by the GHSL query, but not belonging to
built-up structures. Typical examples could be small (less than
50-m wide) quadrangular agricultural fields showing vegetated
cover: these targets are most probably contributing to the com-
mission error of the GHSL release discussed here.
Some additional drawbacks were identified and can be related

to the adopted ‘per scene’ processing flow structure. In partic-
ular, problems are related to the large heterogeneity in ‘size’ of

the scenes processed during the experiment. They were largely
different both as geographical surface covered and as number of
available image elements (pixels) and bands. This fact created
potential instability in the learning and classification processes
using the LR reference data and sub-optimal I/O performances
and memory setting in the processing units. It is worth noting
that more than 80% of the computational cost of the experiment
was estimated as belonging to I/O operations between RAM and
disk storage. Consequently the experiment highlighted that I/O
operations are of foremost importance and need to be more op-
timized.

C. Next Steps

Next steps include the mitigation measures of the critical
points listed above and the design of more refined experimental
and benchmarking sets. In particular, it will be evaluated the
possibility to extend the multi-scale DFID paradigm designed
for learning and classification purposes to radiometric calibra-
tion purposes. This will take place in the frame of the input data
scenarios discussed in the present experiment. The plan of next
experimental and benchmarking activities includes i) sensitivity
analysis of the GHSL inferential model against some key pa-
rameters as input image resolution and image collection param-
eters (sun, sensor geometry) and different learning reference set
ii) testing with suitable reference data the automatic character-
ization of the settlement components as number and average
size of buildings that were not evaluated in the current exper-
iment, iii) testing automatic change detection techniques able
to release global consistent multi-scale outputs, and iv) testing
of new spatial generalization techniques able to summarize the
different fine-scale human settlement patterns at the global and
continental level.
Furthermore, it is expected to extend the standard GHSL pro-

cessing to a wider range of input image data including i) a
wall-to-wall complete European coverage of SPOT data 2012
through the GMES instrument, ii) enlargement of the available
areas mapped with CBERS data in Brazil and China, and iii) ac-
tivation of a process-on-demand mechanism allowing generic
users to process suitable geo-coded image data using the IQ
GHSL workflow. Finally, the integration of the GHSL with geo-
spatial information extracted from other satellite platforms and
active/passive sensors will be studied in the frame of cross-plat-
form synergy.
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