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ABSTRACT 
 
In order to assess and quantify earthquake risk over large spatial extents on a global or regional scale 
spatial data localizing human assets is on strong demand. However, due to the large-scale extent of 
human activities on our planet, the scientific community has been lacking tools and methodologies to 
capture the entity of elements at risk, especially with enhanced thematic and geometric detail on global 
scale. First generation of global land cover datasets and maps of urban extent produced since the 
millenium relied on coarse resolution satellite sensors such as MODIS or DMSP-OLS. Despite the 
availability of finer scale imagery no other product of global coverage has been made available until 
today. However, global human exposure mapping from remote sensing is now entering a new era and 
new products currently in the making such as the Global Urban Footprint and the Global Human 
Settlement Layer will deliver spatial information on human settlements at unprecedented spatial 
resolutions. Once available on a global scale, these layers will improve significantly the knowledge 
base for the localization of human assets with regard to georisks. This work reviews past mapping 
products of coarse geometric resolution and further presents first validation efforts of the two new 
layers based on standard accuracy measures with regard to a geometrically and thematically highly 
resolved building reference. This first assessment reveals that the high resolution settlement layers 
produce comparable outputs that are capable of mapping even smaller settlements in low-density rural 
areas although significant over-classification due to the specific characteristics of each classifier is 
obvious. To gain a deeper understanding of these layers further validations efforts using pattern-based 
regression analysis and measures of inter-map agreement are currently underway.  
 
  
INTRODUCTION 
 
A definition that is exhaustively used for the term exposure in the earthquake risk community 
describes elements at risk, which are understood as objects potentially adversely affected such as 
people, properties, infrastructure or economic activities (Geiß & Taubenböck, 2012). Thus, the 
determination of potential losses from damaging events within the context of state-of-the-art seismic 
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risk models such as HAZUS (FEMA, 2010), OpenQuake (GEM, 2011) or RiskScape (RiskScape, 
2012) is supported by combining hazard parameters but also quantified and characterized exposed 
elements and their assessed vulnerability. Despite the fuzzy definition of the term exposure, it is clear 
that it is of crucial importance for a comprehensive understanding of risk and presents an essential 
component for a comprehensive vulnerability assessment.  
Remote sensing for vulnerability-centred investigations is a less long established field of research 
compared to hazard analysis and most of the past studies either only deal with the overall evaluation of 
the capabilities of remote sensing (e.g. Taubenböck et al., 2008) or explicitly address individual 
vulnerability components (e.g. Mueller et al., 2006). However, in recent years, valuable research has 
been carried out contributing to different vulnerability aspects of geo-risks by the employment of 
remote sensing-based methods, concepts and data, especially focusing on the capturing, delineation 
and characterization of elements at risk in urban landscapes across various spatial scales.  
 
On the local scale, the potential of remote sensing particularly lies in the generation of spatially 
accurate building inventories for the detailed analysis of the building stock’s physical vulnerability 
(French & Muthukumar, 2006; Mueller et al., 2006; Taubenböck et al., 2009; Polli & Dell’Acqua, 
2011). For urban areas, mapping efforts specifically relate to the capturing of elements at risk of the 
built environment such as buildings and infrastructures. Vulnerability-related indicators have been 
derived in various earthquake-related studies and include building footprint, height, shape 
characteristics, roof materials, location, construction age and structure type (Geiß & Taubenböck, 
2012).  Especially last generation optical sensors featuring very high geometric resolutions are 
perceived as advantageous for operational applications, especially for small to medium scale urban 
areas (Deichmann et al., 2011). These data are found to be suitable to quantify and characterize the 
building stock based on manual image analysis methods, statistical enumeration of samples (Ehrlich et 
al. 2010) or automatic image information extraction methods (Sahar et al. 2010; Borzi et al. 2011). By 
the combination of optical sensors with digital elevation information from LIDAR seismic buildings 
vulnerability can be determined with high accuracies (Borfecchia et al., 2010) whereas the 
combination of optical and SAR data has proven useful for the retrieval of crucial physical parameters 
such as building footprint or height (Polli & Dell’Acqua, 2011). Beyond, medium to high resolution 
remote sensing data is suited to characterize homogeneous built-up areas. In this manner, Pittore and 
Wieland (2012) and Wieland et al. (2012) use this capability in combination with information from a 
ground-based omnidirectional imaging system to determine the physical vulnerability of the building 
inventory.  
 
Although local mapping efforts employing high resolution satellite data can be used to directly derive 
structural characteristics of buildings and their performance under earthquake stress, they lack the 
capabilities to capture the entity of elements at risk for large-scale urban areas as an essential input for 
a global to regional risk analysis and rapid loss estimation. On the regional and global scale, remote 
sensing derived geo-products are well suited to approximate the inventory of elements at risk in their 
spatial extent and abundance by mapping and modelling approaches of land cover or related spatial 
attributes such as night-time illumination (e.g., Elvidge et al., 2009) or fractions of impervious 
surfaces (e.g., Elvidge et al, 2007). Furthermore, these spatial information are commonly used as a 
basis for the disaggregation of demographic or socioeconomic variables (Eicher & Brewer, 2001; 
Mennis & Hultgren, 20006; Langford, 2007) and present a first localization of exposed assets in the 
context of sampling approaches.  From this, it becomes clear that global datasets present a valuable 
basis for the analysis of large-scale human exposures and a first approximation of their spatial 
distribution. On the global scale several efforts have been undertaken since the millennium to provide 
land cover / use maps with a particular focus on mapping urban areas and spatial representations of 
physical variables related to human exposure. These large-scale global products are especially 
important as they present the almost only data source for systematic risk analysis in data-poor 
countries. In this regard, various geospatial information layers and approaches to model and assess 
situation-specific physical and human exposure are presented by Aubrecht et al. (2012) and validated 
by Pottere and Schneider (2009) as well as Pottere et al. (2009). 
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This paper presents a review of past mapping efforts and products related to global exposure 
conducted in the context of EU FP7 Project SENSUM (Framework to integrate Space-based and in-
situ sENSing for dynamic vUlnerability and recovery Monitoring). For the review and exemplification 
of global exposure data a multi-source and multi-scale exposure database has been set-up to showcase 
the technical capabilities of the respective information layers including multi-category land cover 
datasets, global layers of urban extent and map representations of spatially continuous variables 
related to human exposure. The database covers the spatial extent of the city of Cologne, Germany. 
Information is given on the technical specifications of these products, the methodologies and input 
data employed for generation and previous validation efforts. In the following, first validation results 
from the accuracy assessment of two new layers of global urban extent, namely DLR’s Global Urban 
Footprint (GUF, Esch et al. 2013) and JRC’s Global Human Settlement Layer (GHSL, Pesaresi et al., 
2013) with regard to a large-scale and highly resolved building reference layer are presented.   

 
REVIEW OF GLOBAL EXPOSURE DATASETS 
 
Accurate and up-to-date global land cover data sets can provide a valuable first level approximation of 
human developed land prone to or affected by a possible natural hazards. In recent years, substantial 
advancement has been achieved in generating such multi-category land cover products on the global 
scale:   
 
The Global Land Cover 2000 (GLC) has been initiated by the European Commission’s Joint Research 
Center (JRC) (JRC, 2003). The database contains a detailed, regionally optimized land cover data base 
for each continent and a less thematically detailed global legend. The datasets are mainly derived from 
daily data from the VEGETATION sensor on-board SPOT-4. The land cover inventory covers a range 
of 22 thematic classes including one for artificial surfaces and associated areas at a geometric 
resolution of 30 arcseconds (ca. 1km). The map was derived applying a “regionally tuned” supervised 
classification method on combinations of multispectral and multi-temporal EO data (Bartholome & 
Belward, 2005). Due to its long-time existence the GLC product has been thoroughly tested in 
previous validation efforts. Mayoux et al. (2006) analyzed the classification accuracy using ground 
observations, previously generated land cover maps and high-resolution satellite imagery for stratified 
random sampling of reference datasets stating a global overall accuracy of 68.8 percent.  
 
GlobCover is a global land cover product that has been first published in 2005 and updated in 2009 
under the lead of the European Space Agency (ESA). With a spatial resolution of ca. 300m it provided 
the very first medium resolution global land cover in 2005 (ESA, 2010). Like GLC it features 22 
thematic land cover classes, one dedicated to artificial surfaces and associated areas defined as pixels 
having an urban area percentage of greater than 50 percent. GlobCover employs automated land cover 
classification by a sequential execution of regional stratification, spectral clustering, and rule-based 
class labelling using data from the Medium Resolution Imaging Spectrometer (MERIS) on-board 
ENVISAT. ESA (2011) has validated the GlobCover product by setting up a reference dataset of 
random points collected from various external information sources (e.g. Google Earth, Virtual Earth, 
Open StreetMap, SPOT-4 VEGETATION, etc.) and state an overall thematic accuracy of 70.7 
percent. Potere & Schneider (2009) determine even higher overall accuracies exceeding 96 percent for 
urban areas and a strong agreement with the GLC dataset by inter-map comparison.  
 
The MODIS Land Cover Type by the United States Geological Survey (USGS, 2013) is updated 
annually and contains five classification schemes based on data of the Moderate Resolution Imaging 
Spectrometer (MODIS) on-board the National Aeronautics and Space Administration’s (NOAA)Terra 
and Aqua satellites. Its primary legend established in the context of the International Geosphere 
Biosphere Programme (IGBP) identifies 17 land cover classes, one dedicated to urban and built-up 
areas. The data is provided at a geometric resolution of 15 arcseconds (ca. 500m) and has been derived 
based on a supervised decision-tree classification method using multispectral and thermal input data as 
well as ancillary such as Landsat or Geocover 2000 imagery for training and classification refinement. 
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Results from a cross-validation conducted by Friedl et al. (2010) indicate an overall thematic accuracy 
of 75 percent with a relatively wide range of class-specific accuracies.  
 

Table 1 Overview of global multi-category landcover datasets 
 Global Land 

Cover 
Globcover MODIS Land 

Cover 
Quicklook  

 
 

 

 

 

 

Spatial 
resolution 

1,000m 300m 500m 

Thematic 
resolution 

22 thematic classes 
(1 urban) 

22 thematic classes 
(1 urban) 

17 thematic classes 
(1 urban) 

Year 2000 2005 / 2009 2012 
Originator JRC ESA USGS 

 
On the regional and global scale, remote sensing can further be employed to map spatially continuous 
variables related to human exposure and thus, approximate the inventory of elements at risk in their 
spatial extent and abundance. Spatial attributes commonly related to human activities are for example 
night-time illumination and the degree of soil sealing or artificial surfaces  (Table 2): 
 
The Global Impervious Surface Area (IMPSA) presents the global distribution and density of 
impervious surfaces at a spatial resolution of 30 arcseconds (ca. 1km) (Elvidge et al., 2007).  For 
product generation, it mainly uses coarse resolution input data such as the DMSP-OLS Nighttime 
Lights time series from the reference years 2000 and 2001 as well as the LandScan 2004 gridded 
population database. Schneider and Potere (2009) thresholded IMPSA to determine urban extents and 
derived an absolute accuracy measures of 97.5% inlcuding low errors of commission and omission. In 
addition to that Elvidge et al. (2007) found a significant correlation between reference data of the 
United States and IMPSA, however, state a moderate over-classification in states of small but highly 
urbanized areas (urban hotpsots). 
 
The Operation Linescan Sensor (OLS) oboard the Defense Meteorological Satellite Program’s 
(DMSP) satellites records time series monitoring the intensity of stable lights of the earth’s surface and 
thus provides useful for measuring stable human settlements and spatiotemporal urbanization through 
this indicator (Elvidge et al., 2009). Since 1992, several nighttime light products have been derived, 
one of them being a global cloud-free coverage especially designed to detect changes of human 
emitted lighting and thus, spatiotemporal urbanization processes. Although featuring a coarse 
resolution of roughly 1 km the dataset has been widely employed in modelling the spatial distribution 
of population or human activity and has been used as input to many other global land cover products 
(Potere et al., 2009).  
 
LandScan is a commercial global population distribution dataset providing information in gridded 
format produced by the Oak Ridge National Laboratory (ORNL). It is today the highest resolution 
global population global database regarding spatial population distribution (ORNL, 2013) and data has 
been widely applied for modelling the spatial distribution of human assets at risk (Dobson et al., 
2000). At 30 arcseconds (ca. 1 km) LandScan maps the ambient population averaged over 24 hours. It 
uses high resolution EO imagery from sensors such as SPOT as well as various additional data sources 
such as EO derived land cover products, roads and populated places, digital terrain models (DTM), 
nighttime lights as well as national and subnational population statistics for disaggregation through a 
multivariate dasymetric modelling approach. To verify and validate the modelling approach Dobson et 
al. (2000) quantified the correspondence with highest resolution census counts for the South western 
United States (87.8 percent) and Israel (91 percent).  
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Table 2 Overview of global maps representing spatially continuous variables related to human 
exposure 

 Global 
Impervious 
Surface Area  

DMSP-OLS 
Nighttime Lights 
 

Landscan 

Quicklook  

 

 

 

 

 
Spatial 
resolution 

1.000m 1.000m 1.000m 

Thematic 
resolution 

Impervious 
Surface fraction  
(%) 
 

Intensity of stable 
lights (DN x 
percent 
frequency) 

Ambient human 
pupulation (count 
per gridcell - 24h 
avg.) 

Year 2000/2001 1992-2013 2010-2012 
Originator NOAA NOAA ORNL 

 
Although a clear and univocal delineation of urban areas is not trivial at a global scale due to 
significant variations of thematic definitions associated with this term (Taubenböck et al., 2012),  the 
goal of many global urban mapping efforts is the generation of current, consistent and seamless maps 
of urban, built-up and settled areas for the Earth’s land surface. In this regard, Potere and Schneider 
(2009) and Potere et al. (2009) give a thorough review of some of these maps of global urban extent 
listed in table 3.  
 
The Global Rural-Urban Mapping Project’s Urban Extent layer which was last updated in 1995 is a 
low resolution map elaborated by the Columbia University’s Socioeconomic Data and Applications 
Center (SEDAC) representing binary information on the existence of global / rural extents (SEDAC, 
2013). The product was derived using NOAA’s DMSP-OLS nighttime light product from the 
reference period1994 to 1995 to detect stable human settlements. Furthermore, ancillary data was 
provided by the Digital Chart of the World’s (DCW) populated places inventory for initial localization 
of human settlements at a scale of 1:1,000,000 (SEDAC, 2013). In addition to that, for areas of 
inadequate or limited electrical power sources the urban extents were extrapolated using a population-
area ratio. In their investigations, Potere and Schneider (2009) as well as Potere et al. (2009) compared 
GRUMP to Landsat derived reference maps of urban extent from 140 cities around the globe and 
found overall accuracies of 84 percent – the lowest for all datasets assessed – featuring very high 
errors of commission and low inter-map agreement to other global products. 
 
The global MODIS Urban Land Cover map was produced at the Center for Sustainability and the 
Global Environment (SAGE) at the University of Wisconsin-Madison (Schneider et al, 2009 & 2010). 
The higher-ranking goal of this project was to produce a seamless map of urban extent for the years 
2001 and 2002. In this context urban, areas are defined as places that are dominated by the built 
environment which include a mix of human-made surfaces and materials greater or equal to 50 percent 
of a pixel. For spatial derivation multispectral MODIS data of 500m geometric resolution were 
employed through a sequential execution of region-specific stratification of eco-regions, decision tree 
classification based on training data from manual interpretation, and posteriori exploitation of class 
membership functions for classification optimization (Schneider et al., 2010).  
Using the same reference maps as for GRUMP the dataset yields an overall per-pixel accuracy of 93 
percent (Kappa=0.65) (Schneider et al., 2010).  
 

In this context mapping global urban extent, the two currently developed global products promise to 
be a major leap forward regarding the derivation of high resolution and accurate reference data for 
human exposures on a global level. With the GUF and the GHSL both featuring a spatial resolution of  
≤ 12m these layers will provide consistent, up-to-date and geometrically detailed land cover 
information on unprecedented spatial detail in the near future. However, both layers are still in the 
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phase of testing and refinement. Thus, validation efforts and analysis on the absolute accuracies are 
currently investigated by DLR to to gain a stronger understanding of each map’s strength and 
weakness. 
 

Table 3 Overview of new and existing global maps of urban extent 
 Global Rural 

Urban Mapping 
Project  

MODIS Urban 
Land Cover 

Global Human 
Settlement Layer  

Global Urban 
Footprint (GUF) 

Quicklook  

 
 

 

 

 

 

 

 

Spatial 
resolution 

1.000m 500m 0.5-10m 12m 

Thematic 
resolution 

Urban / Non-
urban 

Urban / Non-
urban 

Urban / Non-
urban 

Urban / Non-
urban 

Year 1995 2001/2002 2011-2013 2011/2012 
Originator SEDAC SAGE JRC DLR 

 
 
STUDY SITE AND DATA 
 
The accuracy assessment of the GUF and GHSL focuses on a square area of 100 by 100 km2 covering 
diverse settlement patterns of urban and rural character in western Germany, including the city of 
Cologne, the metropolitan Ruhr area as well as the rural Sauerland region (Figure 1). The area of 
interest was further determined by the availability of optical imagery for GHSL generation as well as 
very high resolution synthetic aperture radar data for GUF production. Furthermore, for the 
determination of absolute accuracies, building footprints of more than 900,000 buildings were 
extracted as a reference layer from German topographical map (DTK 1:25,000).  
 
The GUF classification is based on radar satellite data from the German space missions TerraSAR-X 
(TSX) and TanDEM-X (TDX) which have collected two coverages of the entire land-mass for 2011 
and 2012. In this context, the German Aerospace Center (DLR) has developed a pixel-based 
classification approach aiming to globally extract urban and non-urban structures from the single-look 
radar imagery. The high resolution SAR imagery acquired in Stripmap mode used to map the GUF is 
processed by extracting texture information, which is suitable for highlighting regions characterized 
by highly structured and heterogeneous built-up areas. From these texture features  binary settlement 
information (presence/absence of built-up areas) of an unprecedented geometric resolution of 12m is 
derived based on an unsupervised classification scheme accounting for both the original backscattering 
amplitude and the extracted textural information (Esch et al. 2013). Considering the challenges of 
global urban mapping, the algorithm is currently further investigated for the potential to improve the 
classification performance by substituting the presented threshold-based technique by a machine-
learning approach (Esch et al., 2012).  
 
JRC’s classification of the Global Human Settlement Layer is based on high resolution SPOT data of 
2.5m spatial resolution. The GHSL automatic image information extraction workflow integrates multi-
resolution (0.5m-10m), multi-platform, multi-sensor (PAN, multispectral), and multi-temporal raw 
optical image data such as SPOT-4/5, Quickbird, Ikonos or airborne sensors (JRC, 2012) using a 
combination of textural and morphological algorithms that are combined with innovative learning 
approaches (Pesaresi et al., 2013). The extracted features are subsequently classified and spatially 
generalized into a binary information layer of built-up and non built-up areas.  
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Figure 1 GUF and GHSL classifications derived for the 100km by 100km test site in Western 

Germany 
 
 
METHODS 
 
Assessing the accuracy of land cover data is one of the main challenges in the field of mapping urban 
areas. This is on  the one hand due to the lack of spatially consistent, up-to-date and area-wide 
reference data (Taubenböck et al., 2011) and on the other hand related to the discussion on an 
adequate selection of meaningful agreement measures (McPherson et al, 2004; Allouche et al., 2006; 
Liu et al.; 2007; Taubenböck et al., 2011). Nevertheless, it is now widely recognized in today’s 
scientific community that no classification is valid or complete until a certain degree of confidence of 
the mapping accuracy has been gained. Error or confusion matrices are an often used approach which 
mostly use randomly distributed test sites leading to a descriptive evaluation by standard measures of 
agreement between the validation data and the classification output (Taubenböck et al., 2011). These 
standard measures often include the producer’s accuracy to determine the error of commission of 
allocated pixels as well as the user’s accuracy as a measure of the omission. However, there is broad 
consensus in the scientific literature that metrics based on the entire error matrix add significant value 
to the accuracy assessment beyond these basic measures. A thorough review of the standard accuracy 
measures, problems encountered when using them and remarks on meaningful interpretation is given 
by Foody (2008).  
 
As a first step to assess the capabilities of mapping of urban areas, both maps of global urban extent 
are visually and quantitatively compared to the reference dataset on object level to determine the share 
of buildings captured by these layers. From this, the error of omission regarding missed buildings is 
calculated. These basic descriptive measures establish a general degree of completeness of the 
classified settlement pattern as defined by building inventory, however, do not comprise information 
on its overall correctness and quality. 
 

Table 4 Contingency table for a two-class map comparison (from Potere & Schneider, 2009) 
 Validation data 

Presence Absence 

Settlement layer Presence a b 
Absence c d 

 
For further comparison of the two layers of global urban extent a wider set of accuracy measures is 
calculated on a per-pixel basis as recommended by Foody (2008). These are based on two-class 
contingency tables resulting from the overlay of the settlement layers and the high resolution 

Global Urban Footprint Global Human Settlement Layer

¯
0 105 km
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validation data and record the number of true positives (a), false positives (b), true negatives (c) and 
false negatives (d) (Table 4). These allow for the calculation of several quantitative measures of 
agreement (Table 5): 
 

• Overall accuracy measures the classification accuracy as the share of all correctly classified 
urban and non-urban pixels in the error matrix and thus, gives general information regarding 
the overall map accuracy. However, this measure does not take into account unequal class 
distributions and thus, does not paint a detailed picture of the accuracy across individual land 
cover classes. 
 

• Sensitivity (Completeness) relates to the ability/probability to classify urban pixels as defined 
by the building reference correctly. It is the percentage of the building reference data which 
corresponds to the classification output of the respective urban extent layer and is closely 
related to the error of omission (1-sensitivity). The ideal value for the completeness is 100 
percent. In turn, the ability of classifying the absence of urban areas correctly is called 
specificity.  
 

• Precision (Correctness) relates to the classifier’s ability to exclude non-urban areas correctly 
from the urban extent classification as defined by the building reference. This measure is 
closely related to the error of commission (1-precision) and reaches and ideal value of 100 
percent. 
 

• Kappa statistic (K) is designed to measure the strength of agreement between the reference 
data and the classification output, taking into account the potential for chance agreement. K 
considers all information in the error matrix and ranges on a scale of 0 to 1 where the latter 
indicates perfect agreement. Congalton (1991) categorizes Kappa into three groups of strong 
agreement (≥0.8), moderate agreement (0.4-0.8) and poor agreement (≤0.4). 
 

• True Skill Statistic (TSS) is – like Kappa – designed to measure the agreement between the 
classification and the building reference layer. It is calculated as the specificity (fraction of 
correctly classified urban pixels) plus the sensitivity (fraction of correctly classified non-urban 
pixels) minus one. Compared to Kappa it has the advantage of being independent from 
unequal class distributions, i.e. prevalence ((a+c)/n which is the proportion of pixels assigned 
to buildings in the reference dataset), and thus provides a more robust measure of 
classification accuracy (Allouche et al., 2006). Its range spans from negative values 
(systematic disagreement) to 1 (perfect agreement), with a value of 0 indicating a random 
classification result. 

Table 5 Map agreement measures used in this work; in all formulae n = a + b + c + d (Allouche et al., 
2006) 

Measure Formula 
Overall accuracy � + �

�  

Sensitivity (Completeness) �
� + � 

Precision (Correctness) �
� + � 

Kappa statistic (K) �� + �� � − 
� + ��
� + �� + 
� + ��
� + ���²
1 − 
� + ��
� + �� + 
� + ��
� + ���²

 

True Skill statistic (TSS) ����������� + ����������� − 1	 
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RESULTS 
 
A first visual comparison of the GUF and GHSL products reveals that the new layers hold great 
potential for mapping the spatial outline of settlement patterns in a very detailed manner. Beyond the 
localization of high density urban areas of large cities, both layers seem to detect also smaller 
settlement patches featured by low building numbers scattered in the rural landscape (Fig. 2). Both 
layers detect a similar share of the building inventory on object level: While the GUF captures 87.6 
percent of the entire building stock, the GHSL reaches a share of even 92.3 percent. From this, the 
error of omitted buildings amounts to 12.4 percent for the GUF and 7.7 percent for the GHSL. These 
basic descriptive measures establish a first impression regarding the degree of completeness of the 
classified settlement pattern as defined by building inventory. 
 
More robust and detailed information on the overall accuracy of the classification results can be drawn 
from the extended set of accuracy measures calculated from the error matrices of the respective layers 
(Tab. 6). For both datasets, the results indicate good overall classification accuracies of 84.8 and 73.4 
percent, respectively. This constitutes a high robustness of the classification process, leading to the 
preliminary assumption that both classifiers – when applied to an arbitrary city of diverse urban 
pattern - generally produce a correct delineation of urban from non-urban pixels as defined by the 
spatial arrangement of the building inventory.  
 
The analysis of completeness und correctness allows for a more detailed, class-specific insight into the 
accuracy of the urban maps. In line with the analysis on object level, high sensitivity of both GHSL 
(97.6 percent) and GUF (90.1 percent) underline the capabilities of capturing the entity of built-up 
objects, painting an almost complete picture of the urban extent based on the outline of the building 
pattern. This is further manifested by high specificity values for the absence of urban pixels. In 
contrast, the low precision values presented relate to classification of a high share of pixels not 
belonging to the building mask and thus, expose significant errors of commission in both layers. Low 
correctness induced by over-classification of urban areas in both classifiers is also reflected in the poor 
agreement represented by the Kappa scores for the GUF (0.32) and the GHSL (0.20). On the one hand, 
this is due to the fact that a high-detailed building reference is used for validation which goes beyond 
the geometric capabilities of the datasets under study by clearly delineating buildings from intra-urban 
spaces. In contrast, both GUF and GHSL rather aim to map the outline of the settlement pattern as 
defined by the reference data. At this point, a viable option would be the integration of further 
elements of the urban landscape like roads, bridges, urban greenery, etc. into the reference to obtain a 
more realistic picture of the settlement pattern. Thus, this result reveals that both layers in their current 
configuration do not map a building layer, but map the pattern of the urban extent. On the other hand, 
the limited spatial precision and capabilities to map individual buildings can be attributed to the 
particular technical specifications of each classifiers information extraction workflow: While GUF 
processor extracts urban and non-urban areas from single-look radar imagery based on texture 
information characteristic for highly structured and heterogeneous built-up areas by e.g. double-
bounce detection and high-intensity backscattering (Esch et al., 2010) the GHSL applies a spatial 
generalization technique between detected built-up structures to account for the trade-off between 
precision and operational cost (Pesaresi et al., 2013).  
 
Finally, TSS presents a more robust measure with regard to the unequal class distribution inherent in 
the reference data and thus, assesses the overall spatial delineation urban and non-urban areas with 
regard to the diverse landscape of urban and rural character. From the high values of 0.74 for the GUF 
and 0.69 for the GHSL it can be concluded that the new global products identify and delineate urban 
extent in its correct dimension and outline although not mapping the geometrically and thematically 
highly detailed reality as represented by the building inventory. 
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Table 6 Overview of the selected accuracy measures derived for the GUF and GHSL classifications 
on test site level with regard to the building reference 

 GUF GHSL 

Overall Accuracy [%] 84.82 73.35 

Sensitivity (Completeness) [%] 90.14 97.62 

Specificity [%] 84.54 72.05 

Precision (Correctness) [%] 23.76 15.74 

Kappa statistic 0.32 0.20 

True Skill statistic 0.74 0.69 

 

 
Figure 2 Visual comparison of the building reference layer, GUF and GHSL for (a) the city of Cologne and 

exemplified for b) high built-up density urban fabric and c) low density rural areas 
  
From this initial accuracy assessment it becomes clear that both of the two new maps of global urban 
extent provide comparable outputs. While the GHSL performs slightly better in capturing the entity of 
objects of the spatial building pattern it also features higher errors of commission. Both layers further 
proof to be capable of spatially delineating the overall settlement pattern as outlined by the building 
inventory, however, feature limited capabilities in terms of per-building correctness and precision. 
Beyond this first assessment, further validation efforts using pattern-based regression analysis and 
measures of inter-map agreement are currently underway to gain a deeper understanding of the 
consistency of both layers, explore structural dependencies classification and determine pattern-based 
characteristics of each classifier.  
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CONCLUSION 
 
The review of existing products capable of localizing human exposure on a global scale highlights the 
need for higher resolution data especially for large-scale urban landscapes of varying structural 
character. First generation global land cover datasets and map representation of spatially continuous 
variables related to human exposure have been mainly produced based on coarse resolution satellite 
sensors such as MODIS or DMSP-OLS in the range of 300m to 1,000m. In contrast, the GUF and the 
GHSL present current mapping efforts employing finer scale optical and radar imagery which will 
provide information on global urban extent at an unprecedented geometric resolution and detail.  
 
An initial accuracy assessment based on standard measures of agreement derived from the overlay of 
the respective layers and a high resolution building reference reveals comparable results. Both 
products are capable of correctly and completely outlining the settlement pattern as defined by the 
building inventory, mapping even smaller settlements in low-density rural areas. Nevertheless, 
significant over-classification due to the specifications of each particular information extraction 
workflow exists leading to the clear understanding that the new layers do not present high resolution 
building masks but rather spatially highly detailed settlement layers. 
 
 
ACKNOWLEDGEMENT 
 
We want to acknowledge the support by the European Commission’s Seventh Framework Programme 
[FP7/2007-2013], under grant agreement no. 312972 “Framework to integrate Space-based and in-situ 
sENSing for dynamic vUlnerability and recovery Monitoring”. 
 
 
REFERENCES 
 
Allouche, O., Tsoar, A., Kadmon, R. (2006) Assessing the accuracy of species distribution models: prevalence, 

Kappa and true skill statistic (TSS). Journal of Applied Ecology, 43, 1223-1232. 
Aubrecht, C., Özceylan, D., Steinnocher, K., Freire, S. (2012) Multi-level geospatial modeling of human 

exposure patterns and vulnerability indicators. In: Taubenböck, H., Post, J., Strunz, G. (eds.) Remote 
sensing contributing to mapping earthquake vulnerability and effects. Special Issue in Natural Hazards. 

Bartholome, E., Belward, S. (2005) GLC2000: a new approach to global land cover mapping from Earth 
observation data. International Journal of Remote Sensing, 26, 2005. 

Borfecchia, F., Pollino, M., De Cecco, L., Lugari, A., Martini, S., La Porta, L., Ristoratore, E., Pascale C (2010) 
Active and passive remote sensing for supporting the evaluation of the urban seismic vulnerability. Italian 
Journal of Remote Sensing, 42,129–141. 

Borzi, B., Dell’Acqua, F., Faravelli, M., Gamba, P., Lisini, G., Onida, M., Polli, D. (2011) Vulnerability study 
on a large industrial area using satellite remotely sensed images. Bulletin of Earthquake Engineering, 9, 
675–690. 

Congalton, R.G. (1991) A review of assessing the accuracy of classification of remotely sensed data. Remote 
Sensing of Environment, 37, 35–46. 

Deichmann, U., Ehrlich, D., Small, C., Zeug, G. (2011) Using high resolution satellite data for the identification 
of urban natural disaster risk. Global Facility for Disaster Reduction and Recovery, Washington, DC. 

Dobson, J. E., E. A. Bright, P. R. Coleman, R. C. Durfee, B. A. Worley.  2000.  "A Global Population database 
for Estimating Populations at Risk", Photogrammetric Engineering & Remote Sensing Vol. 66, No. 7, 
July, 2000. 

Ehrlich, D., Zeug. G., Gallego, J., Gerhardinger, A., Caravaggi, I., Pesaresi, M. (2010) Quantifying the building 
stock from optical high-resolution satellite imagery for assessing disaster risk. Geocarto International, 
25(4), 281–293. 

Eicher, C.L., Brewer, C.A. (2001) Dasymetric mapping and areal interpretation interpolation: implementation 
and evaluation. Cartography and Geographic Information Science, 28, 125-138. 

Elvidge, C., Tuttle, B.T., Sutton, P.C., Baugh, K.E., Howard, A.T., Milesi, C., Budhendra, B.L., Ramakrishna, 
N. (2007).Global distribution and density of constructed impervious surfaces. Sensors, 7,1962−1979. 

Elvidge, C.D., Erwin, E.H., Baugh, K.E., Ziskin, D., Tuttle, B.T., Ghosh, T., Sutton, P.C. (2009) Overview of 
DMSP nighttime lights and future possibilities. In Proceedings of the 7th International Urban Remote 
Sensing Conference, Shanghai, China, 20–22 May 2009. 



12 
 

Esch, T., Marconcini, M., Felbier, A., Roth, A., Heldens, W., Huber, M., Schwinger, M., Müller, A. (2013): 
Urban Footprint Processor – Fully automated processing chain generating settlement masks from global 
data of the TanDEM-X mission. Geoscience and Remote Sensing Letters, Special Stream EORSA2012. 
Submitted. 

Esch, T., Taubenböck, H., Roth, A., Heldens, W., Felbier, A., Thiel, M., Schmidt, M., Müller, M., Müller, A., 
Dech, S. (2012) TanDEM-X mission—new perspectives for the inventory and monitoring of global 
settlement patterns. Journal of Applied Remote Sensing, 6, 061702. 

European Space Agency (2010) GlobCover 2009 Product Description Manual. Available at: 
http://dup.esrin.esa.it/files/p68/GLOBCOVER2009_Product_Description_Manual_1.0.pdf Accessed: 4 
Oct 2013. 

European Space Agency (2011) Product Description and Validation Report.  Available: 
http://due.esrin.esa.int/globcover/LandCover2009/GLOBCOVER2009_Validation_Report_2.2.pdf   
Accessed 4 Oct 2013. 

FEMA (2010) HAZUS—MH MR5. Multi-hazard loss estimation methodology—earthquake model. Technical 
manual. Department of Homeland Security, Emergency Preparedness and Response Directorate. 
Washington D.C. 

Foody, G.M. (2008) Harshness in image classification accuracy assessment. International Journal of Remote 
Sensing, 29, 3137–3158. 

French S.P., Muthukumar, S. (2006) Advanced technologies for earthquake risk inventories. Journal of 
Earthquake Engineering, 10, 207–236. 

Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., and Huang, X. (2010). 
MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. 
Remote Sensing of Environment, 114, 168–182. 

Geiß, C., Taubenböck, H. (2012) Remote sensing contributing to assess earthquake risk: from a literature review 
towards a roadmap. Natural Hazards, 1-42. doi: 10.1007/s11069-012-0322-2. 

GEM (2011) Global earthquake model. Available at http://www.globalquakemodel.org/. [Accessed 4 Dec 2013]. 
Joint Research Center (JRC)  (2012) A Global Human Settlement Layer from Optical High Reolution Imagery. 

JRC Scientific and Policy Report EUR 25662 EN. 
Joint Research Centre (2003) Global Land Cover 2000 database. Available at: 

http://bioval.jrc.ec.europa.eu/products/glc2000/glc2000.php Accessed 27 Sept 2013. 
Langford, M., Higgs, G., Radcliffe, J., White, S. (2008) Urban population distribution models and service 

accessibility estimation. Computers, Environment and Urban Systems, 32, 66-80. 
Mayaux, P., Hugh, E., Gallego, J., Strahle, A.H., Herold, M., Agrawal, S., Naumov, S., De Miranda, E.E., Di 

Bella, C.M., Ordoyne, C., Kopin, Y., Roy, P.S. (2006) Validation of the Global Land Cover 2000 Map. 
IEEE Transactions on Geoscience and Remote Sensing, 44, 1728-1739. 

McPherson, J.M., Jetz, W., and Roegers, D.J. (2004) The effects of species' range sizes on the accuracy of 
distribution models: Ecological phenomenon or statistical fact? Journal of Applied Ecology, 41, 811-823. 

Mennis, J., Hultgren, T. (2006) Intelligent daysmetric mapping and its application to aeal interpolation. 
Cartography and Geographic Information Science, 33, 179-194. 

Mueller, M., Segl, K., Heiden, U., Kaufmann, H. (2006) Potential of high-resolution satellite data in the context 
of vulnerability of buildings. Natural Hazards, 38, 247–258. 

Oak Ridge National Laboratory (ORNL) (2013) LandScan™ Available at: 
http://web.ornl.gov/sci/landscan/index.shtml [Accessed 4 Dec 2013] 

Pesaresi, M., Guo, H., Blaes, X., Ehrlich, D., Ferri, S., Gueguen, L., Kalkia, M., Kauffmann, M., Kemper, T., 
Lu, L., Marin-Herrera., M.A., Ouzounis, G.K., Scavazzon, M., Soille, P., Syrris, V., Zanchetta, L. (2013) 
A Global Human Settlement Layer from optical HR/VHR RS data: concept and first results. IEEE Journal 
Of Selected Topics In Applied Earth Observations And Remote Sensing, 6, 2102-2131.  

Pittore, M., Wieland, M. (2019) Towards a rapid probabilistic seismic vulnerability assessment using satellite 
and ground-based remote sensing. Natural Hazards, doi: 10.1007/s11069-012-0475-z, 2012.  

Polli, D., Dell’Acqua, F. (2011) Fusion of optical and SAR data for seismic vulnerability mapping of buildings. 
In: Prasad, S., Bruce, L.M., Chanussot, J. (eds) Optical remote sensing. Advances in signal processing 
and exploitation techniques. Springer, Heidelberg, 329–341. 

Potere, D., Schneider, A. (2009) Comparison of global urban maps, In: Global mapping of Human Settlement, 
In: Gamba, P. and M. Herold (Eds.), Global Mapping of Human Settlements: Experiences, Data Sets, and 
Prospects, Taylor and Francis, Boca Raton, FL. 

Potere, D., Schneider, A., Angel, S., Civco, D.L. (2009) Mapping urban areas on a global scale: which of the 
eight maps now available is more accurate? International Journal of Remote Sensing, 30, 6531-6558. 

RiskScape (2012) Easy-to-use multi-hazard impact and risk assessment tool. Available at 
http://www.globalquakemodel.org/. [Accessed 21 Nov 2013]. 



 M.Klotz, T. Kemper, T. Esch, M. Pesaresi, M. Pittore, M. Wieland, C. Geiss and H. Taubenböck 13 
 

  

Sahar, L., Muthukumar, S., French, P. (2010) Using aerial imagery and GIS in automated building footprint 
extraction and shape recognition for earthquake risk assessment of urban inventories. IEEE Transactions 
in Geoscience and Remote Sensing, 48, 3511–3520. 

Schneider, A., Friedl, M.A., Potere, D. (2009) A new map of global urban extent from MODIS data. 
Environmental Research Letters, 4, article 044003.  

Schneider, A., Friedl, M.A., Potere, D. (2010) Monitoring urban areas globally using MODIS 500m data: New 
methods and datasets based on urban ecoregions. Remote Sensing of Environment, vol. 114, p. 1733-
1746. 

Socioeconomic Data and Applications Center (SEDAC) (2013): Global Rural-Urban Mapping Project 
(GRUMP), v1. Available at: http://sedac.ciesin.columbia.edu/data/collection/grump-v1  [Accessed 4 Oct 
2013] 

Taubenböck, H., Esch, T., Felbier, A., Roth, A., Dech, S. (2011) Pattern-based accuracy assessment of an urban 
footprint classification using TerraSAR-X data. IEEE Geoscience and Remote Sensing Letters, 8, 278-
282.  

Taubenböck, H., Esch, T., Felbier, A., Wiesner, M., Roth, A., and Dech, S. (2012) Monitoring urbanization in 
mega cities from space. Remote Sensing of the Environment, 117, 162-176. 

Taubenböck, H., Post, J., Roth, A., Zosseder, K., Strunz, G., Dech, S. (2008) A conceptual vulnerability and risk 
framework as outline to identify capabilities of remote sensing. Natural Hazards and Earth System 
Sciences, 8, 409–420. 

Taubenböck, H., Wurm, M., Setiadi, N., Gebert, N., Roth, A., Strunz, G., Birkmann, J., Dech, S. (2009) 
Integrating remote sensing and social science. Urban Remote Sensing Event, 2009, 1-7, doi: 
10.1109/URS.2009.5137506. 

United States Geological Survey (USGS) (2013) Land Cover Type Yearly L3 Global 500 m SIN Grid – 
MCD12Q1. Available at: https://lpdaac.usgs.gov/products/modis_products_table/mcd12q1 [Accessed 15 
Dec 2013]. 

Wieland, M., Pittore, M., Parolai, S., Zschau, J., Moldobekov, B., Begaliev, U. (2012) Estimating building 
inventory for rapid seismic vulnerability assessment: towards an integrated approach based on 
multisource imaging. Soil Dynamics and Earthquake Engineering, 36, 70–83.  


