
A Proposal for Spatiotemporal Data Retrieving in R
Rodrigo S. S. Adeu1, Karine R. Ferreira1, Pedro R. Andrade1

1National Institute for Space Research  
Av. dos Astronautas, 1758,  

12.227-010 - São José dos Campos (SP) - Brazil
rodrigo.sales@embraer.com.br,{karine.ferreira,pedro.andrade}@inpe.br

Abstract. Despite the development of R packages for spatial features and
temporal data, developers still facing a lack on spatiotemporal data access
and spatiotemporal data manipulation. Translating spatiotemporal data
retrieved from different data sources into high level R classes is a common
problem into developer’s life. This paper describes an ongoing proposal to
provide an abstraction layer for spatiotemporal data retrieving in R
environment.

1. Introduction
Spatiotemporal data is everywhere, being gathering from different devices such as Earth
Observation and GPS satellites, sensor networks and mobile gadgets [Monteiro et al.
2016]. As the number, volume and resolution of spatiotemporal datasets increase,
traditional methods for dealing with such data are becoming overwhelmed [Cheng et al.
2013]. This scenario brings a challenge for Geoinformatics: we need software tools to
represent, process and analyse these large data set efficiently [Santos et al. 2016]. In this
context, the use of R environment has been used as an alternative to data analysis. We
now describe an on going proposal for access, retrieving and usage for spatiotemporal
data access in R, starting by a R package review.

2. R Environment for Spatial, Temporal and Spatiotemporal Data
R environment is an integrated suite of software facilities for data manipulation,

calculation and graphical display, and can be easily extended via packages [R Core
Team 2011]. Packages provide a mechanism for loading optional code, data and
documentation as needed. This extensions provides extra functionalities not included on
the original R environment.

When looking at spatial data representation, Open Geospatial Consortium
(OGC) has specified a standard that describes the common architecture for simple
feature geometry used by Geographic Information Systems [OGC 2006]. Simple
features refers to a formal standard (ISO 19125-1:2004) that describes how objects in
the real world can be represented in computers, with emphasis on the spatial geometry
of these objects. Package sf represents simple features as native R objects using
simple data structures (S3 classes, lists, matrix, vector) [Pebesma et al. 2018 a.].

The challenges related to time data representation are also well explored on R
environment. There are lots of packages and initiatives for time modelling on R. For
instance, the xts package, developed motivated by the ability to improve performance
by imposing reasonable constraints, while providing a truly time-based structure [Ryan
and Ulrich 2017].

But developers are facing a very different scenario when trying to represent
spatiotemporal data. The lack of a standard for spatiotemporal data modelling avoid the
development of reusable solutions and common packages. For raster data
representation, stars package [Pebesma et al. 2018 b.] has addressed the challenge to
represent dense arrays, with space and time being array dimensions. In this paper, we
present a proposal for an implementation of a R package, using a spatiotemporal model
representation based on observations for vector data. This model defines three data
types as abstractions built on observations: time series, trajectory, and coverage. Using
these types, we can create different views on the same observation set, meeting
application needs [Ferreira el al. 2014].

2. Observation Based Model

The proposed model starts with observations, which are our means to assess
spatiotemporal phenomena in the real world [Kuhn, 2009]. The model defines three data
types as abstractions built on observations: time series, trajectory, and coverage. A time
series represents the variation of a property over time. It is obtained from observations
that measure values at controlled times in a fixed location. A trajectory represents how
locations or boundaries of an object change over time. A coverage represents the
variation of a property in a spatial extent at a time. Using a UML class diagram, we can
represent a Time Serie, a Trajectory and a Coverage as subclasses from the superclass
Observation.

Figure 1. Simplified Observation Based Model Class Diagram.

We’ll now look at the actual R packages that can be used to retrieve the
observation data and represent them into high level classes.

2. R Packages for SpatioTemporal Data Usage
As data sources are constantly collecting information, and there is no

international standard and widely accepted spatiotemporal data model with well-
developed theories and technologies [Hall and Leahy 2008], is very common to find lots
of different formats for storing and sharing this data. GeoJSON, KML, PostgreSQL/
Postgis databases are a few examples of supported formats. In order to simplify the
interface to the most common formats, rgdal package provides bindings to Geospatial

Data Abstraction Library (GDAL) and access to projection/transformation operations
from the PROJ.4 library [Bivand et al. 2017].

The second important functionality is to provide high level classes to map
spatiotemporal objects. This feature allow developers to increase abstraction and
improve reuse of source codes, focusing on data analysis and business logic instead of
low level details. In this paper, we use a data model proposed by Ferreira el al. (2014)
that takes observations as the basic unit for spatiotemporal data representation. For each
data type, an R package can be used to address specific details and characteristics of this
abstractions. For time series, the package xts [Ryan and Ulrich 2017] can be used. For
trajectory, the package trajectories [Pebesma and Klus 2015] can be used. And
for coverage, the package spacetime [Pebesma 2012] can be used. Figure 2 shows
this packages and the relationships between them, including the package sp [Pebesma
and Bivand 2005] used to represent spatial data when this packages were released. We
also include the package sf, [Pebesma et al. 2018 a.], that should be used for
representing spatial geometry objects following the OGC standard. Nowadays, package
sf is not compatible with spacetime and trajectories packages.

Figure 2. Possible R packages and relationships

In order to represent the observation based model classes as high level classes in
R, and fulfil them with observation data, we need to specify a software architecture to
simplify the data access and the translation to the high level classes. On the next
session, we’ll start to detail a proposal of architecture for a R package.

3. Software Architecture

When looking at a software architecture, this packages can be grouped into two
different layers, encapsulating important functionalities to developers. The first one
called Data Access Layer is responsible for dealing with different data sources, access
the raw data, and provide this data to developers. Package rgdal is included in this
layer. The second layer is called Data Usage Layer and is responsible for providing
high level classes for developer usage. Packages xts, trajectories and
spacetime are included in this layer. Developers are responsible for dealing with this

two layers, and translate or adapt outcoming data from Data Access Layer into
incoming data for Data Usage Layer. We represent that with a Middleware Layer.

 Nowadays, software developers spend undesirable time writing code inside Data
Access Layer and Middleware Layer. As data sources changes, Data Access Layer code
that retrieve this data must be rewritten. Middleware Layer code that translate this data
to high level classes must also be rewritten. In an ideal scenario, developers should be
focused on business logic and data analysis, writing code for Data Usage Layer. This
software architecture is showed on Figure 3.

Figure 3. Common software architecture

 In this paper we describe a proposal for an R package that abstracts Data Access
Layer and Middleware Layer. By using intermediate classes, we intend to change
characteristics from this layers using reconfigurable objects, instead or rewriting code.

4. Proposed R Package Internal Architecture
Internally, the proposed R package implements design patterns and architectural
solutions to encapsulate the internal structure and provide a reusable piece of software.
The driver for the package design was implement configurable objects with a neutral
interface, allowing developers to use the package independent of the data source and the
data set internal structure. The goal is to provide a solution to allow developers to focus
only on data usage with high level classes. A proposed class diagram is showed on
Figure 4.

Figure 4. Proposed package internal architecture

In order to specify information about data sources, there are two different
DataSourceInfo specific classes, each one for a specific domain.
FileDataSourceInfo class is used to access data stored on files, while
DBMSDataSourceInfo is used to access data stored on Data Base Management
Systems. Details of each data source, for example file path for Kml files, or username
and password for PostGis connections, are encapsulated on each class. As an example,
Figure 5 shows the creation of DataSourceInfo objects for Kml and Postgis.

�
Figure 5. Creating configuration objects for Kml on left and Postgis on right.

 The basic DataSourceInfo class acts as an interface for specific data source
information classes, providing standardised access to data sources.

In order to specify information about the data set internal structure, an object of
DataSetInfo class must be instantiated. This object provide details about dataset
internal structure, like spatial columns, temporal columns and measure columns. An
example of DataSetInfo object is showed on Figure 6.

Figure 6. DataSetInfo object for Argo Data

 The Translator class is responsible for implement an adapter, receive data
from it, translate it into high level classes (Time Series, Trajectory and Coverage) and
return this object to the developer. This class is also responsible for receiving columns
that need to be loaded, and insert the correct values inside the object. Figure 7 illustrates

the use of the Translator class to retrieve a track object, representing a trajectory
from trajectories package.

!
Figure 7. Translator class returning a Trajectory object

 Using this packages, developers should only set a DataSourceInfo class
specific for the desired data source, and specify the columns that the class
Translator needs to retrieve using a DataSetInfo class. Translator class
will use Adapter class to retrieve this data and return a high level class, containing the
desired data to the developer.

4. Case Study
To evaluate the capabilities of the proposed abstraction layer, data from Argos Project
were used. Argos float technology is recognised within the climate community as a
huge step in the climate observing system, providing essential observations of the ocean
down to 2000 metres [Argos 2015]. This data was stored inside a PostGis database, and
the internal structure of the table argo_profiles_geom is showed on Figure 8.

!
Figure 8. Argo_profiles_geom table detailing

 Using the DataSourceInfo showed on right side of Figure 4,
DataSetInfo showed on Figure 5, and instantiating objects from Adapter and
Translator classes, we were able to use the R command provided on Figure 7 and
retrieve temperature measurements from float 46027. The most relevant slots of the
returned object are showed on Figure 9. All specific methods from class Track are also
available.

!
Figure 9. Examples of track object slots

5. Further Developments
As this proposal, and the development of this R package still ongoing, there are lots of
open points and definitions that need to be finalised. For further developments we would
like suggest improvements on Translator class capabilities. As there are many date/
time formats and no standardisation, an important modification on this class should be
the use of regular expressions on date/time pattern recognition. DataSetInfo and
DataSourceInfo classes could also be improved using RDF to describe the data,
instead of source codes.

An important feature that could also be added is the event retrieving
functionality. If the user adds some restriction (eg. a time slice, an object id or a
bounding box), the package should be able to return an event, included on that
restriction. In the above example, an event could be: two touching floats, or a float
registering a high temperature increasing in a small amount of time.

To pack all this features, and comply with the OGC simple feature standard, we
propose the creation of a temporal simple feature standard. This proposal shall include
all abstractions to retrieve the data from multiple data sources, and translate it to high
level classes, using the observation based model as a driver. The development of an R
package encapsulating all this concepts can be used as a proof of concept of this
temporal simple feature proposal.

References
Argos. 2015. International Argo Program: A Revolution in Climate Research. Argos

Forum #81. p. 20. Available at: http://www.argos-system.org/wp-content/uploads/
2016/08/r1580_f34_Argos-Forum-81_En.pdf

Bivand, R., Keitt, T., Rowlingson B. (2017). Rgdal: Bindings for the Geospatial Data
Abstraction Library. R package version 1.2-8. https://cran.r-project.org/
package=rgdal

Cheng, T., Haworth, J., Anbaroglu, B., Tanaksaranond, G., Wang, J. (2013).
Spatiotemporal Data Mining. Handbook of Regional Science, p. 1173-1193.

Ferreira, K. R., Camara, G., Monteiro, A. V. M. (2014). An Algebra for Spatiotemporal
Data from Observations to Events. Transactions in GIS, p. 253-269.

Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1994). Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley. ISBN 0-201-63361-2.

Hall, B. and Leahy, M. G. (2008). Open Source Approaches in Spatial Data Handling.
Springer. p. 126-128. ISBN 978-1-84996-094-6.

Kuhn, W. A functional ontology of observation and measurement. In: International
Conference on GeoSpatial Semantics (GeoS 2009), 2009, Mexico City, Mexico.
Proceedings... Spring Verlag, 2009. Lecture Notes in Computer Science.

Monteiro, D. V., Ferreira, K. R., Santos, R., Andrade, P. R. (2016). Extending R for Big
Trajectory Data Access.

OPEN GEOSPATIAL CONSORTIUM (OGC): OpenGIS Implementation Specification
for Geographic Information – Simple Feature Access - Part 1: Common architecture.
Reference number: OGC 06-103r3. Version: 1.2.0. Report. Available at <http://
www.opengeospatial.org>. 2006.

Pebesma, E. (2012). spacetime: Spatio-Temporal Data in R. Journal of Statistical
Software, 51(7), 1-30. URL http://www.jstatsoft.org/v51/i07/.

Pebesma, E. and Bivand, R. (2005). Classes and methods for spatial data in R. R News
5 (2), https://cran.r-project.org/doc/Rnews/.

Pebesma, E. and Klus, B. (2015). trajectories: Classes and Methods for Trajectory Data.
R package version 0.1-4. https://CRAN.R-project.org/package=trajectories

Pebesma, E., Bivand, R., Cook I., Keitt T., Sumner, M., Lovelace R., Wickham H.,
Ooms J., Racine E., (2018 a.). “sf: Simple Features for R”. R package version 0.6-3.
https://CRAN.R-project.org/package=sf.

Pebesma, E., Summer, M., Racine, E., Fantini, A., (2018 b.) “stars: Scalable,
Spatiotemporal Tidy Arrays for R”. R package version 0.1-1. https://CRAN.R-
project.org/package=stars

R Core Team (2016). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing. Vienna, Austria. ISBN 3-900051-07-0. http://r-
project.org/about.html.

Ryan, J. A. and Ulrich, J. M. (2017). xts: eXtensible Time Series. R package version
0.10-0. https://CRAN.R-project.org/package=xts

Santos, L. A., Ferreira, K. R., Queiroz, G. R., Vinhas, L. (2016) Spatiotemporal Data
Representation in R. XVII GEOINFO, p. 178-191.

