
Relational Database 

Systems – Part 01 

Karine Reis Ferreira 

karine@dpi.inpe.br 

Aula da disciplina Computação Aplicada II – Sistemas de Banco de Dados (CAP 236) – 2014  



Database System 

Database: 

 is a collection of related data. 

 represents some aspect of the 

real world 

 is a logically coherent collection 

of data with some inherent 

meaning. 

 is designed, built, and populated 

with data for a specific purpose. 

 

Example: Amazon.com (over 2 

terabytes - 200 different servers) 

 Source: (Elmasri and Navathe, 2011) 

 

 



Database Management System 

(DBMS): 

 is a collection of programs that 

enables users to create and 

maintain a database.  

 system that facilitates the 

processes of defining, 

constructing, manipulating, and 

sharing databases among 

various users and applications. 

Database System 

 Source: (Elmasri and Navathe, 2011) 

 

 



An application program accesses 

the database by sending queries or 

requests for data to the DBMS. 

 

Database System: Database + 

DBMS Software + Application 

Programs. 

Database System 

 Source: (Elmasri and Navathe, 2011) 

 

 



① Controlling redundancy 

 Problems: duplication of effort, wasted storage space, inconsistent. 

 Data normalization 

② Restricting unauthorized access 

 Security and authorization subsystem: create accounts and restrictions. 

③ Providing persistent storage for program objects 

 Complex object in C++ stored permanently in an object-oriented DBMS 

④ Providing storage structures and search techniques for efficient query 

processing 

 Indexes, buffering/caching, query processing and optimization module 

 

 

 

Advantages of using DBMS 



⑤ Providing backup and recovery 

 Recovery subsystem: ensure that the transaction is resumed from the point at 

which it was interrupted so that its full effect is recorded in the database. 

⑥ Providing multiple user interfaces 

 Query languages, programming language interfaces, Graphical User Interfaces 

(GUIs), web GUI interfaces, etc. 

 

 

Advantages of using DBMS 



DBMS: Multiple User Interfaces 

 
Database 

DBMS 

Prompt 

int main() 

{ 
… 
} 

C++ API 

 GUI 

 

 



⑦ Representing complex relationships among data 

 Represent a variety of complex relationships among the data, define new 

relationships, and retrieve and update related data easily and efficiently. 

⑧ Enforcing integrity constraints 

 Integrity constraints: referential integrity, key or uniqueness, semantics, … 

⑨ Permitting inference and actions using rules 

 Deductive database systems: define deduction rules for inferencing new 

information from the stored database facts. 

 Triggers, stored procedures, … 

 

Advantages of using DBMS 



Data model: a collection of concepts that can be used to describe the 

structure of a database. 

 High-level or conceptual data models: provide concepts that are close 

to the way many users perceive data. Ex.: Entity-Relationship model 

 Representational or implementation data models: provide concepts 

that may be easily understood by end users but that are not too far 

removed from the way data is organized in computer storage. Ex.: 

Relational data model 

 Low-level or physical data models: provide concepts that describe the 

details of how data is stored on the computer storage media. 

Data Model 



Database Design 

 Source: (Elmasri and Navathe, 2011) 

 

 



Conceptual 

schema for the 

database that is 

independent of a 

specific DBMS.  

 

High-level data 

model ER or EER 

model 

Database Design 

 Source: (Elmasri and Navathe, 2011) 

 

 



Entity-Relationship – ER Model 

 Proposed in 1976 by Peter Chen 

 Conceptual data models use concepts such as entities, attributes, and 

relationships: 

 Entity: real-world object or concept from the miniworld that is described 

in the database. 

 Attribute: property of interest that further describes an entity.  

 Relationship: association among the entities. 



 Source: (Elmasri and Navathe, 2011) 

 

 



 Source: (Elmasri and Navathe, 2011) 

 

 

Entities:  

    EMPLOYEE, 

    DEPARTAMENT, 

    PROJECT,  

    DEPENDENT 

 

Relationships: 

    WORKS_FOR, 

    MANAGES,  

    CONTROLS, 

    WORKS_ON, 

    DEPENDENT_OF, 

    SUPERVISION  

 

 

Attributes 

 



 Composite versus Simple (Atomic) Attributes => Composite: can be 

divided into smaller subparts (ex. Name). Simple: are not divisible. 

 Single-Valued versus Multivalued Attributes => Single-Valued: have a 

single value for a particular entity (ex. BDate, Sex). Multivalued: can have 

multiple values (ex. Color of a car, Locations). 

 Stored versus Derived Attributes => The Age attribute is a derived 

attribute and is said to be derivable from the BDate attribute, which is 

called a stored attribute. 

 NULL Values => A particular entity may not have an applicable value for 

an attribute.   

ER Model – Types of Attributes 



ER Model – Key Attributes  

Key Attributes 

 

Multivalued Attribute 

 

 Source: (Elmasri and Navathe, 2011) 

 

 

Composite Attribute 

 



ER Model – Domains of Attibutes 

 Value Sets (Domains) of Attributes: Each simple attribute of an entity is 

associated with a value set (or domain of values), which specifies the set of 

values that may be assigned to that attribute for each individual entity.  

 Example: the range of ages allowed for employees is between 16 and 

70 => set of integer numbers between 16 and 70. 

 integer, string, Boolean, float, enumerated type, etc… 



ER Model – Relationships 

 Degree: number of participating entities. Binary: between two entities, 

ternary: among three entities, and so on. 

 Recursive relationships: between two instances of the same entity. Ex. 

SUPERVISION  

 Cardinality ratios for binary relationships: 1:1, 1:N, N:1, and M:N. 

 Ex: MANAGES (1:1), WORKS_FOR (1:N), WORKS_ON (M:N) 

 Attributes: relationship can also have attributes, similar to those of 

entities. 



ER Model – Cardinality 

 1:1 

 

 

 Source: (Elmasri and Navathe, 2011) 

 

 

 N:N 

 

 



ER Model – Relationships 

 Participation Constraints and Existence Dependencies:  

 Total participation: every entity in the total set of employee entities 

must be related to a department entity via WORKS_FOR. Total 

participation is also called existence dependency. 

 Partial participation: some or part of the set of employee entities are 

related to some department entity via MANAGES, but not necessarily 

all. 

 

In ER diagrams, total participation (or existence dependency) is displayed 

as a double line connecting the participating entity type to the relationship, 

whereas partial participation is represented by a single line. 



 Source: (Elmasri and Navathe, 2011) 

 

 

Total participation  

 

Partial participation  

 



ER Model – Weak Entity 

 Weak entity: entity that do not have key attributes of their own. A weak 

entity type always has a total participation constraint (existence 

dependency) with respect to its identifying relationship because a weak 

entity cannot be identified without an owner entity. A weak entity type 

normally has a partial key, which is the attribute that can uniquely identify 

weak entities that are related to the same owner entity. Ex. DEPENDENT 

 Strong entity: regular entity that do have a key attribute.  

 

In ER diagrams, both a weak entity type and its identifying relationship are 

distinguished by surrounding their boxes and diamonds with double lines. 

The partial key attribute is underlined with a dashed or dotted line. 



 Source: (Elmasri and Navathe, 2011) 

 

 



ER Model – Notations 
 Source: (Elmasri and Navathe, 2011) 

 

 



ER Model – Notations 
 Source: (Elmasri and Navathe, 2011) 

 

 



ER Model – UML Diagram 

 Source: (Elmasri and Navathe, 2011) 

 

 



ER Model – Ternary Relationship 

 Source: (Elmasri and Navathe, 2011) 

 

 



ER Model – Ternary Relationship 

 Some database design tools are based on variations of the ER model that 

permit only binary relationships.  

 A ternary relationship such as SUPPLY must be represented as a weak 

entity type, with no partial key and with three identifying relationships. 



ER Model – Ternary Relationship 

 Source: (Elmasri and Navathe, 2011) 

 

 



Exercise 01 



The conceptual 

schema from the 

high-level data 

model used in 

Phase 2 is 

mapped into the 

data model of the 

chosen DBMS. 

Database Design 

 Source: (Elmasri and Navathe, 2011) 

 

 



The Relational Data Model 

 First introduced by Ted Codd of IBM Research in 1970 in a classic paper 

 Early 1980s: first commercial implementations, such as the Oracle DBMS.  

 Current popular relational DBMSs (RDBMSs) include: 

 Commercial: DB2 and Informix Dynamic Server (from IBM), Oracle 

(from Oracle), Sybase DBMS (from Sybase) and SQLServer and 

Access (from Microsoft).  

 Open source: MySQL and PostgreSQL 



DB2. Universal 

Database 

33 

Relational DBMS - RDBMS 



 Represents the database as a collection of relations (table of values) 

 Formal terminology: row => tuple, a column header => attribute, table => 

relation, data type describing the types of values that can appear in each 

column => domain of possible values. 

The Relational Data Model 

 Source: (Elmasri and Navathe, 2011) 

 

 



Relation - Definition 

Given the domains D1, D2, ..., Dn that are not necessarily distinct, a relation is 

defined as: 

 

R = { (d1, d2,..., dn) | d1  D1, d2  D2,..., dn  Dn } 

   

 A set (d1, d2,..., dn) of ordered values define a tupla 

 A relation is a set of ordered n-tuplas, where n define the relation degree  



Relation - Schema x Instances 

 Source: (Elmasri and Navathe, 2011) 

 

 

Instances 

 

Schema 

 



Relation – Characteristics 

 Ordering of Tuples in a Relation: tuples in a relation do not have any 

particular order. 

 Ordering of Values within a Tuple: according to the definition of a 

relation, an n-tuple is an ordered list of n values, so the ordering of values 

in a tuple is important. 

 Values and NULLs in the Tuples: each value in a tuple is an atomic value 

(not divisible). NULL values: values of attributes that may be unknown or 

may not apply to a tuple. 



Relation Model Constraints 

 Constraints materialize the rules in the miniworld that the database 

represents. 

 Types of constraints: 

 Domain Constraints 

 Key Constraints: primary key and unique key 

 NOT NULL Constraints 

 Referential Integrity Constraints: foreign key 

 Semantic Integrity Constraints 



Domain Constraints 

 The data types associated with domains typically include: 

 Standard numeric data types for integers (such as short integer, 

integer, and long integer);  

 Real numbers (float and double precision, float); 

 Characters; 

 Booleans;  

 Fixed-length strings and variable-length strings;  

 Date, time, timestamp, and money 



Key Constraints 

 All tuples in a relation must also be distinct, that is, no two tuples can have 

the same combination of values for all their attributes. 

 Candidate keys: attributes that have uniqueness constraints, that is, no 

two distinct tuples can have the same value. A relation can have n 

candidate keys. Candidate keys are designated as unique keys. 

 Primary key: a candidate key whose values are used to identify tuples in 

the relation. A relation can have only one primary key. 



Key Constraints 

Candidate Keys or Unique Keys 

 

Primary Key 

 

 Source: (Elmasri and Navathe, 2011) 

 

 



Referential Integrity Constraint 

 It is specified between two relations and is used to maintain the 

consistency among tuples in the two relations. 

 Foreign key: specify a referential integrity constraint between the two 

relation schemas R1 and R2. 

 The attributes in FK have the same domain(s) as the primary key 

attributes PK of R2; the attributes FK are said to reference or refer to 

the relation R2. 

 A value of FK in a tuple t1 of the current state r1(R1) either occurs as a 

value of PK for some tuple t2 in the current state r2(R2) or is NULL. 



Source: (Elmasri and 

 Navathe, 2011) 

 

 

Primary Keys ? 

Unique Keys ? 

Foreign Keys ? 

 

 



Foreign Keys 

Source: (Elmasri and 

 Navathe, 2011) 

 

 



Foreign Keys 

 

Foreign Keys 

Source: (Elmasri and 

 Navathe, 2011) 

 

 



Semantic Integrity Constraints 

 Example: “the salary of an employee should not exceed the salary of the 

employee’s supervisor and the maximum number of hours an employee 

can work on all projects per week is 56” 

 Such constraints can be specified and enforced within the application 

programs that update the database, or by using a general-purpose 

constraint specification language.  

 Examples: triggers and assertions. In SQL: CREATE ASSERTION and 

CREATE TRIGGER 



Relational Model – Operations  

 Insert: provides a list of attribute values for a new tuple t that is to be 

inserted into a relation R.  

 Example: Insert <‘Cecilia’, ‘F’, ‘Kolonsky’, NULL, ‘1960-04-05’, ‘6357 

Windy Lane, Katy,TX’, F, 28000, NULL, 4> into EMPLOYEE. 

 Result: This insertion violates the entity integrity constraint (NULL for 

the primary key Ssn), so it is rejected. 

 

 



Relational Model – Operations  

 Delete: remove tuples of a relation.  

 Example: Delete the EMPLOYEE tuple with Ssn = ‘999887777’. 

 Result: This deletion is not acceptable, because there are tuples in 

WORKS_ON that refer to this tuple. Hence, if the tuple in EMPLOYEE is 

deleted, referential integrity violations will result. 

 



Relational Model – Operations  

 Update (or Modify): change the values of one or more attributes in a tuple 

(or tuples) of some relation R.  

 Example: Update the Dno of the EMPLOYEE tuple with Ssn = 

‘999887777’ to 7. 

 Result: Unacceptable, because it violates referential integrity. 



Transaction  

 A transaction is an executing program that forms a logical unit of database 

processing.  

 It includes one or more database access operations—these can include 

insertion, deletion, modification, or retrieval operations.  

 End of the transaction: database in a valid or consistent state 

 Transactions submitted by various users may execute concurrently and may 

access and update the same database items. 

 Concurrency control and recovery mechanisms are necessary 

 



Problems of concurrent execution 

Source: (Elmasri and Navathe, 2011) 

 

 

Two transactions: T1 and T2 

 

 



Problems of concurrent execution 

Source: (Elmasri and Navathe, 2011) 

 

 

Two transactions: T1 and T2 

 

 



Transaction  

 A transaction is an atomic unit of work that should either be completed in its 

entirety or not done at all. 

 For recovery purposes, the system needs to keep track of when each 

transaction starts, terminates, and commits or aborts: 

 BEGIN_TRANSACTION 

 END_TRANSACTION 

 COMMIT_TRANSACTION 

 ROLLBACK (or ABORT) 

 



Transaction – ACID properties  

 Atomicity: A transaction is an atomic unit of processing; it should either be 

performed in its entirety or not performed at all.  

 Consistency preservation:  if an transaction is completely executed from 

beginning to end without interference from other transactions, it should take 

the database from one consistent state to another. 

 Isolation: The execution of a transaction should not be interfered with by 

any other transactions executing concurrently 

 Durability or permanency. The changes applied to the database by a 

committed transaction must persist in the database. These changes must 

not be lost because of any failure. 



Transaction – Serial Schedule  

Source: (Elmasri and Navathe, 2011) 

 

 

Serial schedules involving transactions T1 and T2. (a) Serial schedule A: T1 

followed by T2. (b) Serial schedule B: T2 followed by T1. 

 



Transaction – Nonserial Schedule  

Source: (Elmasri and Navathe, 2011) 

 

 

(c) Two nonserial schedules C and D with interleaving of operations. 

Correct results? 

 

 



Transaction – Nonserial Schedule  

Source: (Elmasri and Navathe, 2011) 

 

 

(c) Two nonserial schedules C and D with interleaving of operations. 

C:  erroneous result (lost update problem) => T2 reads 

the value of X before it is changed by T1. 

D: correct result 



 A standard (ISO) for relational databases.  

 Based on the relational algebra 

 Higher-level declarative language interface: user only specifies what the 

result is to be, leaving the actual optimization and decisions on how to 

execute the query to the DBMS. 

 Statements for: 

 data definitions, queries, and updates: DDL and DML 

 defining views on the database 

 specifying security and authorization  

 defining integrity constraints, and  

 specifying transaction controls.  

SQL: Structured Query Language 



CREATE TABLE States( 
NAME    VARCHAR(100) 

UF      VARCHAR(2) 

POP    NUMBER(10,10)) 

 
Database 

DBMS 

CREATE DATABSE Test 

SELECT * 
FROM   States 

WHERE  UF = 'MG' 

INSERT INTO States 
VALUES ('Minas Gerais',  

'MG', 9999) 

SQL-DDL (Data Definition Language) SQL-DML (Data Manipulation Language) 

SQL 



Commands Description Type 

select Select data DML 

insert, update, delete Add, modify and remove data DML 

commit, rollback Transaction controls DDL 

create, alter, drop create, alter and eliminate schemas 

and tables 

DDL 

SQL – Some Commands 



From ER Model To Relational Model 

ER Data Model to … 

 



From ER Model To Relational Model 

Relational  

Model 

 



ER Model To Relational Model 

Step 1: Mapping of Regular Entity Types. For each regular entity E, create a 

relation R that includes all the simple attributes of E. 

Example: EMPLYOEE, DEPARTAMENT, PROJECT 

 

Step 2: Mapping of Weak Entity Types. For each weak entity W with owner 

entity E, create a relation R and include all simple attributes of W as attributes 

of R. In addition, include as foreign key attributes of R, the primary key 

attribute(s) of E. 

Example: DEPENDENT 



ER Model To Relational Model 

Step 3: Mapping of Binary 1:1 Relationship Types: identify the relations S 

and T that correspond to the relationship and choose one approach: 

(1) Foreign key approach: Choose one of the relations, for example S, and 

include as a foreign key in S the primary key of T. 

(2) Merged relation approach: Merge the two entities into a single relation. 

(3) Cross-reference or relationship relation approach: set up a third relation 

R for the purpose of cross-referencing the primary keys of the two relations S 

and T representing the entities. 



ER Model To Relational Model 

Example: (Approach 1): include the primary key of the EMPLOYEE as foreign 

key in the DEPARTMENT (Mgr_ssn). Also include the simple attribute 

Start_date of the MANAGES relationship (Mgr_start_date). 



ER Model To Relational Model 

Step 4: Mapping of Binary 1:N Relationship Types: identify the relation S 

that represents the participating entity at the N-side of the relationship. Include 

as foreign key in S the primary key of the relation T. 

Examples:  

1. WORKS_FOR => primary key Dnumber of the DEPARTMENT as foreign 

key in the EMPLOYEE (Dno).  

2. SUPERVISION => primary key of the EMPLOYEE as foreign key in the 

EMPLOYEE (Super_ssn).  

3. CONTROLS => foreign key attribute Dnum of PROJECT, which references 

the primary key Dnumber of the DEPARTMENT. 



ER Model To Relational Model 

Step 5: Mapping of Binary M:N Relationship Types: For each binary M:N 

relationship type R, create a new relation S to represent R. Include as foreign 

key attributes in S the primary keys of the relations that represent the 

participating entity types; their combination will form the primary key of S. Also 

include any simple attributes of the M:N relationship as attributes of S. 

 

Example: relationship WORKS_ON => relation WORKS_ON 



ER Model To Relational Model 

Step 6: Mapping of Multivalued Attributes: For each multivalued attribute A, 

create a new relation R that include an attribute corresponding to A, plus the 

primary key attribute K — as a foreign key in R — of the relation that 

represents the entity type or relationship type that has A as a multivalued 

attribute. 

 

Example: create a relation DEPT_LOCATIONS. The attribute Dlocation 

represents the multivalued attribute LOCATIONS of DEPARTMENT, while 

Dnumber—as foreign key—represents the primary key of the DEPARTMENT 

relation.  



ER Model To Relational Model 

Step 7: Mapping of N-ary Relationship Types. For each n-ary relationship 

type R, where n > 2, create a new relation S to represent R. Include as foreign 

key attributes in S the primary keys of the relations that represent the 

participating entity types. Also include any simple attributes of the n-ary 

relationship type as attributes of S. 

 



ER Model To Relational - Summary 

Source: (Elmasri and Navathe, 2011) 

 

 



Exercise 02 



Specifications 

for the stored 

database in terms 

of physical file 

storage structures, 

buffer, and 

indexes. 

Database Design 

 Source: (Elmasri and Navathe, 2011) 

 

 



Database and 

application 

programs are 

implemented, 

tested, and 

eventually 

deployed for 

service. 

 

It can result in 

conceptual, logical 

or internal 

(physical) schema 

changes 

 

Database Design 

 Source: (Elmasri and Navathe, 2011) 

 

 


