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Motivation — E-sensing Project

Classes of land use

Extract information on land use and cover change _
(LUCC) from big Earth observation (EO) data sets. B Primary forest

Bl Deforestation/Forest degradation
I Post-extraction/fire secondary forest

Example - Land cover change trajectories in the Amazonian e e wmcondsey Sovest
biome of Mato Grosso state - Brazil (2001-2014) B Cotton
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graphics: Victor Maus (INPE, IFGI)




Motivation — E-sensing Project

How to create land use and cover change (LUCC) maps from
satellite image time series ?

Vegetation Indices (e.g. EVI and
NDVI) characterize vegetation

0.75-

| dynamics across different
= 050- temporal scales (FENSHOLT et
| al., 2015).
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Samples of land use and cover change (LUCC)
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“The transformations of land cover due to actions of land
use” (Camara, 2017). Adapted from: Maus, V. (IIASA, INPE)




A method to assess LUCC samples from satellite
image time series
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[Lorena Alves, 2018, “A method to assess LUCC samples from satellite image time series ”]
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A method to assess LUCC samples from satellite
image time series
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A method to assess LUCC samples from satellite
image time series

Pattern - Cerrado

o
w

05~

0.4-

0.2-

Pattern - Cerrado-Campo

o
o -

[Lorena Alves,

time

Id_class class Label percentage_class
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2 1 Cerrado Forest 11.75000000
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A method to assess LUCC samples from satellite

image time series

Pattern - Cerrado Pattern - Soy-Corn
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Time Series

Definition: A time series T is an ordered sequence of n real-valued variables

T=(t,...t ), t, ER

A time series is often the result of the observation of an underlying process which
values are collected from measurements made at uniformly spaced time instants

and according to a given sampling rate.

Definition: Given a time series T = (t,,...,t,) of length n, a subsequence Sof T is a
series of length m < n consisting of contiguous time instants from T

S=(ty tyuy - terms) With 1<k<n-m+l

Source: (Esling and Agon, 2012) 13



Time Series Data Mining — Main Tasks

Preprocessing Query by Content Clustering
Classification Segmentation Prediction
Anomaly Detection Motif Discovery

Source: (Esling and Agon, 2012)




Time Series Data Mining — Main Tasks

(@

(b) ()

Segmentation: the goal is to
find the closest approximation
of the input time series with the
maximal dimensionality
reduction factor without losing
any of its essential features.

Source: (Esling and Agon, 2012)

Query by content:

(a) query representation;

(b) e-range query — distance €
(c) K-Nearest Neighbors query.
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Time Series Data Mining — Main Tasks
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Predition:

(a) The input time series may exhibit a periodical and thus predictable structure. (b)
The goal is to forecast a maximum number of upcoming datapoints within a
prediction window. (c) The task becomes really hard when it comes to having
recursive prediction, that is, the long-term prediction of a time series implies reusing
the earlier forecast values as inputs in order to go on predicting.

Source: (Esling and Agon, 2012)
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Time Series Data Mining — Main Tasks

Anomaly Detection: a long
time series which exhibits
some kind of periodical
structure can be modeled
thanks to a reduced pattern of
“standard” behavior. The goal
is thus to find subsequences
that do not follow the model
and may therefore be

Motif Discovery: consists
in finding every
subsequence that
appears recurrently in a
longer time series. These
subsequences are named
motifs. This task exhibits
a high combinatorial
complexity as several
motifs can exist within a
single series, motifs can
be of various lengths,
and even overlap.

considered as anomalies

Source: (Esling and Agon, 2012) 17




Time Series Data Mining — Main Tasks

Preprocessing Query by Content Clustering
Classification Segmentation Prediction
Anomaly Detection Motif Discovery

Source: (Esling and Agon, 2012)




Clustering

Clustering is the process of finding natural groups, called clusters, in a dataset.

The objective is to find the most homogeneous clusters that are as distinct as
possible from other clusters. The grouping should maximize intercluster variance
while minimizing intracluster variance.
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Source: (Esling and Agon, 2012) 19




Time Series Clustering

Definition: Given a time-series database DB and a similarity measure D(Q, T ), find
the set of clusters C = {c;} where ¢, = {T, | T, € DB} that maximizes intercluster
distance and minimizes intracluster variance.

More formally Viy,i,, jsuch that T;;,T,, €c;and T, €c; D(T;;,T)>D(T;;,T,).
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Source: (Esling and Agon, 2012) 20




Time Series Clustering Taxonomy

Time-series
clustering
| |
. Subsequence . .
Whole time- . . Time point
. . time-series .

series clustering . clustering

clustering

Fig. 1. Time-series cl{ jtering taxonomy.

clustering of a set of
individual time-series
with respect to their
similarity.

clustering on a set of
subsequences of a time-
series that are extracted
via a sliding window, that
is, clustering of segments
from a single long time-
series.

Keogh and Lin (2003) represented
that subsequence time series
clustering is meaningless!

clustering of time points
based on a combination
of their temporal
proximity of time points
and the similarity of the
corresponding values.

This approach is similar to
time-series segmentation.
However, it is different
from segmentation as all
points do not need to be
assigned to clusters, i.e.,
some of them are
considered as noise.

Source: (Aghabozorgi et al. 2015) 21




Time Series Clustering Taxonomy
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clustering is meaningless!

clustering of time points
based on a combination
of their temporal
proximity of time points
and the similarity of the
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This approach is similar to
time-series segmentation.
However, it is different
from segmentation as all
points do not need to be
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some of them are
considered as noise.

Source: (Aghabozorgi et al. 2015) 22




Whole time-series clustering

Clustering algorithm

Time-series conversion .o
customization

Multi-step approaches

Shape-based and Feature

Model-based approaches | Feature-based approaches Shape-based approaches based approaches

Raw time-sereis Raw time-sereis . . Raw time-sereis
Raw time-sereis

Model Feature @ Multi-resolutions of

parameters extraction time-series

@ @ Clustering (e.g. SOM) @

Hybrid-clustering

Clustering (e.g. Clustering (e.g. k- (e.g. k-
SOM) Medoids) @ Medoid+Hierarchicha
)
Clusters Clusters Clusters (centeroids)

(centeroids) (centeroids) Clusters (centeroids)

Fig. 2. The time-series clustering approaches.

Source: (Aghabozorgi et al. 2015) 23




Whole time series clustering

(1) Model based approaches: raw time-series is transformed into model parameters (a
parametric model for each time-series,) and then a suitable model distance and a clustering
algorithm (usually conventional clustering algorithms) is chosen and applied to the
extracted model parameters.

(2) Feature-based approach: raw time-series are converted into a feature vector of lower
dimension. Later, a conventional clustering algorithm is applied to the extracted feature
vectors. Usually in this approach, an equal length feature vector is calculated from each
time-series followed by the Euclidean distance measurement.

(3) Shape-based approach: shapes of two time-series are matched as well as possible, by a
non-linear stretching and contracting of the time axes. This approach has also been labelled
as a raw-data-based approach because it typically works directly with the raw time-series
data. Shape-based algorithms usually employ conventional clustering methods, which are
compatible with static data while their distance/similarity measure has been modified with
an appropriate one for time-series.

Source: (Aghabozorgi et al. 2015) 24



Whole time-series clustering

Clustering algorithm

Time-series conversion .o
customization

Multi-step approaches

[Shape-based and Feature

Model-based approaches | Feature-based approaches Shape-based approaches based approaches
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Raw time-sereis

Model Feature @ Multi-resolutions of

parameters extraction time-series

@ @ Clustering (e.g. SOM) @

Hybrid-clustering

Clustering (e.g. Clustering (e.g. k- (e.g. k-
SOM) Medoids) @ Medoid+Hierarchicha
)
Clusters Clusters Clusters (centeroids)

(centeroids) (centeroids) Clusters (centeroids)

Fig. 2. The time-series clustering approaches.

Source: (Aghabozorgi et al. 2015) 25




Time Series Clustering

Definition: Given a time-series database DB and jsimilarity measure D(Q, T)!ﬁnd
the set of clusters C = {c} wherec¢,={T, | T, € D XITMIZES | uster

distance and minimizes intracluster variance.

More formally Viy,i,, jsuch that T;;,T,, €c;and T, €c; D(T;;,T)>D(T;;,T,).
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(a) (b)

(@) N=3and (b)N=8

Source: (Esling and Agon, 2012) 26




Time Series — Similarity Measures

There is different distance measures designed for specifying similarity between

time series.

The most popular distance measurement methods that are used for time series
data: (1) The Hausdorff distance, (2) modified Hausdorff (MODH), (3) HMM-based
distance, (4) Dynamic Time Warping (DTW), (5) Euclidean distance, (6) Euclidean
distance in a PCA subspace, and (7) Longest Common Sub-Sequence (LCSS).

Distance
measure

Level Objective

*Shape level
e Structure level

Type

*Shape based

* Comparison based
¢ Feature based
*Model based

e Similarity In time
e Similarity In shape
e Similarity In change

Fig. 5. Distance measure approaches in the literature.

The choice of a proper distance approach
depends on the characteristic of time
series, length of time series,
representation method, and the objective
of clustering time series to a high extent
(similarity in time, in shape or in change).

Source: (Aghabozorgi et al. 2015) 27



e

Shape-based similarity measures

The time of occurrence of patterns is not important to find similar time series in
shape. Shape-based similarity measure is to find the similar time series in time
and shape. (Aghabozorgi et al. 2015)

A good comparasion of time series distance measures can be found in (Ding et
al., 2008)

28



Shape-based similarity measures

Distance Measure

Characteristics

Euclidean Distace (ED)

Dynamic Time Warping
(DTW)

Longest Common Sub-
Sequence (LCSS)

Minimal Variance
Matching (MVM)

Edit Distance on Real
sequence (EDR)

Cross-correlation based
distances

Edit Distance with Real
Penalty (ERP)

Histogram-based
DISSIM

Sequence Weighted

Alignment model (Swale)

Triangle similarity
measure

Lock-step Measure (one-to-one) using in indexing, clustering and
classification, Sensitive to scaling.

Elastic Measure (one-to-many/one-to-none) Very well in deal with temporal
drift. Better accuracy than Euclidean distance.

Lowe efficiency than Euclidean distance and triangle similarity.

Noise robustness

Automatically skips outliers

Elastic measure (one-to-many/one-to-none), uses a threshold pattern

Noise reduction, able to summarize the temporal structure

Robust to noise, shifts and scaling of data, a constant reference point is used

Using multi-scale time-series histograms
Proper for different sampling rates

Similarity score based on both match rewards and mismatch penalties.

Can deal with noise, amplitude scaling very well and deal with offset
translation, linear drift well in some situations.

Source: (Aghabozorgi et al. 2015) 2



Time Series Clustering

Clustering is a common solution performed to discovery patterns on time-series
datasets.

Time-series clustering is the most-used approach as an exploratory technique,
and also as a subroutine in more complex data mining algorithms, such as rule

discovery, indexing, classification, and anomaly detection.

Euclidean distance and DTW are the most common methods for similarity
measure in time-series clustering.

Source: (Aghabozorgi et al. 2015)
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Euclidean Distance

# Two time series
X <- c(1,1,1,4,4,4,4,4,1,1)
Y <- ¢(1,1,4,4,4,4,4,1,1,1)

# Euclidean distance
TSdist: :EuclideanDistance(X, Y)

J
/

Index

|
\

[1] 4.242641

31



Dynamic Time Warping (DTW)

# Two time series

7 X <- c(1,1,1,4,4,4,4,4,1,1
- Y <- ¢(1,1,4,4,4,4,4,1,1,1
< | # Euclidean distance
- TSdist: :EuclideanDistance(X, Y)
] [1] 4.242641
# Two time series
X <- c(1,1,1,4,4,4,4,4,1,1
Y <- ¢(1,1,4,4,4,4,4,1,1,1
# Euclidean distance
TSdist: :DTWDistance(X, Y)
[ I [ I I
2 4 6 8 10

[1] o

4.0
(R

3.0

2.0

4.0.0

3.0
|
v

2.0

1.0

Index

The choice of a proper distance approach depends

on the objective of clustering time series! 37




Dynamic Time Warping (DTW)

Proposed around 1970. Given two time series, DTW stretches or compresses
them locally in order to make one resemble the other as much as possible.

The distance between the two is computed, after stretching, by summing the
distances of individual aligned elements.
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0 500 1000 1500 o
Source: (Giogino, 2009)
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| Dynamic Time Warping (DTW)

DTW is a much more robust distance measure for time series, allowing similar
shapes to match even if they are out of phase in the time axis.

- Euclidian

DTW

Source: (Keogh and Ratanamahatana, 2005) 34



A)

DTW

C
Two time series Q and C, of length B) /\/\/v
nand m

Q=4d,,9,,.-,9;-.-,9,

C= C1,CpesCjpeesCry

n-by-m matrix where the (jth, jth)

element of the matrix

contains the distance d(g;c;)

between the two points g;and ¢

d(a, ¢) = (g, )’ “. b

Each matrix element (i)
corresponds to the alignment 0)
between the points g;and c;.

Source: (Keogh and Ratanamahatana, 2005) / | C




DTW

A warping path W, is a contiguous
set of matrix elements that defines

a mapping between Q and C.

The kthelement of W is defined as
w, = (i,j), so we have:

W=w, w,, .. w,.., W,

max(m,n) £ K < m+n-1

Source: (Keogh and Ratanamahatana, 2005)
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DTW

The warping path is typically
subject to several constraints:

Boundary conditions: this requires
the warping path to start and finish
in diagonally opposite corner cells
of the matrix.

Continuity: This restricts the
allowable steps in the warping
path to adjacent cells (including
diagonally adjacent cells).

Monotonicity: This forces the

points in W to be monotonically
spaced in time

Source: (Keogh and Ratanamahatana, 2005)
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DTW

There are exponentially many
warping paths that satisfy the
constraints, however we are only
interested in the path that
minimizes the warping cost:

DTW(Q,C)= min{ 5w,

Complexit: O(nm)

Source: (Keogh and Ratanamahatana, 2005)
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DTW - Global constraints on time warping

DTW also constraint the warping path in a global sense by limiting how far it may
stray from the diagonal. The subset of matrix that the warping path is allowed to
visit is called the warping window.

Two advantages:

W\/ /\/\7\/ (1) Speed up the DTW

. ‘ distance
Q NSNS EEEEEEEEEEEEEEE Q NSNS EEEEEEEEEEEEEE RS ’,v calculation
ERSStasstassey o ™ H (2) Prevent
-: / .
EEEESEEEEEEC . mEEEEE i <~ AL H pathological
T U N R ANEEEE N .
O . NEEEE AEEEEEEEE warpings, where a
I EE I relativelysmall
NN NN S SNEENNEE NN RN .
EEEmEEE ‘ . section of one
NSNS NN : / NSNS EEEEESEEEEEEEEA
P . T sequence maps

onto a relatively
large section of
another.

Sakoe-Chiba Band Itakura Parallelogram

Source: (Keogh and Ratanamahatana, 2005) 39



Whole time-series clustering

Clustering algorithm

Time-series conversion .o
customization

Multi-step approaches

Shape-based and Feature

Model-based approaches | Feature-based approaches Shape-based approaches based approaches

Raw time-sereis Raw time-sereis . . Raw time-sereis
Raw time-sereis

S S @
J L

Model Feature Multi-resolutions of
parameters extraction time-series

@ @ Clustering (e.g. SOM) @

Hybrid-clustering
Clustering (e.g. Clustering (e.g. k- (e.g. k-
SOM) Medoids) — Medoid+Hierarchicha

= j
5 5} 5

Clusters Clusters Clusters (centeroids)

(centeroids) (centeroids) Clusters (centeroids)

Fig. 2. The time-series clustering approaches.

Source: (Aghabozorgi et al. 2015) 40




Neural Network

Neural network is a collection of interconnected neurons that incrementally learn
from their environment (data) to capture essential linear and nonlinear trends in

complex data.

Neurons are the basic computing units that perform local data processing inside a
network.

It resembles the brain in two respects: (1) Knowledge is acquired by the network
through a learning process; (2) Interconnection strengths between neurons,
known as synaptic weights or weights, are used to store knowledge. (Haykin,
1994)

Source: (Samarasinghe, 2016) 41



Function approximation
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(2) Signal classification: assign time-series data to a class

{ Identify species (birds, insects, fish, animals)

e

Identify abnormalities (irregular heart rate,
earthquake signals)

(b)

Unsupervised clustering: find unknown clusters in data

© @

Forecasting: predict next outcomes of a time series

-- Species assemblages

-- Protein structure
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(d)

Time

Neural networks perform a variety of
tasks, including prediction or function
approximation (a), pattern classification
(b), clustering (c), and forecasting (d).

Source: (Samarasinghe, 2016) 42



Single-layer perceptron Linear neuron

Linear classifier Linear predictor/classifier
<— Some neural networks types.
= 0~
() (b) -~ Key features of neural networks:
Multilayer perceptron Competitive networks (1) they process information locally
Nonlinear predictor/classifier Unsupervised classifier in neuron S;
(2) neurons operate in parallel and
%ﬁ% are connected into a network
© (d) through weights depicting the
SOM connection strength;
Unsupervised clustering/topology presentation (3) networks acquire knowledge

from the data in a process called
learning, which is stored or
reflected in the weights;

(4) a network that has undergone
learning captures the essential
features of a problem and can
therefore make reliable

% predictions.

) Source: (Samarasinghe, 2016)

Recurrent petworks
Time-series forecasting
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Single-layer perceptron
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L
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Nonlinear predictor/classifier

Linear neuron
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(b)

Competitive networks

Unsupervised classifier

=X 30>

SOM

(d)

Unsupervised clustering/topology presentation

Recurrent petworks

Time-series forecasting

o—

=

Source: (Samarasinghe, 2016)

There are several methods
suitable for nonlinear analysis,
including multilayer perceptron
(MLP) networks, radial basis
function (RBF) networks,
support vector machines
(SVMs), generalized model for
data handling (GMDH), also
called polynomial nets,
generalized regression neural
network (GRNN) and
generalized neural network
(GNN).

Most of these networks have

several processing layers that
give them nonlinear modeling
capability.
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Single-layer perceptron Linear neuron

Linear classifier Linear predictor/classifier
(b)
Multilayer perceptron Competitive networks
Nonlinear predictor/classifier Unsupervised classifier

()

(d)

SOM

Unsupervised clustering/topology presentation

The self-organizing map (SOM)
not only finds unknown clusters
s in the data but also preserves

(e)

Recurrent petworks
Time-series forecasting

S | |

the topological structure

(spatial relations) of the data
and clusters.

Source: (Samarasinghe, 2016) 45



Unsupervised Neural Networks

Unsupervised neural networks are used to find structures in complex data.

They are useful because there are many real-life phenomena in which the data is
multidimensional and its structure and relationships are unknown a priori; in
these situations, the data must be analyzed to reveal the patterns inherent in it.

The Self-Organizing Map (SOM) is a unsupervised neural network.

SOM was proposed by Kohonen in 1990.

Source: (Samarasinghe, 2016) 46



SOM - Structure

An unsupervised network usually has two layers of neurons: an input layer and
an output layer. The input layer represents the input variables, x,, X, ..., x,,, for
the case of n inputs. The output layer may consist of neurons arranged in a single
line (a) (one-dimensional) or a two-dimensional grid (b), forming a two-
dimensional layer.

QO 0O O O

(a) )(1 ecccee Xn

Source: (Samarasinghe, 2016) 47



SOM - Example 1

Example 1: identify the breed of salmon, whether Alaskan or Canadian, from the
growth-ring diameter of the scales in freshwater and ring diameter of scales in

seawater.
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© 850 Rk &2

o2 % = Alaskan
T 300L.. A A

60 80 100 120 140 160 180
Ring diameter — freshwater

l

Input layer:
n =50 inputs of two variables

x; = (diam_fresh, diam_salt,)
Source: (Samarasinghe, 2016)
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SOM - Example 1

Example 1: identify the breed of salmon, whether Alaskan or Canadian, from the
growth-ring diameter of the scales in freshwater and ring diameter of scales in

seawater.
(5, 5)
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Output layer:

Input layer:
P y 25 neurons

n =50 inputs of two variables
X; = (diam_fresh,, diam_salt)

Source: (Samarasinghe, 2016)
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SOM - Structure

The number of output neurons must be determined.

In many cases, the number of data clusters is unknown; it is therefore necessary
to use a reasonable estimate based on the current understanding of the

problem.

When there is uncertainty, it is better to have a larger number of output neurons
than the possible number of clusters because redundant neurons can be
eliminated.

Source: (Samarasinghe, 2016)
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SOM - Weights and learning process

Each output neuron has a weight vector (codebook vector) that has the same
dimension as the input vectors.

The learning process consistis in adjusting incrementally these weights.

Each cluster is represented by one or more final weight vectors of neurons.

(5, 5)

O-QO~@-
B0

@--@---@---@-.-@
P-G—-0—G—0

OO0
(1,1)

weight vector (codebook vector)

w; = (diam_fresh, diam_salt)

Source: (Samarasinghe, 2016)
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SOM - Competitive learning

Before starting the learning process, the vector weights must be initialized. There
are two options: (1) Use random values; or (2) Randomly choose some input
vectors and use their values for the weights.

Source: (Samarasinghe, 2016) 52



SOM - Competitive learning

Before starting the learning process, the vector weights must be initialized. There
are two options: (1) Use random values; or (2) Randomly choose some input

vectors and use their values for the weights.
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All 25 initial weight

P values are centered in

the original data.

60 80 100 120 140 160 180
Ring diameter— freshwater

Source: (Samarasinghe, 2016) 23



SOM - Competitive learning

In competitive learning, an input is presented to the network and the winner is
selected based on the neuron activation. A neuron is declared the winner if it has

the highest activation.

The competition can be implemented by using the concept of distance between
an input and a weight vector. That is, a weight that is closer to an input vector
would cause a larger activation than one that is far away from the vector.

Source: (Samarasinghe, 2016) >4



SOM - Competitive learning

Euclidean distance (d,) between input Once the distance between an input
vector x and the weight vector w, vector and all the weights has been
associated with the jth output neuron. found, the neuron with the smallest

distance to the input vector is chosen
as the winner, and its weights are

n
d =x— w; = \/Z (x, — Wz_j)z updated so that it moves closer to the
i=1

g input vector.
X
w
0

Source: (Samarasinghe, 2016)

ij = B(x— Wj) = 561]
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SOM - Competitive learning

Euclidean distance (d,) between input Once the distance between an input
vector x and the weight vector w, vector and all the weights has been
associated with the jth output neuron. found, the neuron with the smallest

distance to the input vector is chosen
as the winner, and its weights are

n
d=x—w; = \/Z (x, — Wz_j)z updated so that it moves closer to the
i=1

input vector.
X
w
0

Source: (Samarasinghe, 2016)

learning rate:

from0Oto1l
56




| SOM - Topology preservation

Main feature: topology preservation => regions closer in input space are
represented by neurons that are closer in the map.

In SOM learning, not only the winner but also the neighboring neurons adjust their
weights. Neurons closer to the winner adjust weights more than those that are far

from it. m
(TR
DT
S
*

e S
R

neighboring
neurons are
similar!

S
D
BEXS

Source: (Samarasinghe, 2016) >7
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SOM - Neighborhood
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Neighborhood definitions: (a) linear (b) square, and (c) hexagonal
neighborhood surrounding a winning neuron (solid circle denotes winner and
empty circles denote neighbors).

Distance radiusr: 1, 2, ...

Source: (Samarasinghe, 2016)
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SOM - Competitive learning

All weight (codebook) vectors w; of the winner and neighbors are adjusted to
w’; according to:

U

59

Source: (Samarasinghe, 2016)



SOM - Competitive learning

All weight (codebook) vectors w; of the winner and neighbors are adjusted to
w’; according to:

I _
w; =w; + BINS|x — w,]

Neighbor Strength: The NS function determines how the weight
adjustment decays with distance from the winner. There are several
possibilities for this function: linear, Gaussian, and exponential.

Neighbor strength
1
—d2. where d,; is the distance between
NS = Exp [ ;’7] the winning neuron j and any
0.5 20 other neuron j, and o is the width
of the Gaussian.
Distance from winner
0 10 30

60

Source: (Samarasinghe, 2016)



SOM - Training phase

Training is usually performed in two phases: Ordering and Convergence.

(1) Ordering (topological ordering): learning rate and neighborhood size are
reduced with iterations until the winner or a few neighbors around the
winner remain.

(2) Covergence (fine tuning): the feature map is fine tuned with the shrunk
neighborhood so that it produces an accurate representation of the input

space.

Training terminates when the mean distance between the winning neurons
and the inputs they represent stops changing.

61

Source: (Samarasinghe, 2016)



SOM - Training phase

Ordering phase Covergence phase
(1) The neighbor size should initially (1) The neighbor strength should contain
cover almost all neurons in the network | only the nearest neighbors of the winning
and then shrink with iterations. \ neuron and may slowly reduce to one or

. zero neighbors.

_____________________________________________________________________________________________________________________________

(2) The learning rate should begin with | (2) The learning rate is maintained at
a relatively high value and should . a small value, on the order of 0.01.
thereafter gradually decrease, but '

must remain above 0.01.

_____________________________________________________________________________________________________________________________

(3) Trainning in recursive mode: the : (3) Trainning in batch mode: the weight
weights of the winning neurons and . adjustment is made after the entire batch
their neighbors are updated after . of inputs has been processed. After an
each presentation of an input vector. . epoch (i.e., one pass of the whole training

| dataset through the network), the weights
. are changed.
Source: (Samarasinghe, 2016)
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T
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Learning rate: small constant value in
the first four iterations so that the
codebook vectors find a good
orientation.

Then it is increased to 0.25 at the fifth

From this high value, the step length is
slowly decreased until the map
converges.

Source: (Samarasinghe, 2016)
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iteration to speed up the convergence.

Example 1 — Phase 1

Learning rate function:

B=0.01 {r<5

=—— {t>5

Learning rate
0.25

0.2
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lterations
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(b) Ring diameter— freshwater

Neighbour strength: during the first four
iterations, all neurons on the map are
neighbors of a winning neuron and all
neighbors are strongly influenced.

The stronger influence on the neighbors
in the initial iterations makes the network
conform to a nice structure and avoids
knots.

From the fifth iteration, the influence on
neighbors decreases with iterations.

Source: (Samarasinghe, 2016)

SOM - Example 1 - Phase 1

Neighbour strength function:

NS = Exp[—0.1d] if 1<5

= Exp [— =4 d] otherwise

10
Neighbor strength
1
0.8
0.6
04
0.2
Distance
1 2 3
Neighbor strength in relation to
distance from winner after 30
iterations.
64



§5oo ":_‘ .
© mdllm ®
(0]
i L R JRN SOM - Example 1 - Phase 1
% 400, = "':.'.-""‘;;ﬁg o o &
n
§35° N vy Mean distance:
£300L. . . A AL
60 80 100 120 140 160 180
(b) Ring diameter— freshwater Mean distance
45¢
40¢
35¢
30¢
25t
The network has reached stability 20+t
in about 30 iterations and at this 15¢
10¢

stage only the winner and the

nearest neighbors are active 0 5 10 15 20 25 30

lterations

Source: (Samarasinghe, 2016) 65




SOM - Example 1 - Phase 1

lteration: O

500 |
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Source: (Samarasinghe, 2016)
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SOM - Example 1 - Phase 1

500¢

450t

400¢ .

Ring diameter— saltwater

300t

60 80 100 120 140 160 180
Ring diameter— freshwater

Codebook vectors of the trained
map at the completion of the
ordering phase superimposed on
input data (after 30 iterations).

Source: (Samarasinghe, 2016)
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Result of the covergence phase.

Result of the ordering phase.
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SOM - Example 1 — Phase 2

The trained map was trained further in batch mode for ten epochs.

The neighbor strength is limited to the winning neuron.

Mean distance

8.4

8.2 The training performance with
8 respect to reduction in mean

7.8 distance which indicates that

7.6 the map has now converged.

7.4

7.2

01 2 3 45 6 7 8 9 10
Iterations

Source: (Samarasinghe, 2016)




SOM - Example 1 — Clusters

Because there are two classes of salmon (Canadian and Alaskan), a cluster of
codebook vectors, not a single vector, defines each class.

This gives the map its ability to form nonlinear cluster boundaries. This cluster
structure can be used to discover unknown clusters in data.

1 2 3 4 5
Canadian salmon
5 2x1 |4x1 |2x1 [8x0 |5x0 (class-0) are
1x0 mapped to the
4 2x1 16x1 1 1x0 | 6x0 | 4x0 right side and the
3 4x1 | 2x1 |2x1 | 3x0 | 4x0 Alaskan salmon
are mapped to
2 7x1 |[6x1 [2x1 [3x0 [5x0 the left side
1x0 |3x0
1 3x1 [4x1 [3x1 |[1x1 |4x0
1x0 |[1x0

Source: (Samarasinghe, 2016)



SOM - Example 1 — Clusters

Because there are two classes of salmon (Canadian and Alaskan), a cluster of
codebook vectors, not a single vector, defines each class.

This gives the map its ability to form nonlinear cluster boundaries. This cluster
structure can be used to discover unknown clusters in data.

1 2 3 4 5
Canadian salmon
5 2x1 |4x1 [2x1 |8x0 |5x0 (class-0) are
1x0 mapped to the
4 R 130 | 6x0 | 4x0 right side and the
3 4x1 | 2x1 |2x1 | 3x0 | 4x0 Alaskan salmon
are mapped to
2 7x1 |6x1 [2x1 [3x0 |5x%0 the left side
1x0 | 3x0
1 3x1 |4x1 [3x1 |1x1 |[4x0
1x0 | 1x0

Source: (Samarasinghe, 2016)



SOM - Example 1 — U-Matrix

From the trained map, the average distance between a neuron and its neighbors is
called unified distance and the matrix of these values is called the U-matrix.

1 2 3 4 5
2x1 4x1 2x1 |8x0 |5x0
1x0
2x1 6x1 1x0 6x0 | 4x0
4x1 |2x1 |[2x1 [3x0 |4x0
7x1 |6x1 |[2x1 |[3x0 |5x0

1x0 |[3x0
3x1 [4x1 [3x1 [1x1 |4x0
1x0 |1x0

Source: (Samarasinghe, 2016)
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SOM - Example 1 — U-Matrix

From the trained map, the average distance between a neuron and its neighbors is
called unified distance and the matrix of these values is called the U-matrix.
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In many practical situations, the number of clusters is unknown.

How many distinct clusters are present in the SOM map?

SOM - Forming Clusters on the Map

U-matrix: can be used to find borders between data. The larger the distance, the
more likely a cluster boundary exists between the vectors.

Any established clustering method can be used for clustering the codebook
vectors, such as hierarchical clustering (dendrogram) or K-means clustering.

Source: (Samarasinghe, 2016)
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