Spatial Databases

Introduction to Spatial Data Mining

Examples of Spatial Patterns

- Historical example
 - **1855** Asiatic Cholera in London: a water pump identified as the source
- Modern Examples
 - Cancer clusters to investigate environment h
 - Crime hotspots for planning police patrol rou
 - Bald eagles nest on tall trees near open wate
 - Nile virus spreading from north east USA to s
 - Unusual warming of Pacific ocean (El Nino) a

What is a Spatial Pattern?

- What is not a pattern?
 - Random, haphazard, chance, stray, accidental, unexpected
 - Without definite direction, trend, rule, method, design, aim, purpose
 - Accidental without design, outside regular course of things
 - Casual absence of pre-arrangement, relatively unimportant
 - Fortuitous What occurs without known cause
- What is a pattern?
 - A frequent arrangement, configuration, composition, regularity
 - A rule, law, method, design, description
 - A major direction, trend, prediction
 - A significant surface irregularity or unevenness

What is Spatial Data Mining?

- Metaphors
 - Mining nuggets of information embedded in large databases
 - Nuggets = interesting, useful, unexpected spatial patterns
 - Mining = looking for nuggets
 - Needle in a haystack
- Defining Spatial Data Mining
 - Search for spatial patterns
 - **Non-trivial search** as "automated" as possible—reduce human effort
 - **Interesting, useful** and **unexpected** spatial pattern

What is Spatial Data Mining?

- Non-trivial search for interesting and unexpected spatial pattern
- Non-trivial Search
 - Large (e.g. exponential) search space of plausible hypothesis
 - Ex. Asiatic cholera : causes: water, food, air, insects, ...; water delivery mechanisms - numerous pumps, rivers, ponds, wells, pipes, ...
- Interesting
 - Useful in certain application domain
 - Ex. Shutting off identified Water pump => saved human life
- Unexpected
 - Pattern is not common knowledge
 - May provide a new understanding of world
 - **Ex.** Water pump Cholera connection lead to the "germ" theory

What is NOT Spatial Data Mining?

- Simple Querying of Spatial Data
 - Find neighbors of Canada given names and boundaries of all countries
 - Find shortest path from Boston to Houston in a freeway map
 - Search space is not large (not exponential)
- Testing a hypothesis via a primary data analysis
 - Ex. Female chimpanzee territories are smaller than male territories
 - Search space is not large !
 - SDM: secondary data analysis to generate multiple plausible hypotheses
- Uninteresting or obvious patterns in spatial data
 - Heavy rainfall in Minneapolis is correlated with heavy rainfall in St. Paul, Given that the two cities are 10 miles apart.
 - Common knowledge: Nearby places have similar rainfall
- Mining of non-spatial data
 - Diaper sales and beer sales are correlated in evenings
 - GPS product buyers are of 3 kinds:
 - outdoors enthusiasts, farmers, technology enthusiasts

Why Learn about Spatial Data Mining?

Two basic reasons for new work

- **Consideration of use in certain application domains**
- Provide fundamental new understanding
- Application domains
 - Scale up secondary spatial (statistical) analysis to very large datasets
 - Describe/explain locations of human settlements in last 5000 years
 - Find cancer clusters to locate hazardous environments
 - Prepare land-use maps from satellite imagery
 - Predict habitat suitable for endangered species
 - Find new spatial patterns
 - Find groups of co-located geographic features

Why Learn about Spatial Data Mining?

- New understanding of geographic processes for Critical questions
 - Ex. How is the health of planet Earth?
 - **Ex.** Characterize effects of human activity on environment and ecology
 - Ex. Predict effect of El Nino on weather, and economy
- Traditional approach: manually generate and test hypothesis
 - But, spatial data is growing too fast to analyze manually
 - Satellite imagery, GPS tracks, sensors on highways, ...
 - Number of possible geographic hypothesis too large to explore manually
 - Large number of geographic features and locations
 - Number of interacting subsets of features grow exponentially
 - Ex. Find tele connections between weather events across ocean and land areas
- SDM may reduce the set of plausible hypothesis
 - Identify hypothesis supported by the data
 - For further exploration using traditional statistical methods

Example

- What is the overall pattern of colorectal cancer
- Is there clustering of high colorectal cancer incidence anywhere in the study area
- Where is colorectal cancer risk significantly elevated

Spatial Data Mining: Actors

- Domain Expert
 - Identifies SDM goals, spatial dataset,
 - Describe domain knowledge, e.g. well-known patterns, e.g. correlates
 - Validation of new patterns
- Data Mining Analyst
 - Helps identify pattern families, SDM techniques to be used
 - Explain the SDM outputs to Domain Expert
- Joint effort
 - Feature selection
 - Selection of patterns for further exploration

Spatial Data Mining Process

Families of SDM Patterns

- Common families of spatial patterns
 - Classification
 - Clustering
 - Spatial Association Rules
 - Co-location
 - Outliers detection
 - ÷ ..
- Note
 - B Other families of spatial patterns may be defined
 - **SDM** is a growing field, which should accommodate new pattern families

Classification

- Given a set of instances, the role of classification is to discover the classes of the instances
- Spatial objects may be characterized (classified) by different types of information (Koperski 1998):
 - non-spatial attributes (e.g. population);
 - spatially related attributes with non-spatial values (e.g. total population living within 100 meters from cellular antennas);
 - spatial predicates (e.g. closeTo_beach)

Ester (1997, 2001)

Class is a non-spatial attribute = *housePrice Class values*: high, medium, low

Remote Sensing Data Mining

Figure 2. Examples of patterns of tropical deforestation proposed by Mertens and Lambin (1997) in the Brazilian Amazonia: corridor, diffuse, fishbone, and geometric.

Remote Sensing Data Mining

Figure 1. Proposed method for remote sensing image mining.

<u>Metrics</u>

• Perimeter (m):

$$PERIM = p_{ij}.$$
 (1)

• Area (ha):

AREA =
$$(a_{ij}/10\,000)$$
. (2)

• PARA, perimeter-area ratio, a measure of shape complexity:

$$PARA = \frac{p_{ij}}{a_{ij}}.$$
 (3)

 Shape, shape compactness index, calculated by the patch perimeter p_{ij} divided by p_{ij min}, which is the minimum perimeter possible for a maximally compact patch of the matching patch area. It is equal to 1 when the region is a square and grows according to the region's irregularity.

$$SHAPE = \frac{p_{ij}}{p_{ij\min}}.$$
 (4)

Decision Tree

Figure 3. Decision tree for patterns in figure 3 (GEOM: geometric; FISH: fishbone; DIFF: diffuse; CORR: corridor). Metrics: area in km² (AREA) and shape compactness index (SHAPE).

Results

Figure 12. Cumulative deforestation patterns in Vale do Anari (1985-2000).

Clustering (cluster analysis)

- Clustering is a process of partitioning a set of data into a set of groups called *clusters*
- A cluster is a set of data (objects) with
 - similar characteristics
 - that can be collectively treated as one group
- Clustering is an unsupervised method
 - no predefined classes

Clustering Analysis (Kumar 2005)

Different ways of clustering the same set of points

Main Clustering Approaches

Partitioning

A <u>division of data objects into non-overlapping subsets</u> (clusters) such that *each object* is in exactly one subset

Hierarchical

A set of nested clusters organized as a hierarchical tree

Density-based

Find clusters based on <u>density of regions</u>

Grid-based

Find clusters based on the <u>number of points in each cell</u>

K-means

- Partitional clustering approach
- Each cluster is associated with a centroid
- Each point is assigned to the cluster with the closest centroid
- A drawback of the k-means is that the number of clusters K is na input parameter

Hierarchical Clustering

Two main types: Agglomerative and Divisive

- Agglomerative
 - Start with all objects as individual clusters
 - At each step, merge the two most similar clusters
 - Until rests one cluster (or k clusters)

Hierarchical Clustering

- Divisive
 - Start with one cluster (with all objects)
 - At each step, split a cluster in two
 - Until each cluster contains only one object (or k clusters)

Similarity can be euclidean distance or any other measure

DBSCAN (Ester 1996)

- DBSCAN is a density-based algorithm
- Density = number of points within a specified radius (Eps)
- A point is a core point if it has more than a specified number of points (MinPts) within Eps
- A border point has less than MinPts within Eps, but it is in the neighborhood of a core point
- A noise point is any point that is not a core point or a border point.

DBSCAN example

Identifying core, border and noise points

Computing distance

Spatial Association Rules

Association Rules (Agrawal 1993)

Association rule is an implication of form: $X \rightarrow Y$

Support: $\#(X \cup Y) / T$, where T number of transactions in the dataset

Confidence: Support(X \crimet Y)/Support(X)

Support {AC} = 3/6 (50%)

Confidence $A \rightarrow C = 3/4$ (75%)

<u>Associataion rules</u>

Main problem: generate hundreds or thousands of rules

- Frequent Itemsets: generate all possible frequent itemsets
 - Apriori-like (generate candidates) (Agrawal, 1994)
 - Pattern-growth (without candidate generation) (Han, 2000)
- Closed frequent itemsets: generate non-redundant frequent itemsets
 - Apriori-like (generate candidates) (Pasquier, 1999) (Zaki, 2000)
 - Pattern-growth (without candidate generation) (Han, 2001) (Zaki 2002)......

<u>Redundant Rules</u>

A <u>Redundant rule</u> has same support and confidence of another rule generated from the same set of transactions

25 frequent itemsets / 9 closed frequent itemsets
Spatial association Rules

Spatial association rule is an implication of the form
 X → Y (support)(confidence)

• at least one element in X or Y is a spatial predicate

- $\blacksquare \ closeTo_slum \rightarrow criminalityRate=High$
- **Touches_beach** \rightarrow housePrice=High

Different Spatial Objects are Stored in Different Tables

Street Gid Name Shape ljui Multiline [(x1,y1),(x2,y2),...} 1 2 Multiline [(x1,y1),(x2,y2),..] Lavras **WaterResource** Gid Shape Name Multiline [(x1,y1),(x2,y2),..] Jacui 1 2 Guaiba Multiline [(x1,y1),(x2,y2),..] 3 Multiline [(x1,y1),(x2,y2),..] Uruguai GasStation **Gid Name** VolDiesel VolGas Shape 1 BR 20000 85000 Point[(x1,y1)] 2 IPF 30000 95000 Point[(x1,y1)] 3 120000 Point[(x1,y1)] Esso 25000

Most Spatial Association Rule Mining algorithms have a single table/file INPUT format

Different Relations (tables) need to be Spatially Joined

Preprocessed Geographic Data for Transaction-Based Data Mining

Spatial Association Rules

- Are computed in 3 main steps:
 - Data preprocessing: compute spatial relationships (spatial joins).
 Most expensive step
 - Compute frequent itemsets
 - Generate association rules

Transaction Dataset X Preprocessed Spatial

<u>Dataset</u>

Transactional Dataset

Transaction	Items		
1	milk, bread, butter, cereal		
2	milk, bread		
3	beer, bread, chocolate		
4	cereal, meet, milk		
5	milk, beer, nuts, orange, cereal		

➤ rows are transactions

attributes are items, supposed to be independent

relevant feature types

Spatial Dataset

Tuple (city)	Spatial Predicates		➢ rows are instances of the
1	contains(Port), contains(Hospital), contains(TreatedWaterNet), contains(Factory), crosses(WaterNet), crosses	WaterBody	target feature type
2	contains(Hospital), contains(TreatedWaterNet), crosses(WaterBody)
3	contains(Port), contains(TreatedWaterNet), contains(Factory), crosses(WaterBody)	
4	contains(Port), contains(Hospital), contains(TreatedWaterNet), crosses(attril 	outes are predicates
5	contains(Port), contains(Hospital), contains(TreatedWaterNet), contains(Factory), crosses(WaterNet), crosses	spatial relationships between	
6	contains(Hospital), contains(TreatedWaterNet), contains(Factory)		
		the	target feature type and

Some Spatial Association Rule Mining Algorithms

- Koperski 1995
- Spada (Appice 2003)
- Clementini (2003)
- Apriori-KC (Bogorny 2006)
- Max-FGP (Bogorny 2006^a)
- e ...
- Preprocess geographic data and apply classical DM algorithms

Co-location (Shekhar 2003)

Q: find patterns from the following sample dataset

Answers:

Co-Location Patterns (Huang 2004, Yoo 2005)

- Input:
 - Spatial dataset
 - Distance threshold
 - Minimum participation index
- Method
 - Find neighbors
 - Find co-location candidates
 - Find frequent co-location sets
 - Extract co-location rules

A, B, C: Spatial Feature Types A1, A2... Spatial Feature Instances Edges: neighbor

A-School B-Hospital C-Pharmacy

A-School B-Hospital C-Pharmacy

Candidates of size k=2

Co-location Example (Shekhar 2003)

Cropland with Roads Roads with Bridges

- Cropland —— Roads
- Bridges

Outliers

- What is an outlier?
 - Observations inconsistent with the rest of the dataset

What is a spatial outlier?

- Observations inconsistent with their neighborhoods
- A local instability or discontinuity

Outliers (Shekhar 2001, 2003)

- Global outliers are data inconsistent with the rest of the data in the database
 - Applications:
 - credit card fraud,
 - athlete performance analysis,
 - voting irregularity,
 - severe weather prediction

Outliers (Shekhar 2001, 2003)

- A spatial outlier is a spatially referenced object whose non-spatial attribute values are significantly different from those of other spatially referenced objects in its spatial neighborhood.
 - For example, a new house in an old neighborhood is a spatial <u>outlier</u> based on the non-spatial attribute house age
 - Spatial attributes are used to characterize location, neighborhood, and distance.
 - Non-spatial attributes are used to compare a spatial referenced object to its neighbors.

Outliers – Examples (Shekhar 2003)

Tools

- GeoMiner (Han 1997)
- INGENS (Malerba 2001)
- Ares (Appice 2005)
- Weka-GDPM (Bogorny 2006d)

Conclusions

- Patterns are opposite of random
- Common spatial patterns: location prediction, feature interaction, hot spots,
- SDM = search for unexpected interesting patterns in large spatial databases
- Spatial patterns may be discovered using
 - Techniques like classification, associations, clustering and outlier detection
 - New techniques are needed for SDM due to
 - Spatial Auto-correlation
 - Continuity of space