
Oracle Spatial – Geometry
and GeoRaster

Karine Reis Ferreira – karine@dpi.inpe.br

CAP 349 – Bancos de Dados Geográficos (09/08/2014)

Disponível em: http://wiki.dpi.inpe.br/doku.php?id=cap349

n  Oracle Spatial is an integrated set of functions and
procedures that enables spatial data (vector and raster) to
be stored, accessed, and analyzed in an Oracle database.

n  Comercial system

n  Current version: 11g

n  http://www.oracle.com/index.html

Oracle Spatial

n  A schema (MDSYS) that prescribes the storage, syntax,
and semantics of geometric and raster data types

n  A spatial indexing mechanism
n  Operators, functions, and procedures for performing area-

of-interest queries, spatial join queries, and other spatial
analysis operations

n  Topology data model for working with data about nodes,
edges, and faces in a topology

n  Network data model for representing capabilities or objects
that are modeled as nodes and links in a network

n  GeoRaster, a feature that lets you store, index, query,
analyze, and deliver GeoRaster data, that is, raster image
and gridded data and its associated metadata

Oracle Spatial provides

Geometry data types

Oracle Spatial – Vector Data

n  Tipos de dados geométricos.
n  Operadores e funções espaciais.
n  Métodos de Acesso Espacial:

n  R-Tree e QuadTree
Layer

Geometry

Element

CREATE TYPE SDO_GEOMETRY AS OBJECT (
SDO_GTYPE NUMBER,
SDO_SRID NUMBER,
SDO_POINT SDO_POINT_TYPE,
SDO_ELEM_INFO SDO_ELEM_INFO_ARRAY,
SDO_ORDINATES SDO_ORDINATE_ARRAY);

Oracle Spatial – Vector Data

Oracle Spatial – SDO_GEOMETRY

n  Criação de tabelas com tipos de dados espaciais:

CREATE TABLE distritossp

(cod NUMBER(32),
 sigla VARCHAR(10),

 denominacao VARCHAR(50),

 spatial_data MDSYS.SDO_GEOMETRY

 PRIMARY KEY (cod)

);

Oracle Spatial – Metadata Tables

TABLE_NAME VARCHAR2(32)

COLUMN_NAME VARCHAR2(32)

DIMINFO SDO_DIM_ARRAY

SRID NUMBER

USER_SDO_GEOM_METADATA

USER_SDO_INDEX_INFO
SDO_INDEX_OWNER VARCHAR2(32)

INDEX_NAME VARCHAR2(32)

TABLE_NAME VARCHAR2(32)

COLUMN_NAME VARCHAR2(32)

SDO_INDEX_TYPE VARCHAR2(32)

SDO_INDEX_TABLE VARCHAR2(32)

SDO_INDEX_STATUS VARCHAR2(32)

MDSYS.CS_SRS
SC_NAME VARCHAR2(68)

SRID NUMBER(38)

AUTH_SRID NUMBER(38)

AUTH_NAME VARCHAR2(256)

WKTEXT VARCHAR2(2046)

SC_BOUDS SDO_GEOMETRY

n  Inserindo dados em tabelas com tipos de dados espaciais:

 INSERT INTO distritossp (cod, sigla,
denominacao, spatial_data)

 VALUES (1, 'VMR', 'VILA MARIA'
 MDSYS.SDO_GEOMETRY(2003, NULL, NULL,

 MDSYS.SDO_ELEM_INFO_ARRAY(1, 1003, 1),

 MDSYS.SDO_ORDINATE_ARRAY(6,10, 10,1, 14,10,
10,14, 6,10)))

Oracle Spatial – Examples

n  Indexando uma coluna espacial (R-Tree):

CREATE INDEX distritossp_IDX

ON distritossp(SPATIAL_DATA)
INDEXTYPE IS MDSYS.SPATIAL_INDEX

n  Funções para trabalhar com os índices:

SDO_TUNE.QUALITY_DEGRADATION

ALTER INDEX REBUILD

Oracle Spatial – Examples

Oracle Spatial – Spatial Query

Operadores Descrição

SDO_FILTER
Implementa o primeiro filtro do modelo de
consulta (baseado nos MBR)

SDO_RELATE
(SDO_TOUCH, SDO_ON,
SDO_INSIDE)

Avalia se as geometrias possuem uma
determinada relação topológica

SDO_WITHIN_DISTANCE
Verifica se duas geometrias estão dentro de
uma determinada distância.

SDO_NN
Identifica os n vizinhos mais próximos de
uma geometria

n  Operadores:
¨  Usados na cláusula WHERE de uma consulta SQL
¨  Utilizam indexação espacial

n  Funções:
¨  Definidas como subprogramas PL/SQL
¨  Usados na cláusula WHERE ou em SUBCONSULTAS
¨  Podem ser utilizadas sobre colunas espaciais não indexadas

Funções Descrição

SDO_INTERSECTION, SDO_UNION

SDO_DIFFERENCE, SDO_XOR
Operações de conjunto

SDO_BUFFER, SDO_CENTROID,
SDO_CONVEXHULL

Operações que geram novas
geometrias

SDO_AREA, SDO_ LENGTH,
SDO_DISTANCE

Operações métricas

Oracle Spatial – Spatial Query

Oracle Spatial – Spatial Query

Buffer

Tolerance

Oracle Spatial – Spatial Query

Topological relations

n  “Recuperar o nome de todos os municípios da grande São
Paulo que são vizinhos ao município de São Paulo”.

 SELECT d2.nomemunicp
 FROM grande_sp d1,

 grande_sp d2

 WHERE SDO_TOUCH (d1.spatial_data,

 d2.spatial_data) = 'TRUE'
 AND (d2.nomemunicp <> 'SAO PAULO')

 AND (d1.nomemunicp = 'SAO PAULO')

Oracle Spatial – Examples

n  “Recuperar todos os distritos que estão num raio de 3Km de
um determinado rio”

SELECT di.deno

FROM sp_distritos di,

 sp_drenagem dr,

 user_sdo_geom_metadata m,

WHERE

 SDO_RELATE (di.spatial_data,
 SDO_BUFFER (dr.spatial_data, m.diminfo, 3000),

 'mask=INSIDE+TOUCH+OVERLAPBDYINTERSECT') = 'TRUE'
AND m.table_name = 'sp_drenagem'

AND m.column_name = 'spatial_data'

AND dr.object_id = '59';

Oracle Spatial – Examples

n  GeoRaster is a feature of Oracle Spatial that lets you store,
index, query, analyze, and deliver raster data and its
associated metadata.

Oracle Spatial – Raster Data

Oracle GeoRaster – Architecture

Five components to support the
storage and use of raster data
in Oracle Database:

Oracle GeoRaster – Architecture

GeoRaster Engine: provides

the native GeoRaster object

type and GeoRaster

functionality including raster

data and metadata indexing,

update, query and

manipulations.

Five components to support the
storage and use of raster data
in Oracle Database:

Oracle GeoRaster – Architecture

SQL API : standard SQL
access to the raster and

grid-based data in
GeoRaster databases.

Five components to support the
storage and use of raster data
in Oracle Database:

Oracle GeoRaster – Architecture

SQL API : standard SQL
access to the raster and

grid-based data in
GeoRaster databases.

Three PL/SQL packages:

(1) MDSYS.SDO_GEOR: for creating, modifying, and retrieving GeoRaster objects

(2) MDSYS.SDO_GEOR_UTL: for utility operations related to GeoRaster

(3) MDSYS.SDO_GEOR_ADMIN: for administrative operations related to GeoRaster

Five components to support the
storage and use of raster data
in Oracle Database:

Oracle GeoRaster – Architecture

C/C++/Java – Java, OCI, and
OCCI : access to the raster
and grid based data in
GeoRaster with or without
calling the GeoRaster SQL
API.

Five components to support the
storage and use of raster data
in Oracle Database:

Oracle GeoRaster – Architecture

Viewing Tools: A variety of third

party visualization and

analysis tools:

(1) Oracle Fusion Middleware

MapViewer;

(2) GeoRaster Viewer: a

standalone viewer comes with

the Oracle GeoRaster

installation and can be used as

a development or DBA tool.

Five components to support the
storage and use of raster data
in Oracle Database:

Oracle GeoRaster – Architecture

Input and Output [data]
adapters: Facilitate loading and
unloading raster data between
well-known image file formats and
GeoRaster. A variety of third party
ETL tools now support loading
and unloading GeoRaster data.
GeoRaster also provides limited
importing and exporting capability
on six standard image file formats
through both the server-side SQL
API and the client-side Java tool.

Five components to support the
storage and use of raster data
in Oracle Database:

GeoRaster – Logical Data Model

Oracle defines georaster object as a multidimensional matrix of
cells (raster) and a set of metadata. It is logically layered.

Raster: a multidimensional
matrix of raster cells. Each cell
is one element of the matrix,
and its value is called the cell
value. The matrix has a
number of dimensions, a cell
depth, and a size for each
dimension.

It can be blocked for optimal
storage, retrieval and
processing.

Pyramids (generalized, lower-
resolution versions of the
image – useful for fast retrieval
in web applications) of the core
raster data can be generated,
stored and processed the
same way.

GeoRaster – Logical Data Model

A georaster object is logically

layered. The core data is

called the object layer or layer

0, and consists of one or more

logical layers (or sublayers).

GeoRaster – Logical Data Model

GeoRaster metadata:

(1) Object information (cell depth,

blocking size, compression, info
about pyramids, …)

(2) Raster information

(3) Spatial reference system

information

(4) Date and time (temporal

reference system) information

(5) Spectral (band reference

system) information

(6) Layer information for each

layer (RGB colormap, grayscale
lookup table, statistics, NODATA

values, value ranges, …)

GeoRaster – Logical Data Model

GeoRaster Engine

Physically, the GeoRaster data model is embodied as:

 (1) two native data types: SDO_GEORASTER and

 SDO_RASTER
 (2) an object-relational schema inside Oracle ORDBMS.

GeoRaster – Database Schema

Schema designed to store and manage raster data inside the
database.

GeoRaster – Database Schema

GeoRaster table: A

GeoRaster table is any

user-defined table, which

has at least one data

column of type

SDO_GEORASTER.

Schema designed to store and manage raster data inside the
database.

GeoRaster – Database Schema

SDO_GEORASTER Object:

include metadata and

information about how to

retrieve the raster data

stored in another user-

defined table called a

Raster Data Table.

Schema designed to store and manage raster data inside the
database.

Raster data table: user-

defined table which is an

object table of type

SDO_RASTER.

SDO_RASTER Object:

includes a BLOB column

called RASTERBLOCK,

which stores the real raster

blocks.

GeoRaster – Database Schema

Schema designed to store and manage raster data inside the
database.

Other information

associated with the

GeoRaster objects can be

stored in separate columns

or tables, such as a Value

Attribute Table (VAT).

GeoRaster – Database Schema

Schema designed to store and manage raster data inside the
database.

SDO_GEORASTER Object

Native data type: each image or raster grid is stored as a
single object of this native type.

CREATE TYPE sdo_georaster AS OBJECT (

 rasterType NUMBER,

 spatialExtent SDO_GEOMETRY,

 rasterDataTable VARCHAR2(32),

 rasterID NUMBER,

 metadata XMLType);

SDO_GEORASTER Object

Native data type: each image or raster grid is stored as a
single object of this native type.

SDO_GEORASTER Object

Native data type: each image or raster grid is stored as a
single object of this native type.

RasterType: contains dimensionality information and the data type that can be
extended
SpatialExtent: spatial extent of the raster. GeoRaster uses R-Tree to index them.
RasterDataTable: the table name where the raster is physically stored.
RasterId: the index of the raster in the Raster Data Table.
Metadata: XML document (Oracle XML Type data type) according to the GeoRaster
metadata XML schema defined by GeoRaster

SDO_GEORASTER Object: RasterType

 5-digit number in the format [d][b][t][gt], where:

[d] identifies the number of spatial dimensions. Must be 2 for the
current release.

[b] indicates band or layer information: 0 means one band or
layer; 1 means one or more than one band or layer.

[t] is reserved for future use and should be specified as 0 (zero).

[gt] identifies the 2-digit GeoRaster type:
00 Reserved for Oracle use.
01 Any GeoRaster type. This is the only value

 supported for the current release.
02-50 Reserved for Oracle use.
51-99 Reserved for customer use in future releases.

SDO_GEORASTER Object: RasterType

 For example, a RasterType value of 20001 means:

 Two-dimensional data
 One band (layer)
 Any GeoRaster type

SDO_RASTER Object

CREATE TYPE sdo_raster AS OBJECT (

 rasterID NUMBER,

 pyramidLevel NUMBER,

 bandBlockNumber NUMBER,

 rowBlockNumber NUMBER,

 columnBlockNumber NUMBER,

 blockMBR SDO_GEOMETRY,

 rasterBlock BLOB);

Native type: each block of the image or raster grid (of a
SDO_GEORASTER object) is stored as a single object of this type.

SDO_RASTER Object

Native type: each block of the image or raster grid (of a
SDO_GEORASTER object) is stored as a single object of this type.

SDO_RASTER Object

Native type: each block of the image or raster grid (of a
SDO_GEORASTER object) is stored as a single object of this type.

RasterId: the raster id
PyramidLevel: the pyramid level of this block
BandBlockNumber: the band block number
RowBlockNumber: the row block number
ColumnBlockNumber: the column block number
BlockMBR: the precise extent of the block
RasterBlock: the raster block as a binary large object (BLOB)

Example

GeoRaster – Layer, Bands and Interleaving

In GeoRaster, band and layer are different concepts.

Band is a physical dimension of the multidimensional raster data set. Bands are

numbered from 0 to n-1, where n is the highest layer number.

Layer is a logical concept in the GeoRaster data model. Layers are mapped to bands.

Typically, one layer corresponds to one band. Layers are numbered from 1 to n; that

is, layerNumber = bandNumber + 1.

A GeoRaster object can contain multiple bands, which can also be called multiple

layers.

Interleaving: Must be one of the following values: BSQ (band sequential), BIL (band

interleaved by line), or BIP (band interleaved by pixel). Example: interleaving=BSQ

GeoRaster – Layer and Band

This figure shows an image with multiple layers and a single raster data table. Each layer contains
multiple blocks, each of which typically contains many cells. Each block has an entry in the raster data
table. Note that GeoRaster starts layer numbering at 1 and band numbering at 0 (zero).

In GeoRaster, each
layer is a two-
dimensional matrix of
cells that consists of the
row dimension and the
column dimension.

Example: for
multichannel remote
sensing imagery, the
sublayers are used to
model the channels or
bands of the imagery.

GeoRaster – Interleaving

Interleaving: Must be one of the following values: BSQ (band sequential), BIL (band

interleaved by line), or BIP (band interleaved by pixel). Example: interleaving=BSQ

Source: Esri ArcGIS’s home page

Interleaving: Must be one of the following values: BSQ (band sequential), BIL (band

interleaved by line), or BIP (band interleaved by pixel). Example: interleaving=BSQ

Source: Esri ArcGIS’s home page

GeoRaster – Interleaving

Interleaving: Must be one of the following values: BSQ (band sequential), BIL (band

interleaved by line), or BIP (band interleaved by pixel). Example: interleaving=BSQ

Source: Esri ArcGIS’s home page

GeoRaster – Interleaving

IMPORTANT NOTES:

(1) SDO_GEOR.importFrom: This procedure does not support source multiband

raster data with BIL and BSQ interleaving types. Only BIP interleaving.

GeoRaster – Interleaving

Region of interest: Novo Progresso, Pará

Images: 12 CBERS-2B scenes (CCD sensor)

Case Study

!

Spatial reference system: UTM / WGS-84 Datum.

Spatial resolution: 20 meters

Radiometric resolution: 8 bits unsigned. It means that each image

element, or pixel, has an integer value in the range of 0 to 255. The

value 0 indicates pixels with “no data”, or with no valid information.

Each scene has 3 bands (2, 3 and 4)

Each scene is a GeoTIFF file.

Total: 36 files.

Case Study - Images

Case Study – Create Tables

CREATE TABLE para_georaster
(r_georid NUMBER,

 r_scene VARCHAR(10),

 r_band NUMBER,

 r_satellite VARCHAR(20),

 r_date VARCHAR(20),

 r_image MDSYS.SDO_GEORASTER);

CREATE TABLE para_raster OF MDSYS.SDO_RASTER

(PRIMARY KEY (rasterID, pyramidLevel,

 bandBlockNumber, rowBlockNumber,

 columnBlockNumber));

Case Study – Import GeoTIFF files

One scene with its three bands is represented as a georaster

object and stored in a row of the para_georaster table.

Tiles: 512 x 512 pixels.

Case Study – Import GeoTIFF files

We have 2 strategies to insert the GeoTIFF files (each file is one

band) into the database using the package sdo_geor:

1. Import each file as it is, using the sdo_geor.importFrom function

and, afterwards, use the sdo_geor.mergeLayers function to merge all

bands of the same image into a single georaster object.

2. Create a new GeoTiff file combining all bands of a scene and,

afterwards, use the sdo_geor.importFrom function to import the new

file to a georaster object. The function sdo_geor.importFrom

supports only multiple BIP (band interleaved by pixel) GeoTiff files.

Case Study – Import GeoTIFF files

DECLARE
 geor10 SDO_GEORASTER;

BEGIN

 INSERT INTO para_georaster VALUES(10, '167_108', 234,
 'CBERS2B_CCD1XS', '20090820’,
 sdo_geor.init('para_raster'));

 SELECT r_image INTO geor10 FROM para_georaster

 WHERE r_georid = 10 FOR UPDATE;

 sdo_geor.importFrom(geor10,'blocking=TRUE
 blocksize=(512,512) spatialExtent=TRUE srid=32721',
 'GeoTIFF', 'file', '/home/../file1.tif');

 UPDATE para_georaster SET r_image = geor10

 WHERE r_georid = 10;

COMMIT;

END;

Using strategy 2

Case Study – Import GeoTIFF files

sdo_geor.init function: register automatically the new raster

objects and their related raster data tables in the two metadata tables

user_sdo_geor_sysdata and all_sdo_geor_sysdata .

sdo_geor.importFrom function: storage parameters (block size,

compression type, pyramid generation using different resampling

methods, …).

Important Note: to use the function mdsys.sdo_geor.init, your Oracle

user must have permition to insert and update tables in the MDSYS

schema!!!! Because of the metadata tables!

Case Study – Image Access

SELECT sdo_geor.getCellValue(r_image, 0,
 sdo_geometry(2001, 32721,

 sdo_point_type(672512.103, 9214134.635, null),

 null, null), 1)

FROM para_georaster

WHERE r_georid = 10;

Return the raster value in a position given by a spatial coordinate

(672512.103, 9214134.635):

Case Study – Image Access

DECLARE
 geor10 SDO_GEORASTER;

 window SDO_NUMBER_ARRAY := NULL;

BEGIN

 SELECT r_image INTO geor10 FROM para_georaster

 WHERE r_georid = 10 FOR UPDATE;

 sdo_geor.setBinFunction(geor10, 1,

 sdo_number_array(0,10,1,0,255));

 sdo_geor.generateStatistics(geor10, 'samplingFactor=1',

 window,'TRUE’,'1','TRUE');

 UPDATE para_georaster SET r_image=geor10 WHERE r_georid=10;

COMMIT;

END;

Extract statistics and histogram:

Case Study – Image Access

sdo_geor.generateStatistics function: extracts summarizing

values, such as minimum, maximum and mean values. It can extract

a histogram parameterized with a function to control the number of

bins. It can also retrieve the statistics of a specific window within the

image and to disregard nodata values.

This function stores the results in the georaster object metadata.

…

Case Study – Image Access

SELECT sdo_geor.getStatistics(r_image, 1)
FROM para_georaster WHERE r_georid = 10;

SELECT sdo_geor.getHistogram(r_image, 1)

FROM para_georaster WHERE r_georid = 10;

Get the store statistics and histogram from the georaster objects:

Case Study – Visualization
GeoRaster Viewer:

Case Study – Visualization

Georaster objects stores metadata about their visualization:

(1)  Color map or pallets: mechanism to transform a range of input

values into a range of colors (functions

sdo_geor.setColorMapTable and sdo_geor.setColorMap)

Case Study – Visualization

DECLARE
 geor SDO_GEORASTER;

BEGIN

 SELECT r_image INTO geor FROM para_georaster

 WHERE r_georid = 86 FOR UPDATE;

 sdo_geor.setDefaultRed(geor, 1);

 sdo_geor.setDefaultGreen(geor, 3);

 sdo_geor.setDefaultBlue(geor, 2);

 UPDATE para_georaster SET r_image = geor

 WHERE r_georid = 86;

COMMIT; END;

Georaster objects stores metadata about their visualization:

(2)  Association of image bands to Red-Green-Blue components of a

display using the functions:

Case Study – Clip

We can clip a georaster object using a geometry (SDO_GEOMETRY)

as a mask through the function sdo_geor.subset:

