
Programming with Threads

Emiliano F. Castejon
INPE – Instituto Nacional de Pesquisas Espaciais

DPI – Divisão de Processamento de Imagens

Multiprogramming

Multiprogramming is a basic form of “parallel” processing in

which several programs are run at the same time on a

uniprocessor (shared time execution).

Process1Sequential execution Process2

Execution with
Multi-programming

Time

Multiprogramming

Example

Process 1 – I/O (receiving network data)

Process 2 – Intensive computation (CPU)

Process1Sequential execution Process2

Multiprogramming
Execution

Process2 Time

Total Time (sequencial)

Process1 Time

Total Time (multi-programming)

Multi-thread programming

A thread (lightweight process) is a sequence of such

instructions within a program that can be executed

independently of other code.

P1

P2

P3

T1

T1

T2

T3

Multi-thread programming

Thread (spiritual exotic definition):

Multi-thread programming
Shared Resources

Threads may operate on disparate data, but often threads

may have to touch the same data. It is unsafe to allow

concurrent access to such data

Global integer value = 0;

incrementValue()
{
 integer temp = value;
 temp = temp + 1 ;
 value = temp;
}

Multi-thread programming
Thread synchronization mechanisms: Mutex, Semaphore,

Condition Variables, Barries, others.

Mutex (mutual exclusion): Only one thread can lock (or

own) a mutex variable at any given time. Thus, even if

several threads try to lock a mutex only one thread will

be successful. No other thread can own that mutex until

the owning thread unlocks that mutex.

Multi-thread programming
Mutex:

Multi-thread programming

Thread Parallelism with multi-processors ou multi-core

systems.

Multi-thread programming
Some thread programming libraries:

POSIX Threads (C):

FreeBSD, NetBSD, OpenBSD, Linux,

Mac OS X and Solaris

http://computing.llnl.gov/tutorials/pthreads

Windows API (C/C++/C#)– Windows X

 https://msdn.microsoft.com

Boost (C++): Portable (all platforms)

 http://www.boost.org

Boost Multi-thread programming
Classes and functions for managing threads and

synchronizing data between then.

The thread class: Represents a thread under the calling

process or another thread context.

Create/Start, interrupt, join

Main process timeline
THREAD(FuncX)

Thread 1 timeline – FuncX()

THREAD.join()

Boost Multi-thread programming
The thread class

void threadFunction(int* number
)
{
 int myNumber = *number;
 myNumber = myNumber + 1;
 *number = myNumber;
}

void main()
{
 int number = 0;

 boost::thread t1(threadFunction, &number);
 boost::thread t2(threadFunction, &number);

 [...] do some stuff [...]

 t1.join();
 t2.join();
}

Boost Multi-thread programming

Better use of Threads:

- Code that can be organized discrete, independent tasks which can

execute concurrently (problem partition)

- Work that can be executed, or data that can be operated on, by

multiple tasks simultaneously (data partition)

- Block for potentially long I/O waits (disk, network read/write)

- Use many CPU cycles in some places but not others (CPU balance)

- Must respond to asynchronous events (user interfaces)

- Some work is more important than other work (threads priority)

Boost Multi-thread programming
A real world example: Image segmentation

Image
Segmentation

Segmentation of a typical CBERS scene: 6000 x 6000 x 5

bands floating point pixels  ~1.3GBytes

Boost Multi-thread programming
A real world example: Image segmentation

1 2 3

4 5 6

7 8 9

Can all blocks be processed simultaneously ? (Number of processing

units and available memory).

Boost Multi-thread programming
A real world example: Image segmentation

void main()
{
 Image inputI;
 Image outpuI;
 int processorsNumber = 4;
 std::vector< bool > blocksStatus(9, false);
 boost::mutex mutex;

 boost::thread_group threads;

 for(int threadIndex = 0 ; threadIndex < processorsNumber ; +
+threadIndex)
 {

threads.add_thread(new boost::thread(segmenterThread, &inputI,
&outputI, &blocksStatus, &mutex);

 }

 threads.join_all();
}

Boost Multi-thread programming
A real world example: Image segmentation
void segmenterThread(Image* inputI, Image* outputI,

std::vector< bool >* blocksStatus, boost::mutex* mutex);
{

for(int blockIndex = 0 ; blockIndex < 9 ; ++blockIndex)
{

mutex->lock();

if(*blocksStatus[blockIndex] == false)
{

*blocksStatus[blockIndex] == true;
ImageBlock block = inputI->loadBlock(blockIndex);
mutex->unlock();

[...] process block [...]

mutex->lock();
outputI->saveBlock(block);
mutex->unlock();

}
else
{

mutex->unlock();
}

}
}

Questions ???

