
Chapter 3

User-defined types

3.1 Classes

A class is a user-defined type. It is composed of built-in types, other user-defined types and

functions. The parts used to define the class are called members. Members are either data

members, which define the representation of an object of the class, or function members

(sometimes called methods), which provide operations on such objects. Members can be accessed

using the object.member notation.

3.1.1 Methods

Methods define provide the operations on objects of a given clas. Some methods have a special

meaning:

1. Constructor: a method with the same of the class. It is used to initialize (construct) of

objects of the class. Constructors can have arguments and you can have more than one

constructor for the class.

2. Destructor: a method with the same name of the class preceded by the sign ~.

3. Operators: used to provide a conventional notation, similar to the operators defined in

built-in types such as +, -, *, /, %, [], (), &, <, <=, > and >=. This is called operator

overloading.

It is important to think of class as having an interface plus an implementation. The

interface is the part of the class’s declaration that its users access directly. The public part of

class is the user’s view of the class. The implementation details is the implementer’s view

25

26

of the class and usually it is defined in a di↵erent file (remember separate compilation in Section

2.3.4). Program 14 shows the interface and program 15 shows the implementation file of class X.

Program 14 Class interface

c l a s s X {
2 pub l i c :

X(i n t m) ; // con s t ruc to r
4 ˜X() // de s t ru c t o r

6 i n t getM () ; // func t i on member
void addToM(in t v) ;

8

X& operator++() ; // operator
10

pr i va t e :
12 i n t m; // data member

} ;
14

X obj (0) ; // var i s v a r i ab l e o f type X
16 i n t i = obj . getM () ; // r e t r i e v e var ’ s data member m

obj . addToM(10) ; // c a l l var ’ s member func t i on addToM()
18 X++; // c a l l vars operator ++

Program 15 Class implementation

1 X: :X(i n t v i) :
m(v i)

3 {}

5 ˜X : :X()
{}

7

i n t X : : getM ()
9 {

r e turn m;
11 }

13 void X : : addToM(in t v)
{

15 m= m+v ;
}

17

X& X: : operator++()
19 {

++th i s�>m;
21 r e turn ⇤ t h i s ;

}

The #define guard prevent multiple inclusion. The format of the symbol name should be

27

chosen so that it guarantee uniqueness, for example base on the file path in a project’s source

tree. For example, the file foo/src/bar/baz.h in project foo would have the following guard:

#i f n d e f FOO BAR BAZ H
2 #de f i n e FOO BAR BAZ H

4 . . .

6 #end i f // FOO BAR BAZ H

3.2 Structures

For a class that has only data, the distinction between interface and implementation doesn’t

make much sense, and there is a simplified version of it, a structure. An structure is a user

defined data type which allows you to combine data items of di↵erent kinds. Structures are

classes where all member data and functions are public. Program 16 shows how to define and

use an structure.

3.3 Enumerations

An enum is a very simple user-defined type, specifying its set os values as symbolic constants (see

Program 17).

3.4 Reference and pointers

You can pass a structure or a class as a function argument in very similar way as you pass any

other variable or pointer. You can define pointers to structures or classes in very similar way as

you define pointer to any other variable (see Program 18). Remember that to access members

through pointer you use the notation object->member.

3.5 Classes and free store allocation

Constructors and Destructors are conceptually simple but the foundation of most e↵ective

C++ programming.

• whatever resource a class object needs to function it acquires in a constructor;

28

Program 16 Structures

1 s t r u c t Date
{

3 i n t day ;
i n t month ;

5 i n t year ;

7 Date (i n t d , i n t m, i n t y) ;
void addDay(i n t nDays) ;

9 } ;

11 i n t main ()
{

13 s t r u c t Date d1 ;
s t r u c t Date d2 ;

15

d1 . year = 2016 ;
17 d1 . month = 03 ;

d1 . day = 16 ;
19

d2 . year = 2016 ;
21 d2 . month = 03 ;

d2 . day = 15 ;
23

cout << ”Date 1 day : ” << d1 . day <<endl ;
25 cout << ”Date 1 month : ” << d1 . month <<endl ;

cout << ”Date 1 year : ” << d1 . year <<endl ;
27

cout << ”Date 2 day : ” << d2 . day <<endl ;
29 cout << ”Date 2 month : ” << d2 . month <<endl ;

cout << ”Date 2 year : ” << d2 . year <<endl ;
31

Date today (16 , 03 . 2016) ;
33 today . addDay (1) ;

35 r e turn 0 ;
}

Program 17 Enumerations

1 enum c l a s s Day {monday , tuesday , wednesday , thursday , f r iday ,
saturday , sunday } ;

enum c l a s s Month { jan=1, f eb=2, mar=3, apr=4, may=5; jun=6, j u l =7,
aug=8, s e t =9, out=10, nov=11, dec=12};

3 Month m = Month : : mar ;

• during the object’s lifetime it may release resources and acquire new ones;

• at the end of the object’s lifetime, the destructor releases all resources still owned by the

object.

29

Program 18 User defined types references and pointer

void p r i n t (const Date& dt) ;
2

Date⇤ pdt ;
4

pdt�>day = 18 ;
6 pdt�>month = 1
pdt�>ano=2015;

Program 19 shows an example using free store memory allocation. If you acquire memory in

the constructor you have to delete in the destructor, otherwise you run into memory leak. C++

doesn’t provide automatic garbage collection. A program that runs ”forever” can’t a↵ord memory

leaks, others will eventually terminate and all the memory used will be returned to the systems.

Still, memory leaks are considered a sign of sloppiness and may cause performance problems or

even faults if your memory consumption estimate is incorrect. If you do not provide a destructor

or a constructor, compiler will provide for you. But it will not acquire or release free store

memory.

3.5.1 Copying

The default meaning of copying objects is to all data members from the object being copied to

the copy. Consider the class container shown in Program 19 what happens if we need a copy

of an object of this class? We will write container c2=c1;. In this case, c2.m elements will

have a copy of c1.m elements, i.e. a copy of the pointer. Two objects sharing a pointer is a

source of trouble, for example, whenever c1 goes out of scope and is destroyed, c2 pointer will

be pointing to an invalid memory or vice-versa.

To solve this problem there are two special methods to control coying: copy constructors,

called when a new object is initialized from an existing one and copy assignments to handle

copies. The example can be seen in Program 20.

3.6 Const correctness

C++ allows you to explicitly the keyword const to prevent constant objects from getting mu-

tated. For example, if you wanted to create a function f()that accepted a std::string, plus

you want to promise callers not to change the callers std::string that gets passed to f(), you

can have f() receive its std::string parameter. In the pass by reference-to-const and pass by

30

Program 19 Classes resource management

c l a s s conta ine r
2 {
pub l i c :

4 conta ine r (i n t s i z e) :
m s ize (s i z e) ,

6 m elements (new in t [s i z e])
{

8 std : : cout << ” acqu i r i ng memory\n” ;
f o r (i n t i =0; i<s i z e ; ++i) m elements [i]=0;

10 }

12 ˜ conta ine r ()
{

14 std : : cout << ” r e l e a s i n g memory\n” ;
d e l e t e [] m elements ;

16 }

18 void i n s e r t (i n t elem , i n t idx)
{ m elements [idx] = elem ; }

20

i n t get (i n t idx)
22 { r e turn m elements [idx] ; }

24 pr i va t e :
i n t m s ize ;

26 i n t ⇤ m elements ;
} ;

28

void f ()
30 {

con ta ine r c (3) ;
32 c . i n s e r t (10 , 0) ;

c . i n s e r t (5 , 1) ;
34 c . i n s e r t (1 , 2) ;

s td : : cout <<c . get (0)<< ” , ”<< c . get (1)<< ” , ”<< c . get (2)<< ”\n” ;
36 }

38 i n t main ()
{

40 f () ;
r e turn 0 ;

42 }

pointer-to-const cases, any attempts to change the caller‘s std::string within the f() functions

would be flagged by the compiler as an error at compile-time. In the pass by value case (f3()),

the called function gets a copy of the caller std::string (see Program 21).

Const-ness can also be applied to class methods (see Program 22). Declaring the const-ness

of a parameter is a form of type safety. The benefit of const correctness is that it prevents you

31

Program 20 Copying

1 c l a s s conta ine r
{

3 . . .

5 conta ine r (conta ine r& other) :
m s ize (other . m s ize) ,

7 m elements (new in t [other . m s ize])
{

9 std : : cout << ” acqu i r i ng memory copy cons t ruc to r \n” ;
f o r (unsigned i n t i =0; i<m size ; ++i)

11 m elements [i]= other . m elements [i] ;
}

13

con ta ine r& operator=(conta ine r& other)
15 {

i f (t h i s == &other)
17 r e turn ⇤ t h i s ;

19 std : : cout << ” r e l e a s i n g memory a s s i gn operator \n” ;
d e l e t e [] m elements ;

21

std : : cout << ” acqu i r i ng memory a s s i gn operator \n” ;
23 m elements = new in t [other . m s ize] ;

f o r (unsigned i n t i =0; i<m size ; ++i)
25 m elements [i]= other . m elements [i] ;

m s ize = other . m s ize ;
27 r e turn ⇤ t h i s ;

}
29 } ;

from inadvertently modifying something you didn‘t expect would be modified.

3.7 Class interface

Considering the description of classes and structures, the possibility of separate compilation as

well as the public and private options for members and methods, we have to think on how do

we design a good interface. Specially the public interface. Of course, it depends on the software

design and the problem being solved, but there are a few general principles that we should try

to follow:

• keep interfaces complete;

• keep interfaces minimal;

• provide constructors;

32

Program 21 Const-ness

void f1 (std : : s t r i n g s)
2 { s = ”ok” ; }

4 void f2 (std : : s t r i n g& s r)
{ s r = ”ok” ; }

6

void f3 (const std : : s t r i n g& c r s)
8 { c r s = ”ooops ! ” ; // e r r o r }

10 void f4 (std : : s t r i n g ⇤ ps)
{ ⇤ps = ”ok” ; }

12

void f5 (const std : : s t r i n g ⇤ cps)
14 {

std : : s t r i n g ⇤ pps=new std : : s t r i n g ;
16 cps = pps ;

⇤ cps=”ooops” ; // e r r o r
18 }

20 i n t main ()
{

22 std : : s t r i n g s ;
f 1 (s) ;

24 f 2 (s) ;
f 4 (&s) ;

26

const std : : s t r i n g cs=” const ” ;
28 f 1 (cs) ;

f 2 (cs) ;
30 f 4 (&cs) ;

f 5 (&cs) ;
32

r e turn 0 ;

Program 22 Const-ness

// mMethod does not change paramenter param1 or the i n t e r n a l
2 // s t a tu s o f the ob j e c t
void ClassX : : mMethod(const s t r i n g& param1) const ;

• use types to provide good argument checking;

• identify non-modifying member functions;

• provide destructors ;

• free all resources in the destructor;

• if you have dynamic allocated members, pay extra attention to constructor, destructor and

33

verify the need for assign operator and copy constructor.

3.7.1 Classes x structures

Another good question is, how to decide when use a class or a struct? A very simple rule

of thumb is that you should have a real class with an interface and a hidden representation if

and only if you can consider an invariant for the class. An invariant allows you to say when

the object’s representation is good and when it isn’t. For example: you want to design a type

to represent a person by its name and address. If it doens’t matter what value you can have in

name or address, if you can not think of a ”invalid” person, than this is a structure. However, if

you decide the semantics should be that first, middle, and last name as parts of the name. You

can also decide that the address really has to be a valid address. Either you validate the string,

or you break the string up into first address field, second address field, city, state, country, zip

code, that kind of stu↵, than it should be a class.

3.7.2 Class methods x functions

There is a general rule that helps us decide to choose between methods and external functions to

manipulate a class. If the function changes the state of an object, then it ought to be a member

of that object. Unfortunately, even this rule says nothing about functions that do not change

the state of the object, so we still must decide what to do considering what the function does

and also how users might want to call it.

Program 23 shows an example of having the compare operator as function instead of over-

loading the operator ==.

Program 23 Functions

c l a s s Student
2 {
pub l i c :

4 std : : s t r i n g name () const ;
bool v a l i d () const ;

6 std : : i s t ream& read (std : : i s t ream&) ;
double grade () const ;

8 pr i va t e :
s td : : s t r i n g n ;

10 double midterm , f i n a l ;
s td : : vector<double> homework ;

12 } ;
bool compare (const Student&, const Student&) ;

