
Fundamentals Of Structured Programming

Lubia Vinhas

March 16, 2016

Preface

This booklet contains the notes for the course CAP-390 Fundamentals of Structured Program-

ming. It is mainly based on the two books by Bjarne Stroustroup [2] [3]. I

1

2

Contents

1 Introduction . 5

1.1 Programming paradigms . 6

1.2 Imperative paradigm . 6

1.3 Functional paradigm . 7

1.4 Logical paradigm . 7

1.5 Object-oriented paradigm . 8

1.6 Programming languages . 9

2 Introduction to C++ . 11

2.1 Standardization . 12

2.2 Programming environment . 13

2.3 Basic facilities . 13

2.3.1 Types . 14

2.3.2 Objects, declaration and initialization . 14

2.3.3 C++ Standard Library . 14

2.3.4 Separate compilation . 16

2.4 Computation . 16

2.4.1 Functions . 19

2.4.2 Data structures . 19

2.5 Memory, addresses and pointers . 21

2.5.1 Free store and pointers . 22

2.5.2 Pointers and functions . 23

3 User defined types . 25

3.1 Classes . 25

3.2 Structures . 25

3.3 Enumerations . 26

3.4 Reference and pointers . 26

3

3.5 Class interface . 26

4

Chapter 1

Introduction

This course is about good programming, using the C++ programming language, for people

who want to become professionals (i.e. people who can produce systems that others will use),

who are assumed to be bright and willing to work hard. The students will learn fundamental

programming concepts, some key useful techniques that exist in several structured languages and

the basics of modern C++. So that after the course they will be able to write small coloquial

C++ programs, read and adapt much larger programs, learn the basics of many other languages

by themselves and proceed with advanced C++ courses.

Our civilization runs on software. Most engineering activities involve software, but most

programs do not run on things that look like a PC with a screen, a keyboard, a box under the

table, but in aircrafts, ships, communication, phones, energy systems... and there is a lot more

to computing than games, word processing, browsing, and spreadsheets.

What is programming? Literally, is the action or process of writing computer programs. To

me, is problem solving using algorithms. A few terms related to programming:

• Programming paradigm: a pattern that serves as a school of thoughts for programming

of computers

• Programming technique: related to an algorithmic idea for solving a particular class

of problems. For example, ”divide and conquer” or ”program development by stepwise

refinement”

• Programming style: the way we express ourselves in a computer program. Relates to

elegance (or lack of elegance)

• Programming culture: The totality of programming behavior, which often is tightly

related to a family of programming languages

5

6

Figure 1.1: Languages, paradigms and concepts [4].

1.1 Programming paradigms

Solving a programming problem requires choosing the right concepts. All but the smallest toy

problems require di↵erent sets of concepts for di↵erent parts of the program.

A programming paradigm, or programming model, is an approach to programming a com-

puter based on a mathematical theory or a coherent set of principles. It is a way of conceptualizing

what it means to perform computation and how tasks to be carried out on the computer should

be structured and organized.

Programming languages realize programming paradigms. There are many fewer programming

paradigms that programming languages. Examples of programming paradigms: imperative,

funcional, logical, object-oriented.

Most popular languages are imperative and use structured programming techniques. Struc-

tured programming techniques involve giving the code you write structures, these often involve

writing code in blocks such as sequence (code executed line by line), selection (branching

statements such as if..then..else, or case) and repetition (iterative statements such as for,

while, repeat, loop).

1.2 Imperative paradigm

Is based on the ideas of a Von Neummann architecture. A command has a measurable e↵ect on

the program and the order of commands is important. First do this and next do that . Its

main characteristics are incremental change of the program state (variables) as a function of time;

execution of commands in an order governed by control structures; and the use of procedures,

7

abstractions of one or more actions, which can be called as a single command. Languages

representatives of Imperative paradigm: Fortran, Algol, Basic, C, Pascal.

Program 1 Example of Pascal code

1 Program Example1 ;
Var

3 Num1, Num2, Sum: In t eg e r ;
Begin

5 Write (’ Input number 1 : ’) ;
Readln (Num1) ;

7 Write (’ Input number 2 : ’) ;
Readln (Num2) ;

9 Sum := Num1 + Num2;
Write ln (Sum) ;

11 Readln ;
End

1.3 Functional paradigm

Based on mathematics and theory of functions. The values produced are non-mutable and time

plays a minor role compared to imperative program. All computations are done by applying

functions with no side e↵ects.Functions are firsts class citizens. Evaluate an expression and

use the resulting value for something . Representatives: Haskell, Clojure. Example in

Haskell:

Program 2 Example of Haskel code

1 �� Compute the sum of i n t e g e r s from 1 to n .
sumtor ia l : : I n t eg e r �> I n t eg e r

3 sumtor ia l 0 = 0
sumtor ia l n = n + sumtor ia l (n � 1)

5 main = pr in t (sumtor ia l 10)

1.4 Logical paradigm

The logic paradigm fits well when applied in problem domains that deal with the extraction

of knowledge from basic facts and relations. Is based on axioms, inference rules, and queries.

Program execution becomes a systematic search in a set of facts, making use of a set of inference

rules. Answer a question via search for a solution.

8

Program 3 Example of PROLOG code

mortal (X) :� human(X)
2 human(s o c r a t e s)

human(p i t ago ra s)
4 ?� mortal (s o c r a t e s)

yes
6 ?� mortal (ch i co)

no

1.5 Object-oriented paradigm

Data as well as operations are encapsulated in objects. Information hiding is used to pro-

tect internal properties of an object. Objects interact by means of message passing. In most

object-oriented languages objects are grouped in classes and classes are organized in inheritance

hierarchies. Send messages between objects to simulate the temporal evolution of a

set of real world phenomena. Representatives: C++, Java.

Program 4 Example of C++ code

c l a s s Employee
2 {

pub l i c :
4 s t r i n g name ;

i n t age ;
6 double s a l a r y ;

} ;
8

Employee e1 ;
10 e1 . name = ” s o c r a t e s ” ;

e1 . age = 26 ;
12 e1 . s a l a r y = 1000 ;

14 Employee e2 ;
e2 . name = ” ch i co ” ;

16 e2 . age = 30 ;
e2 . s a l a r y = 5000 ;

18

double co s t = e1 . s a l a r y+e2 . s a l a r y ;

There are other paradigms, such as Visual paradigm, Constraint based paradigm, Aspect-

oriented paradigm and Event-oriented paradigm.

9

Figure 1.2: Ranking of languages. Source: http://redmonk.com/sogrady/2015/07/01/language-
rankings-6-15/

1.6 Programming languages

What we have to learn to study a programming language? Syntax, semantics and how to best

use the languages features to implement the programming paradigm more adequate to solve your

problem. How many languages are out there? Which languages should I know?

Any ranking is influenced by communities of the development, investments from third parties

and ubiquitousness of projects and statistics. But this course is not about advocating the use of

this or that language. I first learnt how to program with algorithms, than I learnt PASCAL. I

work with C++, SQL and I can do a few things in PHP. I believe I can learn other languages if

I have to. I am not a radical champion for C++ or any other language. I believe that there is

no silver bullet [1]. This course will teach C++.

10

Chapter 2

Introduction to C++

Why C++? You can not learn to program without a programming language, the purpose of

a programming language is to allow you to express your ideas in code. C++ is the language

that most directly allows you to express ideas from the largest number of application areas.

Programming concepts that you learn using C++ can be used fairly directly in other languages,

including C, Java, C sharp and (less directly) Fortran.

Bjarne Stroustrup is the creator of the C++ language:(http://www.stroustrup.com/) you can

have an overview of C++ history in

http://www.cplusplus.com/info/history/.

Bjarne has written several books about programming and C++ such as the ones shown

bellow. Programming - Principles and Practices Using C++ is the one used in this course.

Figure 2.1: Bjarne Stroustroup, creator of C++ language.

11

12

Figure 2.2: C++ books.

2.1 Standardization

The C++ Language is an open ISO-standardized language. For a time, C++ had no o�cial

standard and was maintained by a de-facto standard, however since 1998, C++ is standardized

by a committee of the ISO. Is a compiled language, C++ compiles directly to a machine’s

native code, allowing it to be one of the fastest languages in the world, if optimized. Is a

strongly-typed unsafe language, C++ is a language that expects the programmer to know

what he or she is doing, but allows for incredible amounts of control as a result.

C++ is standardized. The C++ standard was finalized and adopted by ISO (International

Organization for Standardization) as well as several national standards organizations. The ISO

standard was finalized and adopted by unanimous vote in November 1997. The latest (and

current) standard version was ratified and published by ISO in December 2014 as ISO/IEC

14882:2014 (informally known as C++14), as can be seen in Figure 2.3.

Figure 2.3: C++ standards timeline. Source: https://isocpp.org.

As one of the most frequently used languages in the world and as an open language, C++ has a

wide range of compilers that run on many di↵erent platforms that support it. Sometimes the lat-

est standard is not 100% supported by all compilers. Check http://en.cppreference.com/w/cpp/compiler

13

to see features, versions and several compilers compliance.

2.2 Programming environment

C++ is a compiled language. That means you will need some tools to work with C++:

• Editor: to write your code

• Compiler: translate the source code to machine code to be executed

• Interpreter: reads a little source code, translates it to machine code, and executes it,

than reads a little more, etc.

• Debugger: helps you step through code, shows you variables and flow of execution

• Linker: connects code from libraries with your code to make one executable

There are Integrated Development Environments (IDE) that provides editors, compilers

and linker in as a single package. Examples of IDEs for C++:

1. Windows:

• Microsoft Visual C++ › http://www.visualstudio.com/

• MingW › http://www.mingw.org/

2. Linux:

• Eclipse › http://www.eclipse.org/cdt/

• QtCreator › http://www.qt.io/ide/

3. Web based:

• C++ Shell › http://cpp.sh/

• CodeChef › https://www.codechef.com/ide

2.3 Basic facilities

The purpose of learning a programming language is to become a better programmer; that is,

to become more e↵ective at designing and implementing new systems and at maintaining old

ones. The most important thing to do is to focus on concepts and not get lost in language-

technical details. This section introduces some C++ program features necessary to the most

basic programs.

14

2.3.1 Types

In typed languages, such as C++, every operation defines types of data to which an opera-

tion is applicable, with the implication that it is not applicable to other types. For example,

”this text between the quotes” is a string, and 10 is a number. In most languages the division

of a number by a string (or vice-versa) has no meaning and the compiler will reject it. This is

static type checking. In C++ you can have:

• built-in types: bool, char, float, int (short and long), etc.

• Standard Library types: string, complex, input/output streams, etc.

• user-defined types (more about this later).

For each type an operand have a particular semantics. The type of a variable determines

which operations are valid and what their meanings are for that type. For example:

Strings (STD) Integers (built-in)
cin >> reads a word cin >> reads a number
cout << writes a word cout << writes a word
+ concatenates + adds
+= s adds the string s at end += n increments the int by n
++ is an error ++ is n increments by 1
� is an error � subtracts

2.3.2 Objects, declaration and initialization

In the computer memory, everything is just bits; type is what gives meaning to the bits. Some

types and literals in C++ can be seen in Table 2.1. An object is some memory that can hold

Table 2.1: C++ types and literals

Type Literal
bool true, false
int 1 2
float 10.2 11.3
char ’c’

string "abcd"

a value of a given type. A variable is a named object. A declaration names an object.

2.3.3 C++ Standard Library

The C++ Standard Library is a collection types and functions, which are written in the core

language and part of the C++ ISO Standard itself. It provides a ready-made set of common and

15

Table 2.2: Types and memory space

Declaration Memory
int i; i:
int a = 7; a: 7
int b = a; b: 7
char c = ’a’; c: ’c’
double x = 1.2; x: 1.2
string s2 = "lubia"; s2: 5 lubia

highly used features for C++. Program 5 shows a very simple using the Standard Library.

Program 5 STD input and output

#inc lude <iostream>
2 #inc lude <s t r i ng>
i n t main () // read f i r s t and second name

4 {
std : : cout << ” p l e a s e ente r your f i r s t and second names\n” ;

6 std : : s t r i n g f i r s t , second ;
std : : c in >> f i r s t >> second ; // read two s t r i n g s

8 std : : s t r i n g name = f i r s t + ’ ’ + second ; // concatenate
std : : cout << ”Hel lo , ”<< name << ’ \n ’ ;

10 r e turn 0 ;
}

12

• the macro #include give access external packages and libraries

• <iostream>: is the STL package for inputing and outputing

• <string>: is the STL package to handle strings of characters

• comments are identified ”//” (single line) or ”/* ... */” (multiple lines).

• the main scope defines the piece of code that will be the final program.

• a C++ statement end with ”;”

• ::std : indicates that a name is defined in the standard library namespace

• operator cin >> : reads from streams

• operator cout << : puts objects in streams.

• return a value indicating success (usually 0).

16

Only lines 6 to 9 directly do anything. That’s normal. Much of the code in our programs

come from someone else (libraries). Would you rather write 1,000,000 lines of machine code?

Code that exclusively uses C++’s standard library will run on many platforms with few to no

changes and is upwards compatible with C.

2.3.4 Separate compilation

C++ suports separate compilation, that can be used to organize a program into a set of semi-

independent fragments. An executable (final application) is the result of linking and compiling

some piece of code that has one main block of statements. Pieces of code that do not have a main

(libraries), when compiled produce object code to be linked with other code to produce a final

application. Figure 2.4 shows how is the building process happens to generate an executable

program.

your source code:
hello.cpp

C++ Compiler your object code:
hello.o

C++ Linker

Library object code:
STD

executable:
hello.exe

Figure 2.4: Example of the building process

The interface is placed in a header file that is included by the users, whereas its imple-

mentation is defined in another file. To use a library you have to have access to its interface

files at compilation time and to its object code at linking time. Open source libraries also make

its implementation files available.

2.4 Computation

Computation is what we do to manipulate objects. To program, we have to think what is

computable and how best to compute it. To do this we think about abstractions, algorithms,

heuristics, data structures. We use language to construct these ideas in terms of sequential order

of execution, expressions and statements, selection, interation, functions and data structures (for

example vectors).

17

(input) data
Computation:

code (a lot, and often messy)
(output) data

Figure 2.5: A typical program

• Input: data from keyboard, files, other input devices, other programs, other parts of a

program

• Computation: what our program will do with the input to produce the output

• Output: data sent to screen, files, other output devices, other programs, other parts of a

program

Computations should be expressed, correctly, simply and e�ciently. To achieve that, di↵erent

strategies can be adopted, e.g., divide and conquer (breaking up big computations into many

little ones), or abstraction (provide a higher-level concept that hides details not relevant to the

problem solution). Organization of data is often the key to good code: input/output formats;

protocols; data structures.

Expressions are the most basic building blocks of a program. An expression computes a

value from a number of operands. An expression produces a single value. Table 2.3 shows some

examples of expressions.

Table 2.3: Expressions

Expression Example
Literals 10, ’a’, 3.14, "Norah"
Names of variables int lenght;

Combinations perimeter = (length+width)*2;

Constant expressions constexpr double pi=3.141516;

Most Operators are conventional and you can look up details if and when you find a need.

But a list of the most common operators include:

• mathematical operators: +, *, % (reminder) ... :

• logical operators: == (equal), != (not equal), && (logical AND), || (logical OR)

• increment/decrement operators: ++lval, --lval, ... (lval is short for value that can

appear on the left-hand side os an assignment)

Statements are language features used to produce several values, or to do something many

times, or choose among alternatives:

18

• selection: if-statements; switch-statements.

• iteration: while-statements; for-statements

Program 6 shows some computation using mathematical operators, such as +, ⇤, / and a math-

ematical function (sqrt). Program 7 also shows some computation using iteration statements.

Program 6 A very simple computation

1 // do a b i t o f very s imple a r i thmet i c :
i n t main ()

3 {
cout << ” p l e a s e ente r a f l o a t i n g�point number : ” ;

5 double n ; // f l o a t i n g�point v a r i ab l e
c in >> n ;

7 cout << ”n == ” << n
<< ”\nn+1 == ” << n+1 // ’\n ’ means a newl ine

9 << ”\ nthree t imes n == ” << 3⇤n
<< ”\ntwice n == ” << n+n

11 << ”\nn squared == ” << n⇤n
<< ”\ nha l f o f n == ” << n/2

13 << ”\nsquare root o f n == ” << s q r t (n) // l i b r a r y func t i on
<< endl ; // another name f o r newl ine

15 }

Program 7 Other computing features

i f (a<b) // s e l e c t i o n
2 max = b ;

e l s e
4 max = a

6 f o r (shor t i =0; i <10; ++i) // r e p e t i t i o n
cout << i << ’ => ’ << square (i) << ’ \n ’ ;

8

i n t i = 0 ;
10 whi le (i <100)

{
12 cout << i << ’ => ’ << square (i) << ’ \n ’ ;

++i ; // increment i ;
14 }

19

2.4.1 Functions

What is the name square in Program 7? It is a call to a function that was defined somewhere.

We define a function when we want to separate a computation because it is logically separate, it

makes the program text clearer (by naming the computation), is useful in more than one place

in our program. It eases testing, distribution of labor, and maintenance of our code.

A function can not be called unless it has been previously declared. A function declaration

gives the name of the function, the type of the value returned (if any) by the function, and the

number and types of arguments that must be supplied in a call of the function(e.g. Program 8).

Program 9 shows an example of using a STL vector.

Program 8 Functions

1 // max . h : f unc t i on d e c l a r a t i on
i n t max(int , i n t) ;

3

// max . cpp : func t i on implementation
5 i n t max(i n t a , i n t b) // t h i s f unc t i on takes 2 parameters
{

7 i f (a<b)
re turn b ;

9 e l s e
re turn a ;

11 }

13 // main . cpp
#inc lude ”max . h”

15

i n t x = max(7 , 9) ; // x becomes 9
17 i n t y = max(19 , �27) ; // y becomes 19

i n t z = max(20 , 20) ; // z becomes 20

2.4.2 Data structures

To do just about anything of interest, we need a collection of data to work on. A data structure

is a specialized format for organizing and storing data. General data structure types include

the array, the file, the record, the table, the tree, and so on. Any data structure is designed to

organize data to suit a specific purpose so that it can be accessed and worked with in appropriate

ways.

Languages provide mechanisms to implement data structures, or libraries that provide com-

mon data structures ready to use. The C++ Standard Library includes most of the Standard

20

vector<int>v; // start o↵ empty

v: 0

v.push back(1); // add an element with the value 1

v: 1 1

v.push back(4); // add an element with the value 4 at end (”the back”)

v: 2 1 4

v.push back(3); // add an element with the value 3 at end (”the back”)

v: 3 1 4 3

Figure 2.6: The Vector construction

Template Library (STL) 1. The STL is a generic library, meaning that its components are heavily

parameterized by a type.

Vector is the most useful STL data structure, or data container. A vector<T> holds a

sequence of values of type T (e.g. a vector named v contains 3 elements: 1, 4, 3). Figure 2.6

shows the structure of a vector and how it is built using pushback while Program 9 exemplify

how to use it.

Program 9 An example using a STL vector

1 // read some temperatures i n to a vec to r :
i n t main ()

3 {
// de c l a r e a vec to r o f type double to s t o r e temperatures

5 vector<double> temps ;
double temp ; // a va r i ab l e f o r a s i n g l e temperature va lue

7

// c in reads a value and s t o r e s i t in temp
9 whi le (c in>>temp)

temps . push back (temp) ;
11 // . . . do something . . .

}
13 // cin>>temp w i l l r e turn t rue un t i l we reach the end o f f i l e

// or encounter something that i s n ’ t a double

1
https://www.sgi.com/tech/stl/

21

2.5 Memory, addresses and pointers

A computer’s memory is a sequence of bytes. When the computer encounter a declaration such

as int var=17 it will set aside an int-size piece of memory for var somewhere and put the 17

into memory, this location has an address. Some languages, such as C++, allows you to store

and manipulate addresses. An object that store an address is called a pointer. Program 10 shows

the C++ syntax to manipulate pointers and addresses.

Program 10 Pointer and address

1 i n t x ; // a va r i ab l e c a l l e d x , that can hold an i n t e g e r
x = 17 ; // the value 17 i s s to r ed in va r i ab l e x

3

i n t ⇤ pi ; // a va r i ab l e c a l l e d px that can hold an address o f an
5 // i n t e g e r va r i ab l e , os s imply a po in t e r to i n t

7 pi = &x ; // the address o f x i s s t o r ed in va r i ab l e p i

9 // p r i n t s the content o f v a r i a b l e x
cout << ”x=” << x << std : : endl ;

11

// p r i n t s the address o f v a r i ab l e x
13 cout << ”&x=” << &x << std : : endl ;

15 // p r i n t s the content o f v a r i a b l e p i
cout << ” p i=” << pi << std : : endl ;

17

// p r i n t s the content o f memory pointed by pi
19 cout << ”⇤ pi=” << ⇤ pi << std : : endl ;

Important things about pointers:

• a pointer is a type (such as int), that provides operators suitable for addresses (whereas

int provides operators suitable to integers)

• operator & retrieves the address of a variable and a pointer can hold addresses

• operator * can only be applied to pointers and retrieves the contents of the memory it

points to

A pointer is specific to the type it points to. It is not possible to assign the address of an

int to a pointer to char, because di↵erent types occupy di↵erent sizes in memory. The size

of a type is not guaranteed to be the same on every implementation of C++. Program 11 shows

how to check the size of types.

22

Program 11 Size of types

cout << ” the s i z e o f a char i s ” << s i z e o f (char) << ’ \n ’ ;
2 cout << ” the s i z e o f an i n t i s ” << s i z e o f (i n t) << ’ \n ’ ;

cout << ” the s i z e o f a f l o a t i s ” << s i z e o f (double) << ’ \n ’ ;
4

cout << ” the s i z e o f an i n t ⇤ i s ” << s i z e o f (i n t ⇤) << ’ \n ’ ;
6 cout << ” the s i z e o f an f l o a t ⇤ i s ” << s i z e o f (f l o a t ⇤) << ’ \n ’ ;

2.5.1 Free store and pointers

When you start a C++ program, the computer set aside memory for your code (code storage),

for the global variables (static storage) and to be used when you call functions and their variables

(stack storage). The rest of the computer’s memory is potentially available for other uses: it is

the free memory. C++ makes this free storage (or heap) available through the operator new.

The new operator can allocate individual elements or sequences (arrays) of elements. In

addition of using the dereference operator (*) on a pointer we can also use the substrcipt operator

([]). It treats memory as a sequence of objects (of the type specified) with the pointer pointing

to the first one. The memory allocated can be (should be!) returned to the free store using the

operator delete. (see Program 12).

Program 12 Allocation on free memory

1 i n t ⇤ pi = new in t ; // a l l o c a t e one i n t
i n t ⇤ a i = new in t [4] ; // a l l o c a t e 4 i n t s (an array o f 4 i n t s)

3

pi = 10 ;
5 a i [0] = 10 ;

a i [1] = 20 ;
7 a i [2] = 30

a i [3] = 40 ;
9

de l e t e p i ; // i f you a l l o c a t e you have to d e a l l o c a t e
11 de l e t e [] a i ;

pi: 0xAAA 10

ai: 0xBBB 10 20 30 40

23

2.5.2 Pointers and functions

Whenever a function needs to return a value (after some computation) it is necessary to declare

that the function return a value (declaration) and use the return statement (implementation).

Function can also receives arguments.

Function fbyvalue in Program 13 uses the simplest way of passing an argument called called

pass-by-value. It means that the function receives a copy of the argument, so the original

variable, passed as an argument to a function is not changed by the function. Passing arguments

by value have some drawbacks, mainly the cost of copying arguments. In the example is just an

int, but if the argument is a very large data structure (for example, an image) then the function

can be costly.

In function fbyref in Program 13 it was used the way pass-by-argument. In this case, the

function receives the address of the variable passed as argument. That means that the function

can in fact change the value of the variable. Somethimes you need the best of the two ways:

preventing unecessary copies and not allowing the function to accedentally change the argument

value. In this case you should make the argument address constant as in fbyconstref.

Program 13 Function arguments and returnig

void NoRetNoArgFunc ()
2 {
// do something and go

4 }

6 i n t fbyva lue (i n t x) // pass�by�value
{

8 x = x+1;
re turn x ;

10 }

12 i n t f b y r e f (i n t& x) // pass�by�r e f e r e n c e
{

14 x = x+1;
re turn x ;

16 }

18 i n t f b y c on s t r e f (const i n t& x) // pass�by�const�r e f e r e n c e
{

20 r e turn x ;
}

Rule of thumb to decide between pass-by-value or pass-by-reference:

1. use pass-by-value to pass very small objects

24

2. use pass-by-const-reference to pass large objects that you don’t neeed to modify

3. return a result rather than modifying an object through a reference argument

4. use pass-by-reference only when you have to.

