
Final	
 Assigment:	

	

1. Write a program that takes an operation followed by two operands and outputs

the result. For example:

+ 100 3.14

* 4 5

Read the operation into a string called operation and use an if-statement to figure
out which operation the user wants, for example, if (operation=="+"). Read the
operands into variables of type double. Implement this for operations called +, -
,*,/, plus, minus, mult, and div with their obvious meanings.

2. Make a vector holding the ten string values "zero", "one", ... "nine". Use that in a
program that converts a digit to its corresponding spelled-out value; e.g., the
input 7 gives the output seven. Have the same program, using the same input
loop, convert spelled numbers into their digit form; e.g., the input seven gives the
output 7.

3. Write a function that finds the smallest and the largest element of a vector
argument and also computes the mean and the median. Do not use global
variables. Either return a struct containing the results or pass them back through
reference arguments. Which of the two ways of returning several result values do
you prefer and why?

4. Design and implement a Money class for calculations involving “reais” and
“centavos” (cents) where arithmetic has to be accurate to the last cent using the
4/5 rounding rule (.5 of a centavo rounds up; anything less than .5 rounds down).
Represent a monetary amount as a number of cents in a long, but input and output
as “reais” and cents, e.g., R$123.45. Do not worry about amounts that don't fit
into a long.

5. Refine the Money class by adding a currency (given as a constructor argument).
Accept a floating-point initializer as long as it can be exactly represented as a
long. Don't accept illegal operations. For example, Money*Money doesn't make
sense, and R$1.23+USD5.0 makes sense only if you provide a conversion table
defining the conversion factor between Reais (R$) and U.S. dollars (USD).

6. Write a program that produces the sum of all the whitespace separated integers in
a text file. For example, "bears: 17 elephants 9 end" should output 26.

7. Template drill:
a. define template<class T>struct S{T val;}; Make val private
b. Add a constructor, so that you can initialize with a T
c. Define variables of types S<int>, S<char>, S<double>, S<string>,

and S< vector<int> >; initialize them with values of your choice.
d. Read those values and print them.
e. Add a function template get() that returns a reference to val.
f. Put the definition of get() outside the class.
g. Add a set() function template so that you can change val.
h. Add an operator[] with the same functionality of get() and set().
i. Provide const and non-const versions of operator[].

j. Define a function template<class T> read_val(T& v) that reads from
cin ���into v.

k. Use read_val() to read into each of the variables from c) except the ���S<
vector<int> > variable.

8. Study and write an example of the Factory Pattern from Gamma et al. Your
factory is should build Shapes based on a string identification of concrete shapes.
Your main program is shown bellow. Write the code that allows this main to run.

void main()
{
 // Give me a circle
 Shape* obj1 = Shape::Create("circle");

 // Give me a square
 Shape* obj2 = Shape::Create("square");

 obj1->Draw();
 obj2->Draw();
}

