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Abstract

Sixteen landscape metrics were evaluated with respect to the effects of spatial aggregation on six different years of Landsat data for a

deforested area in Rondonia, Brazil. Spatial aggregation was performed by two methods. The first method involved varying the window size in

texture mean co-occurrence filtering prior to classification. The second method involved aggregating the data post-classification by resampling

with a majority filter. The Landscape Shape Index (LSI) and Square Pixel (SqP) metric showed the most predictable behavior of the shape

complexity metrics having strong decreases with each increase in aggregation. The Edge Density (ED) and Patch Density (PD) metrics showed

the most predictable behavior among the edge and patch metrics, decreasing with increasing aggregation. The Mean Nearest Neighbor (MNN)

metric also behaved as expected but its results were less consistent than those of ED and PD. Many of the remaining metrics gave inconsistent and

unpredictable results with respect to spatial aggregation.
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1. Introduction

Landscape pattern metrics are used to quantify landscape

composition and configuration on a map or remotely sensed

image. There are numerous examples of the development and

application of landscape metrics for ecological analysis (eg.

Ares et al., 2001; Brown et al., 2000; Frohn, 1998; Fuller,

2001; Hargis et al., 1998; Heggem et al., 2000; Herzog &

Lausch, 2001; Imbernon & Branthomme, 2001; Jorge &

Garcia, 1997; Leitao & Ahern, 2002; Li et al., 2001; Liu &

Cameron, 2001; McGarigal & Marks, 1994; Pan et al., 2001;

Peralta & Mather, 2000; Ravan & Roy, 1997; Read & Lam,

2002; Trani et al., 1999; Walsh et al., 1998). Metrics can be

easily calculated on classified map data using available

software. The utility of a landscape metric is dependent on

maintaining consistent response to observed phenomena. There

are many characteristics that affect the quality of map and
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image data including spatial aggregation and resolution, spatial

extent, texture, geometric registration, classification level, and

classification accuracy. An effective landscape metric is one

that is relatively insensitive or predictably sensitive to arbitrary

sampling characteristics while being very sensitive to the actual

spatial patterns of the landscape (Frohn, 1998). Since remote

sensing and map data are captured in a wide variety of

geometric representations, landscape metrics should be formu-

lated to compensate for specific sampling geometries in order

to facilitate comparison across scales and among different

studies.

Many landscape metrics are highly correlated. Ritters et al.

(1995) investigated 55 metrics and found that their information

could be reduced to 6 general measures of landscape pattern

and structure: Average Perimeter-Area Ratio, Contagion,

Standardized Patch Shape, Patch Perimeter-Area Scaling,

Number of Attribute Classes, and Large-Patch Density-Area

Scaling. Hargis et al. (1998) examined correlation between

landscape metrics using simulated landscapes and found that

Contagion and Edge Density had a high inverse correlation.

They also found that Mean Nearest Neighbor Distance and
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Mean Proximity Index have comparatively lower correlation to

other metrics. Imbernon and Branthomme (2001) statistically

screened various landscape indices before applying them to a

Landsat TM image. They found 6 statistically independent

indices: Number of Crop Land Patches, Fractal Dimension of

All Patches, Mean Distance between Patches and Their

Nearest Neighbor, Percentage Forest Area, Mean Proximity

between Forest Patches and Mean Crop Land Patch Size.

Generally, metrics can be divided into three groups: patch

based metrics (e.g., Mean Patch Size), edge based metrics e.g.,

Edge Density) and metrics based on both patch and edge (e.g.,

Perimeter-to-Area Ratio, Shape Index).

Most landscape metrics have been shown to be sensitive to

scale (McGarigal & Marks, 1994; Walsh et al., 1998). Several

studies have focused on the effects of spatial resolution and

spatial extent on the performance of metrics (Frohn, 1998;

Frohn et al., 1996; Saura, 2002, 2004; Saura & Martines-

Millan, 2001; Shen et al., 2004; Wu, 2004; Wu et al., 2000,

2002). Spatial resolution or grain size refers the smallest unit of

measurement in the data (e.g. pixel size) while spatial extent

refers to the total area measured (e.g., size of the study area). In

a recent study, Wu (2004) evaluated scale effects on seventeen

landscape metrics and found that class level metric responses

fell into one of two categories: predictable scaling functions

and unpredictable behavior. Landscape level metric responses

had a third category, a staircase pattern response (Wu, 2004).

Frohn (1998) analyzed two commonly used metrics, Contagion

and Fractal Dimension, and concluded that both metrics were

unstable or predictable with respect to varying spatial

resolution. Saura (2004) examined the performances of six

indices with varying aggregation using remote sensing data and

found that Landscape Division and Largest Patch Index were

the most stable in both aggregated and actual sensor patterns.

Number Patches, Mean Patch Size, and Edge Length were the

most sensitive indices not suitable for direct comparison across

different spatial resolutions. Wu et al. (2002) grouped

landscape metrics into three classes: Type I—predictable

responses with simple scaling relations; Type II—staircase like

responses with no simple scaling relations; and Type III—

erratic response exhibiting no general scaling relations. Saura

and Martines-Millan (2001) studied the sensitivity of eight

landscape metrics to changing spatial extent. They found Edge

Density was the least sensitive to varying spatial extent while

Mean Shape Index, Area Weighted Mean Shape Index, and

Perimeter-Area Fractal Dimension were the most sensitive.

Saura (2002) determined that changes in minimum mapping

unit (MMU) resulted in different responses among ten different

landscape metrics. Moody (1998) has also shown that changes

in scale can affect the accuracy of proportion estimates for

land-cover types (see also Moody & Woodcock, 1994, 1995,

1996).

The most common method of comparing landscape spatial

patterns with respect to spatial aggregation is by scaling

landscape maps to coarser resolutions using a majority rule

filter. But landscape maps derived using a majority rule filter

often produce more fragmented landscapes than the actual

sensor produces at the same resolution (Saura, 2004). Texture
analysis can provide a useful alternative to majority filtering

in the analysis of spatial aggregation. Texture in the image

is determined by the brightness variation, which is charac-

terized by uniformity, coarseness, regularity, frequency, and

linearity (Musick & Grove, 1991). Local neighborhood

intensity variance and other statistics (e.g., mean, skewness)

derived from frequency distributions are used as statistical

texture measures. Haralick (1979) described eight basic

statistical texture measures including autocorrelation func-

tions, optical transforms, digital transforms, textural edgeness,

structural element filtering, spatial intensity-value co-occur-

rence probabilities, intensity-value run length, and autore-

gressive models.

The purpose of this research was to analyze the effects of

spatial aggregation on sixteen commonly used landscape

metrics. Landsat images of a deforested area in Ariquemes,

Rondonia, Brazil (path 232 row 67), for six different years

were used in the analysis. A subset of a deforested area of

1024�1024 pixels (30.72�30.72 km) was used for testing

the effectiveness of landscape metrics in capturing spatial

patterns at different spatial aggregations by two types of

methods. The first method varied the window size in texture

analysis used to obtain local statistics (e.g., mean, variance,

skewness, etc.) before conducting classification. By doing

so, local mean instead of the original digital value was used

to determine the amount of aggregation in the output

landscape maps. The second method used the more

common approach of spatial aggregation by means of majo-

rity filtering.

This research builds on prior research concerning the

effects of scale on landscape metrics in several ways. First,

Wu (2004) has emphasized the need for empirical analysis of

the scale effects on landscape metrics for real landscapes not

just simulated landscapes. The area in this study is a real

landscape that has shown significant change over the past two

decades due to deforestation. Second, Shen et al. (2004) have

shown that changes in the number of classes can affect

scaling relations of most landscape metrics. This study uses a

simple binary classification of forest/non-forest so that metrics

will be unaffected by the number of classes as images are

aggregated. Third, this study evaluates scale effects on a

series of multi-temporal images instead of a single time frame

so that scale effects can be determined for different degrees of

landscape change in multiple years. Finally, this study uses

two different spatial aggregation methods so that sensitivity of

landscape metrics to different types of aggregations can be

assessed.

2. Study area

The Brazilian state of Rondonia provides a unique study

area to investigate the effects of human disturbance on the

spatial patterns of a natural landscape. Rondonia has undergone

massive land-use change over the past three decades as a result

of road building, colonization, and the subsequent settlement of

farmers who slash and burn the forest (Frohn et al., 1990). The

main highway through Rondonia, BR-364, was completed in
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1984 and has facilitated immigration into the state (Dale et al.,

1993a,b). Agricultural expansion has been the primary force

behind deforestation in the legal Amazon (Lucas et al., 2000,

2002). Unlike deforestation in other Brazilian Amazonian

states to the north and the east where the major cause of

deforestation is large-scale industrial cattle ranching, defores-

tation in Rondonia is limited to small farmer settlements and

the clearing of tropical forest for agriculture and cattle raising

(Frohn et al., 1990). Farmers settle on 100-hectare rectangular

lots along feeder roads that are spaced every 4–5 km.
Fig. 1. Location of the study area in
Rondonia has experienced tremendous landscape changes

since the 1970s, and is likely to continue this trend under the

pressure of population growth and migration. In this research

the colonization area of Ariquemes was selected for analysis

(Fig. 1).

3. Methodology

Six Landsat TM images (Path 232 Row 67) of the northern

part of the Brazilian state of Rondonia were used in the
Ariquemes, Rondonia, Brazil.
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analysis. The dates of the imagery are 1984, 1989, 1993, 1995,

1998, and 2000. Images were co-registered to each other. A

relatively homogenous square of 1024�1024 pixels was used

for metrics testing. This testing area is 94371.84 ha and located

in the northwestern part of the image. The test area is

approximately 13% of the entire image.

3.1. Image classifications

A simple unsupervised K-means classifier was used to

classify deforested areas and give consistent results between

years for metrics testing. K-means classification uses statistical

techniques to group n-dimensional data into their natural

spectral classes The K-means unsupervised classifier requires

the analyst to select the number of clusters to be located in the

data, arbitrarily locates this number of cluster centers, then

iteratively repositions them until optimal spectral separability is

achieved. All classifications were initialized with 15 classes

and 20 maximum iterations based on visual inspection of the

imagery.

For testing the effects of varying resolution by textural

filtering, the K-means classifier was applied to each mean co-

occurrence image after textural filtering. The classification

results were then grouped into forest and non-forest classes by

visual inspection of the imagery. There were 17 texture

window sizes for each of 6 years resulting in 102 different

classifications. For testing the effects of changing spatial

resolution by means of majority filtering, the classifier was

applied to the image before aggregation. Thus there were a

total of 6 classifications for majority filter testing.

3.2. Landscape metric calculations

Sixteen landscape metrics were calculated in this study

using Patch Analyst 2.2 (Grid) in ArcView (Elkie et al., 1999).

A brief description for each of them follows McGarigal and

Marks (1994).

(1) Class Area (CA): The sum of areas of all deforested

patches in hectares.

(2) Percent LAND (%LAND): It equals the percentage of the

landscape deforested.

(3) Patch Density (PD): PD measures the number of

deforested patches per square kilometer.

(4) Largest Patch Index (LPI): It equals the percentage of

the landscape comprised by the largest patch.

(5) Mean Patch Size (MPS): Average patch size. MPS =CA/

number of patches in hectares.

(6) Patch Size Standard Deviation (PSSD): The standard

deviation of patch sizes in hectares. PSSD =0 when all patches

in the class are the same size or when there is only 1 patch.

(7) Patch Size Coefficient of Variation (PSCoV): It measures

the variability (as a percentage) in patch size relative to the

mean patch size. PSCoV =(PSSD /MPS) * 100. PSCoV =0

when all patches in the class are the same size or when there

is only one patch.

(8) Edge Density (ED): The amount of edge relative to total

landscape area in meters/hectare.
(9) Mean Nearest Neighbor Distance (MNN): It is the

average distance in meters to the nearest neighboring patch of

the same type, based on shortest edge-to-edge distance.

MNN ¼

P
i¼1

m P
j¼1

nV
hij

N V

Where, hij is the distance to the nearest patch of the same

type for each patch in the landscape with a neighbor. It is based

on nearest edge-to-edge distance, N is the number of patches

with a neighbor.

(10) Landscape Shape Index (LSI): LSI measures shape

complexity of patches. It is given as LSI=P / (4*A1 / 2) where P

is the total perimeter edges in the landscape and A is the total

area of the landscape.

(11) Square Pixel (SqP): SqP is a modified Perimeter to

Area Ratio scaled to that of a square pixel and normalized from

0–1.

SqP ¼ 1� 44A1=2
� �

=P

Where, P is TE, A is CA at class level. No unit. (SqP=0

when all patches are square and approaches 1 as patches

become more complex in shape). SqP is correlated with LSI

and measures patch shape complexity (Frohn, 1998).

(12) Mean Shape Index (MSI):MSI is the average Perimeter

to Area Ratio. It is given as:

MSI ¼

P
i¼1

m P
j¼1

n :25pijffiffiffiffiffi
aij

p

! 

N

Where, Pij is the perimeter for each patch, aij is the area for

the corresponding patch, and N is the number of patches. No

unit. MSI=1 if when all patches are square and increases as the

shape complexity of patches increases.

(13) Area Weighted Mean Shape Index (AWMSI): AWMSI is

the Perimeter to Area Ratio, weighted by patch area so that

larger patches weigh more than smaller ones.

AWMSI ¼
Xm
i¼1

Xn
j¼1

:25pijffiffiffiffiffi
aij

p

! 
aij

A

�� #"

AWMSI=1 if when all patches are square and increases as

shape complexity of patches increases.

(14) Mean Patch Fractal Dimension (MPFD): Measures the

average fractal dimension of patches:

MPFD ¼

P
i¼1

m P
j¼1

n 2ln :25pij

 �
lnaij

�

N

1�MPFD�2. It measures the irregularity or complexity of

patch shape.

(15) Area Weighted Mean Patch Fractal Dimension

(AWMPFD): AWMPFD equals the average patch Fractal

Dimension (FRACT) of patches in the landscape, weighted

by patch area.

AWMPFD ¼
Xm
i¼1

Xn
j¼1

2ln :25pij

 �
lnaij

�

aij

A

�� ��
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1�AWMPFD�2. It measures the irregularity or complex-

ity of patch shape.

(16) Double Log Fractal Dimension (DLFD): DLFD equals

2 divided by the slope of the regression line obtained by

regressing the logarithm of patch area (m2) against the

logarithm of patch perimeter (m).

DLFD¼

2

N
P
i¼1

m P
j¼1

n

lnpij lnaij

 �#"

�
P
i¼1

m P
j¼1

n

lnpij

! P
i¼1

m P
j¼1

n

lnaij

! #"

N
P
i¼1

m P
j¼1

n

lnp2ij

! 
�

P
i¼1

m P
j¼1

n

lnpij

! 2

1�DLFD�2. It measures the irregularity or complexity of

patch shape. Theoretically, DLFD approaches 1 for shapes with
Fig. 2. Effects of varying window size in texture filtering for a smaller area within th

(e) 27�27 pixels (f) 35�35 pixels.
very simple perimeters such as circles or squares, and

approaches 2 for shapes with highly convoluted, plane-filling

perimeters. DLFD employs regression techniques and is

subject to small sample problems and requires patches to vary

in size.

3.3. Effects of spatial aggregation by texture filtering (Pre-

classification)

For each of the images from 1984 to 2000, the window

size for texture filtering was varied by using 3�3, 5�5,

7�7, . . ., 31�31, 33�33, and 35�35 pixels. Co-occur-

rence measures use a spatial dependence matrix to calculate

texture values. The matrix records the frequency with which

pixel values occur in two neighboring processing windows of
e study site (a) 3�3 pixels (b) 9�9 pixels (c) 15�15 pixels (d) 21�21 pixels
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a specified size and distance (Haralick et al., 1973). The mean

co-occurrence image was obtained from the results of texture

filtering. The K-means classifier was then applied to each of

the mean co-occurrence images and the landscape metrics

were calculated.

Despite their similarities in terms of spatial generalization,

there are some significant differences between texture filtering

and majority filtering for spatial aggregation. Majority

filtering is applied after image classification, where the re-

sults are resampled according to a majority rule. Texture

filtering resulted in spatial aggregation with varying window

sizes before classification. The output spatial resolution is

unchanged in texture filtering although the pixels are
Fig. 3. Effects of varying window size in majority filtering for a smaller area within t

(e) 27�27 pixels (f) 35�35 pixels.
averaged over changing window sizes. With majority filtering

the spatial resolution actually changes with each aggregation

at varying window sizes. Fig. 2 shows the results of texture

filtering for a small area within the study at some selected

window sizes.

3.4. Effects of spatial aggregation by majority filtering (Post-

classification)

Six image classifications, one for each year, were resampled

using a majority filter at successively coarser intervals of 60 m

up to a nominal resolution of 1 km. This 1 kmmaximum level of

aggregation was selected to correspond generally with AVHRR
he study site (a) 3�3 pixels (b) 9�9 pixels (c) 15�15 pixels (d) 21�21 pixels
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LAC data, which is often used in studies of tropical

deforestation. Aggregation involved using an increasing size

window for the majority filter on the original classified image.

A total of 210 images (6 years�35 spatial resolutions) were

obtained. Landscape metrics were calculated on each aggregat-

ed image to determine the effects of varying spatial resolution.

Fig. 3 shows a portion of the study area with different spatial

resolutions from majority filtering. The difference between

texture filtering is obvious from comparing Figs. 2 and 3.

Texture filtering creates a more natural looking landscape where

the overall landscape pattern is maintained at the coarser

resolutions. Majority filtering, on the other hand creates a more

blocky type aggregation, which can sometimes result in a

change in the overall landscape pattern at the coarsest

resolutions.

4. Results and discussion

Sixteen landscape metrics were calculated and evaluated

with respect to the effects of changing spatial resolution by two

methods: texture filtering and majority filtering. The metrics

were grouped into one of four categories.

4.1. Class metrics

Class metrics measure the deforested class area and

proportion and consist of Class Area (CA) and Percent LAND

(%LAND).

4.2. Shape metrics

Shape metrics have been used to measure shape complexity

of patches on the landscape. There are seven metrics in this

category. They consist of the Landscape Shape Index (LSI),

Square Pixel Metric (SqP), Mean Shape Index (MSI), Area

Weighted Mean Shape Index (AWMSI), Mean Patch Fractal

Dimension (MPFD),AreaWeightedMean Patch Fractal Dimen-

sion (AWMPFD), and Double Log Fractal Dimension (DLFD).

4.3. Patch metrics

Patch metrics quantify information regarding patch size

and distribution. There are five metrics based on patch

statistics. They are the Patch Density (PD), Largest Patch

Index (LPI); Mean Patch Size (MPS), Patch Size Standard

Deviation (PSSD), and Patch Size Coefficient of Variation

(PSCoV).

4.4. Edge metrics

Edge metrics quantify length and distribution of the amount

of edge between patches. Two metrics are based on edge

statistics: Edge Density (ED), and Mean Nearest Neighbor

Distance (MNN).

When evaluating the effects of spatial resolution changes,

we are mainly considering whether a metric has either a

predictable change or exhibits erratic behavior. A metric should
be insensitive or predictably sensitive to changing elements of

remotelysensed images, such as spatial resolution, and most

sensitive to the landscape component that it was designed to

measure. If a metric is insensitive or predictably sensitive to

spatial resolution then measurements across scales and across

studies can be made without compromising the landscape

element that is being measured. If a metric is not predictably

sensitive to sampling geometries and we use it to measure

landscape change over time, we will not know if it is

measuring actual change in the landscape or simply measuring

changes in the sampling geometry or both. It also should be

noted that the spatial pattern of land cover in the study area is

a function of land ownership; feeder road location and

spacing; and the size and shape of lots. These factors will

influence the metric responses to spatial aggregation. As the

data are aggregated the landscape has a relatively higher

connectivity and larger patch size mainly as a function of

land-cover change and distance from feeder roads. Metrics

calculated for a similar analysis in a location with a grid or

irregular network of roads may exhibit a different response to

aggregation than that found from an analysis of the fishbone-

characterized landscape of this study area. The following

sections summarize the results of the effects of varying spatial

resolution by texture filtering and majority filtering on

landscape metrics applied in this study.

4.5. Results of spatial aggregation by texture filtering (Pre-

classification)

The effects of varying the window size in textural filtering

on the class and shape metrics are shown in Fig. 4. Texture

filtering has a small but predictable effect on both class metrics,

CA and %Land. Increasing the window size results in

aggregating larger cleared areas and eliminating smaller non-

cleared areas. The overall result is a slight increase in the

estimated area and percent area that was deforested. The

increase is small, linear, and predictable. Moody (1998) and

Moody and Woodcock (1996) demonstrated the potential for

using a posteriori calibration methods to improve land-cover

area and proportion estimates at coarser scales. A calibration

method that considers the linear relationship between land-

cover proportion and spatial aggregation would be applicable

in this study.

The effect of textural filtering is to generalize the overall

shapes of patches on the landscape. The larger the window

size, the greater the generalization. Thus, we would expect a

predictable decrease in the value of shape complexity metrics

with each increase in window size. However, the shape

metrics were affected differently with respect to textural

filtering. SqP showed a strong linear decrease as predicted

with each increase in the size of the texture window filter. SqP

also showed the same trend and results for each year of

deforestation. LSI behaved as predicted and showed a strong

logarithmic decrease with each increase in the filtering

window size. LSI showed similar results for each year of

deforestation analyzed. Wu et al. (2002) found similar results

in evaluating SqP and LSI and described them as Type I
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metrics (predictable responses with simple scaling relations)

with respect to grain size. The shape metrics AWMSI and

AWMPFD showed an overall decrease in shape complexity,

which is expected. However, both metrics showed no

predictable trend for this decrease and had different results

for each year analyzed. These results conflict with other

research on the performance of these two metrics with respect

to changes in spatial resolution. For example, several

researchers have found that these two metrics exhibit Type I

behavior with respect to changes in grain size (Shen et al.,

2004; Wu, 2004; Wu et al., 2002). A closer examination of the

results for multiple years shows that these two metrics are

affected differently depending on the amount and degree of

deforestation. The fact that some years are affected more than

others by changes in spatial aggregation may explain the

differences between this and other studies with respect to

AWMSI and AWMPFD. These two metrics may behave

differently depending on class proportions. DLFD varied in

results by year. Some years had an increase in DLFD and

some had a decrease. Responses for DLFD were erratic and
not predictable. MSI and MPFD behaved counterintuitively

and showed an overall increase in shape complexity with

increased textural filtering. Since the effects of texture filtering

include a generalization of the shape complexity of the

landscape, these two metrics should have increased. The

behaviour of DLFD, MSI, and MPFD in this study is in

agreement with that also reported by several other researchers

(Saura, 2002; Wu, 2004; Wu et al., 2002). Saura (2002) have

recommended that MSI not be used in landscape studies if

land-cover data have different spatial resolutions or patch size

frequencies. SqP and LSI appear to be the most predictable of

the shape complexity metrics to the effects of spatial

aggregation by texture.

Pearson correlation coefficients were calculated to show the

degree of correlation between metric values and the window

size of texture filtering. Table 1 shows the correlation

coefficients for the shape metrics. SqP showed a high degree

of correlation with window size for all years. SqP values range

from �0.9982 to �0.9997 with a mean value of �0.9989,

standard deviation of 0.0006, and a p value <0.0001. Pearson



Table 1

Correlation coefficients for shape complexity metrics and texture window size

SqP LogLSI LSI AWPFD AWMSI DLFD MSFD MSI

1984 �0.9983 �0.9930 �0.9474 �0.9791 �0.9464 �0.7493 0.4216 0.7993

1989 �0.9996 �0.9871 �0.9596 �0.8327 �0.7193 �0.9297 0.6896 0.8930

1993 �0.9997 �0.9879 �0.9520 �0.9243 �0.8104 �0.9350 0.8420 0.8964

1995 �0.9990 �0.9955 �0.9240 �0.9739 �0.9765 �0.8002 0.8915 0.9476

1998 �0.9982 �0.9957 �0.9185 �0.9507 �0.8813 �0.9375 0.8076 0.9414

2000 �0.9988 �0.9975 �0.9058 �0.9382 �0.8918 �0.1038 0.8269 0.8694

Mean �0.9989 �0.9928 �0.9345 �0.9332 �0.8710 �0.7426 0.7465 0.8912

StdDev 0.0006 0.0044 0.0214 0.0534 0.0939 0.3229 0.1727 0.0541
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coefficients were also calculated for the log transform of LSI

since it showed a logarithmic decrease with increasing window

size. LogLSI also had high correlation coefficients ranging

from �0.9871 to �0.9975 with a mean of �0.9928, standard

deviation of 0.0044 and a p value <0.0001. The Pearson

coefficients for the rest of the shape metrics were much lower.

The effects of textural filtering on the patch and edge

metrics are shown in Fig. 5. Texture filtering results in fewer
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landscape. As the filtering effect increases there is a greater

aggregation of patches and less edge. ED appears to quantify

this decrease in edge well. Both PD and ED show strong

logarithmic decreases with each increase in filtering window

size. Also, PD and ED have very similar results for each year

analyzed. MPS behaved as expected with an overall increase

in the average size of patches. However, the effect was not

the same for each year analyzed. The behaviour of PD, ED,

and MPS with respect to spatial resolution in this study is

similar to that found in other studies (Shen et al., 2004; Wu,

2004; Wu et al., 2000, 2002). Saura and Martines-Millan

(2001) also found both PD and ED to be insensitive to

changes in spatial extent.

PSSD measures the standard deviation of patch sizes. PSSD

showed an overall increase with textural filtering. However,

PSSD was not consistent between years analyzed. PSSD

appears to be affected by the proportion deforested in the

study area. When there is a low amount of deforestation (1984)

there is a lower standard deviation between patch sizes as

spatial aggregation changes. With increasing deforestation such

as in 2000 the deforested patches have greater standard

deviation between patch sizes as the data is aggregated. PSCoV

measures the variability in patch size relative to the mean patch

size. PSCoV had an overall decreasing trend but was irregular

and not consistent between years. LPI, which measures the

largest patch on the landscape showed a slight overall increase

but was very inconsistent. PSSD, PSCoV, and LPI have been

reported to be stable metrics with respect to spatial resolution

by other researchers contrary to the results of this study (Saura,

2002, 2004; Shen et al., 2004; Wu, 2004; Wu et al., 2000,

2002). The difference between the behaviour of these three

metrics in this study and that in other studies may be due to

differences in land-cover proportions. In some years, these

metrics behaved as predicted. However, for other years they

behaved more erratically. Future studies should consider the

number of classes and proportion land-cover when examining

these metrics as they may be affected by spatial resolution

changes. Finally, MNN measures the mean distance to the

patches nearest neighboring patch. As patches coalesce through

texture filtering, the distance between patches increases and

MNN increases. MNN is not consistent, however, in how it is

affected among different years and different window sizes and

appears to be affected by the proportion deforested in the study

area. For example, notice the high variation in MNN for 1984

where deforestation is very low compared to other years. When
Table 2

Correlation coefficients for patch and edge metrics and texture window size

LogED LogPD PSSD MNN

1984 �0.9910 �0.9832 0.9632 0.9699

1989 �0.9853 �0.9830 0.8787 0.9904

1993 �0.9863 �0.9635 0.9796 0.9474

1995 �0.9943 �0.9797 0.9947 0.9314

1998 �0.9948 �0.9860 0.9942 0.9631

2000 �0.9968 �0.9749 0.9804 0.9717

Mean �0.9914 �0.9784 0.9651 0.9623

StdDev 0.0048 0.0082 0.0439 0.0205
deforestation is low, large forest patches dominate the

landscape and texture filtering tends to eliminate the smaller

island patch clearings causing an increase in the distance

between these patches.

Pearson coefficients were calculated for the patch and edge

metrics including log transforms of ED and PD (Table 2).

LogED had the highest correlation coefficients of the edge

metrics ranging from �0.9853 to �0.9968 with a mean value

of �0.9914, standard deviation of 0.0048, and p value

<0.0001. LogPD had the highest correlation values of the

patch metrics ranging from �0.9635 to �0.9860 with a mean

of �0.9784, standard deviation of 0.0082 and p value

<0.0001. The correlation values for the rest of the patch and

edge metrics are shown in Table 2.

Fig. 6 demonstrates the predictability of LSI, PD, and ED

with respect to the window size used in textural filtering when

log transforms are applied. All three graphs are log plots of

each metric versus the window size. All three metrics in the log

plots have a strong negative linear correlation with window

size in texture filtering.

4.6. Results of spatial aggregation by majority filtering (Post-

classification)

The second method used to evaluate the performance of

the metrics with respect to changing spatial aggregation is

more common and performed by simply resampling the data

after classification using a majority filter. Unlike texture

filtering, majority filtering actually changes the spatial

resolution of the data. The spatial resolution ranges from 30

to 1050 m, with an interval of 30 m. The result of post-

classification spatial aggregation is a blockier appearance of

data than with texture filtering. Saura (2004) has noted that

this type of aggregation produces a more fragmented

landscape than the actual sensor does at the same resolution.

The results for each landscape metric can be similar to those

found from texture filtering. However, if spatial aggregation

causes actual changes in the pattern of the landscape then the

metric behavior may become less predictable than that found

from texture filtering.

Fig. 7 shows the effects of majority filtering on the class

and shape metrics. Spatial aggregation had very little effect

on the class metrics, CA and %LAND. Both the area of

deforestation and the proportion of deforestation in the images

have little or no change from spatial resolutions ranging from
MPS ED PSCoV PD LPI

0.9819 �0.9471 �0.9632 �0.9007 0.8470

0.9813 �0.9600 �0.8143 �0.8955 0.6941

0.9364 �0.9518 �0.8894 �0.9046 0.9259

0.9634 �0.9237 �0.9782 �0.8531 0.9337

0.9686 �0.9180 �0.9289 �0.8376 0.7761

0.8909 �0.9054 �0.9471 �0.8300 0.9176

0.9537 �0.9343 �0.9202 �0.8702 0.8491

0.0350 0.0216 0.0603 0.0338 0.0971
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30 to 1050 m. The spatial aggregation causes the landscape to

become more clumped and generalized so its complexity

decreases. Both LSI and SqP show a predictable decrease in

shape complexity with each increase in spatial resolution. LSI

and SqP behavior with majority filtering is similar to that

with texture filtering. The other five shape complexity metrics

however show erratic and unpredictable patterns with respect

to changing spatial resolution and in some cases the behavior

was different from that found with texture filtering. AWMSI

and AWMPFD show an overall decrease but the response is

inconsistent and different for each year and each resolution

change. MSI shows an overall increase for most years but a

decrease for 1984. This behavior is different from texture

filtering where MSI has an increase with each aggregation for

all years including 1984. MSI behavior is very erratic with

respect to spatial resolution. MPFD and DLFD exhibit

counterintuitive increases in shape complexity with increasing

spatial resolution. Since the effects of majority filtering

include a generalization of the complexity of shapes on the

landscape, MPFD and DLFD should increase with each

aggregation. However, both of these metrics increase with

majority filtering. DLFD shows the opposite pattern with

respect to majority filtering than it does with texture filtering.

With majority filtering DLFD showed increases for all years

with each spatial aggregation while with texture filtering

DLFD showed decreases for all years. The responses are very

inconsistent with respect to each year analyzed and each reso-

lution change.

Pearson coefficients for the shape metrics with respect to

spatial resolution changes from majority filtering are shown in

Table 3. SqP had the highest degree of correlation ranging from
�0.9845 to �0.9944 with a mean of �0.9914, standard

deviation of 0.0036, and p value <0.001. LSI had the second

highest correlation with values ranging from �0.9830 to

�0.9860, mean of �0.9845, and standard deviation of 0.0012.

The rest of the shape complexity metrics had correlations less

than 0.90.

Fig. 8 shows the effects of majority filtering on the patch

and edge metrics. Majority filtering had similar results to that

of texture filtering with less patches, decreased patch density

(PD), an increase in the average size of patches (MPS), an

increase in the average distance between patches (MNN), and a

decrease in the amount and density of edges (ED). Once again

PD and ED showed strong decreasing predictable trends with

respect to increases in spatial resolution. The trends are not as

definitive as those found from texture filtering because the

spatial aggregation results in a blockier landscape that changes

the spatial pattern slightly. The effects of spatial resolution

changes on PD and ED were also consistent for each year

analyzed. MNN also behaved as predicted showing increases

with increasing spatial resolution. As spatial resolution

increases, more patches coalesce and the distance between

patches increases causing MNN to increase. MPS also showed

an overall increase with increasing spatial resolution but the

changes were erratic and inconsistent among different years.

PSSD, PSCoV, and LPI showed the same trends as that found

from textural filtering but the changes were much more

irregular among years.

Correlation coefficients for the patch and edge metrics with

respect to spatial resolution changes were also calculated

(Table 4). ED had the highest correlation coefficients of the

edge metrics ranging from �0.9830 to �0.9850 with a mean
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value of �0.9841, standard deviation of 0.0010, and p value

<0.0001. MNN also had high correlation values, ranging from

0.9665 to 0.9865 with a mean of 0.9751, standard deviation of

0.0095, and p value <0.0001. PD correlation coefficients were

also high, with a mean of �0.9239, standard deviation of

0.0222, and p value <0.0001. The correlation values for the

rest of the patch and edge metrics are shown in Table 4.
Table 3

Correlation coefficients for shape complexity metrics

SqP LSI AWPFD AWMSI MSFD MSI DLFD

1984 �0.9845 �0.9842 �0.9562 �0.9258 �0.8187 �0.8252 0.7617

1989 �0.9931 �0.9859 �0.7996 �0.6545 0.6938 0.7749 0.9133

1993 �0.9908 �0.9860 �0.8944 �0.8207 0.7037 0.8420 0.9027

1995 �0.9920 �0.9843 �0.9356 �0.9337 0.7584 0.8577 0.8788

1998 �0.9935 �0.9834 �0.8739 �0.8677 0.8083 0.9230 0.8889

2000 �0.9944 �0.9830 �0.9134 �0.9206 0.8428 0.8918 0.8527

Mean �0.9914 �0.9845 �0.8955 �0.8538 0.4981 0.5774 0.8663

StdDev 0.0036 0.0012 0.0553 0.1068 0.6476 0.6889 0.0554
5. Summary and conclusion

This study evaluated the behavior of sixteen metrics with

respect to spatial aggregation by texture filtering and majority

filtering. The Square Pixel (SqP) and Landscape Shape Index

(LSI) metrics showed predictable decreases with increasing

spatial aggregation and had the highest correlation values

with increasing window size among the shape complexity

metrics. LSI may require a log transform in order to predict

its behavior across scales. The rest of the shape complexity

metrics showed very little predictability and often behaved

inconsistently. Edge Density (ED) showed the strongest

predictable trend of the edge metrics and decreased with

spatial resolution increases. The Patch Density (PD) metric

showed the most predictable behavior among the patch

metrics decreasing with increasing spatial resolution. Both

ED and PD may require a log transform in order to predict its

value across scales. The Mean Nearest Neighbor (MNN)

metric also behaved as expected but its results were less
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consistent than those of ED. Other patch metrics performed

inconsistently and unpredictably. This analysis indicates that

if different data with spatial resolutions are used, such as

comparing Landsat classifications with MODIS or AVHRR

classifications, then the effect on metrics such as SqP, LSI,

ED, and PD can be predicted directly and measures across

scales can be made.

It should be emphasized that the spatial patterns of

deforestation in this study are unique to the area of Rondonia,
Table 4

Correlation coefficients for patch and edge metrics and majority filter size

ED MNN PSCoV PD MPS PSSD LPI

1984 �0.9836 0.9610 �0.9095 �0.9326 0.9377 0.5220 �0.0509

1989 �0.9850 0.9865 �0.9063 �0.9436 0.8845 0.7939 0.5662

1993 �0.9857 0.9665 �0.9390 �0.9484 0.8939 0.8776 0.1408

1995 �0.9838 0.9812 �0.9511 �0.9159 0.9210 0.9062 �0.2701

1998 �0.9834 0.9787 �0.9423 �0.9145 0.9150 0.9046 0.3308

2000 �0.9830 0.9768 �0.9386 �0.8887 0.8859 0.8991 0.0519

Mean �0.9841 0.9751 �0.9311 �0.9239 0.9063 0.8172 0.1281

StdDev 0.0010 0.0095 0.0186 0.0222 0.0216 0.1507 0.2931
Brazil and that metrics may behave differently to aggregation

in areas with different spatial patterns. The fishbone pattern of

deforestation in Rondonia may exhibit scale dependent

relationships not found in other areas. Also, having predictable

responses to changing spatial resolution does not necessarily

make a metric robust for other types of analysis. There are also

many other factors that affect the applicability and effective-

ness of metrics as indicators of landscape pattern in addition to

spatial resolution (Li & Wu, 2004). With these caveats in mind,

we make the following conclusions from the results of this

study:

& SqP, LSI, ED, and PD showed consistent and predictable

behaviour with respect to spatial aggregation.

& Most of the remaining shape complexity, edge, and patch

metrics gave unpredictable and inconsistent results with

respect to spatial aggregations.

& The amount of deforestation (land-cover proportion) may

have an effect on the response a metric will have with

respect to changing spatial aggregation.



R.C. Frohn, Y. Hao / Remote Sensing of Environment 100 (2006) 237–251250
& Both aggregation methods (texture filtering and majority

filtering) showed similar responses for all metrics except

DLFD, which gave opposite responses with respect to

texture and majority filtering.

& A landscape metrics response to spatial aggregation and

changes in spatial resolution should be one factor consid-

ered when applying the metric to quantify spatial patterns of

the landscape.

Acknowledgements

This research was funded by the National Aeronautics and

Space Administration (NASA) from a grant to Robert Frohn in

the former OhioView Consortium. We thank Robert South for

reviewing this manuscript. We are also very thankful to Molly

Bantz from Research Systems Inc. for continuing support and

service regarding their image processing package, ENVI.

References

Ares, J., Bertiller, M., & del Valle, H. (2001). Functional and structural

landscape indicators of intensification, resilience and resistance in agroe-

cosystems in southern Argentina based on remotely sensed data. Landscape

Ecology, 16(3), 221–234.

Brown, D. G., Duh, J. -D., Drzyzga, & Scott, A. (2000). Estimating error in

an analysis of forest fragmentation change using North American

landscape characterization (NALC) data. Remote Sensing of Environment,

71, 106–117.

Dale, V. H., O’Neill, R. V., Pedlowski, M., & Southworth, F. (1993a). Causes

and effects of land-use change in Central Rondonia, Brazil. Photogram-

metric Engineering and Remote Sensing, 59, 997–1005.

Dale, V. H., Southworth, F., O’Neill, R. V., Rosen, A., & Frohn, R. (1993b).

Simulating spatial patterns of land-use change in Rondonia, Brazil. Lectures

on Mathematics in the Life Science (American Mathematical Society), 23,

29–53.

Elkie, P., Rempel, R., Carr, A. 1999. Patch analyst user’s manual. Ont. Min.

Natur. Resour. Northwest Sci. and Technol. Thunder Bay, Ont. TM-002. 16

pp + Append.

Frohn, R. C. (1998). Remote sensing for landscape ecology. Boca Raton, FL’

Lewis publishers.

Frohn, R. C., Dale, V. H., & Jimenez, B. D. (1990). Colonization, road

development and deforestation in the Brazilian Amazon Basin of Rondonia.

ORNLTM-11470, Oak Ridge, Tennessee.

Frohn, R. C., McGwire, K. C., Dale, V. H., & Estes, J. E. (1996). Using satellite

remote sensing analysis to evaluate a socio-economic and ecological model

of deforestation in Rondonia, Brazil. International Journal of Remote

Sensing, 17(16), 3233–3255.

Fuller, D. O. (2001). Forest fragmentation in Loudoun County, Virginia, USA

evaluated with multitemporal Landsat imagery. Landscape Ecology, 16,

627–642.

Haralick, R. M. (1979). Statistical and structural approaches to texture.

Proceedings of the IEEE, 67, 786–804.

Haralick, R. M., Shanmugan, K., & Dinstein, I. (1973). Textural features

for image classification. IEEE Transactions, Man, and Cybernetics, 3,

610–621.

Hargis, C. D., Bissonette, J. A., & David, J. L. (1998). The behavior of

landscape metrics commonly used in the study of habitat fragmentation.

Landscape Ecology, 13(3), 167–186.

Heggem, D. T., Edmonds, C. M., Neale, A. C., Bice, L., & Jones, K. B. (2000).

A landscape ecology assessment of the Tensas River Basin. Environmental

Monitoring and Assessment, 64, 41–54.

Herzog, F., & Lausch, A. (2001). Supplementing land-use statistics with

landscape metrics. Some methodological considerations. Environmental

Monitoring and Assessment, 72(1), 37–50.
Imbernon, J., & Branthomme, A. (2001). Characterization of landscape patterns

of deforestation in tropical rain forests. International Journal of Remote

Sensing, 22(9), 1753–1765.

Jorge, L. A. B., & Garcia, G. J. (1997). A study of habitat fragmentation in

southeastern Brazil using remote sensing and geographic information

systems (GIS). Forest Ecology and Management, 98(1), 35–47.

Leitao, A. B., & Ahern, J. (2002). Applying landscape ecological concepts and

metrics in sustainable landscape planning. Landscape and Urban Planning,

59, 65–93.

Li, X., Lu, L., Cheng, G., & Xiao, H. (2001). Quantifying landscape structure

of the Heihe River Basin, north-west China using FRAGSTATS. Journal of

Arid Environments, 48, 521–535.

Li, H., & Wu, J. (2004). Use and misuse of landscape indices. Landscape

Ecology, 19, 389–399.

Liu, A. J., & Cameron, G. N. (2001). Analysis of landscape patterns in

coastal wetlands of Galveston Bay, Texas (USA). Landscape Ecology,

16(7), 581–595.

Lucas, R. M., Honzak, M., Curran, P. J., Foody, G. M., Milne, R., Brown, T., et

al. (2000). Mapping the regional extent of tropical forest regeneration stages

in the Brazilian legal Amazon using NOAA AVHRR data. International

Journal of Remote Sensing, 21(15), 2855–2881.

Lucas, R. M., Honzák, M., Do Amaral, I., Curran, P. J., & Foody, G. M. (2002).

Forest regeneration on abandoned clearances in central Amazonia.

International Journal of Remote Sensing, 23(5), 965–988.

McGarigal, K., & Marks, B. J. (1994). Fragstats–spatial pattern analysis

program for quantifying landscape structure. Oregon State University,

Corvallis, OR’ Forest Science Department.

Moody, A. (1998). Using landscape spatial relationships to improve estimates

of land-cover area from coarse resolution remote sensing. Remote Sensing

of the Environment, 64, 202–220.

Moody, A., & Woodcock, C. E. (1994). Scale-dependent errors in the

estimation of land-cover proportions: Implications for global land-cover

datasets. Photogrammetric Engineering and Remote Sensing, 60, 585–594.

Moody, A., & Woodcock, C. E. (1995). The influence of scale and the spatial

characteristics of landscapes on land-cover mapping using remote sensing.

Landscape Ecology, 10, 363–379.

Moody, A., & Woodcock, C. E. (1996). Calibration-based models for correction

of area estimates derived from coarse resolution land-cover data. Remote

Sensing of the Environment, 58, 225–241.

Musick, H. B., & Grove, H. D. (1991). Image texture measures as indices of

landscape pattern. In M. G. Turner, & R. H. Gardner (Eds.), Quantitative

methods in landscape ecology, the analysis and interpretation of landscape

heterogeneity. Springer-Verlag.

Pan, B., Domon, G., Marceau, D., & Bouchard, A. (2001). Spatial pattern of

coniferous and deciduous forest patches in an Eastern North America

agriculture landscape, the influence of land use and physical attributes.

Landscape Ecology, 16, 99–110.

Peralta, P., & Mather, P. (2000). An analysis of deforestation patterns in the

extractive reserves of Acre, Amazonia from satellite imagery, a landscape

ecology approach. International Journal of Remote Sensing, 21(13 and 14),

2555–2570.

Ravan, S. A., & Roy, P. S. (1997). Satellite remote sensing for ecological

analysis of forested landscape. Plant Ecology, 131, 129–141.

Read, J. M., & Lam, N. S. N. (2002). Spatial methods for characterizing land

cover and detecting land-cover changes for the tropics. International

Journal of Remote Sensing, 23(12), 2457–2474.

Ritters, K. H., O’Neill, R. V., Hunsaker, C. T., Wickham, J. D., Yankee, D. H.,

Timmins, S. P., et al. (1995). A factor analysis of landscape pattern and

structure metrics. Landscape Ecology, 10, 23–39.

Saura, S. (2002). Effects of minimum mapping unit on land cover spatial

configuration and composition. International Journal of Remote Sensing,

23(22), 4853–4880.

Saura, S. (2004). Effects of remote sensor spatial resolution and data

aggregation on selected fragmentation indices. Landscape Ecology, 19,

197–209.

Saura, S., & Martines-Millan, J. (2001). Sensitivity of landscape pattern metrics

to map spatial extent. Photogrammetric Engineering and Remote Sensing,

67(9), 1027–1036.



R.C. Frohn, Y. Hao / Remote Sensing of Environment 100 (2006) 237–251 251
Shen, W., Jenerette, G. D., Wu, J., & Gardner, R. H. (2004). Evaluating

empirical scaling relations of pattern metrics with simulated landscapes.

Ecography, 27, 459–469.

Trani, M. K., Giles, Jr., & Robert, H. (1999). An analysis of deforestation,

metrics used to describe pattern change. Forest Ecology and Management,

114(2–3), 459–470.

Walsh, S. J., Butler, D. R., & Malanson, G. P. (1998). An overview of scale,

pattern, process relationships in geomorphology, a remote sensing and GIS

perspective. Geomorphology, 21(3 and 4), 183–205.
Wu, J. (2004). Effects of changing scale on landscape pattern analysis: Scaling

relations. Landscape Ecology, 19, 125–138.

Wu, J., Jelinski, D. E., Luck, M., & Tueller, P. (2000). Multiscale analysis of

landscape heterogeneity. Geographic Information Sciences, 6(1), 6–19.

Wu, J., Shen, W., Sun, W., & Tueller, P. T. (2002). Empirical patterns of the

effects of changing scale on landscape metrics. Landscape Ecology, 17,

761–782.


	Landscape metric performance in analyzing two decades of deforestation in the Amazon Basin of Rondonia, Brazil
	Introduction
	Study area
	Methodology
	Image classifications
	Landscape metric calculations
	Effects of spatial aggregation by texture filtering (Pre-classification)
	Effects of spatial aggregation by majority filtering (Post-classification)

	Results and discussion
	Class metrics
	Shape metrics
	Patch metrics
	Edge metrics
	Results of spatial aggregation by texture filtering (Pre-classification)
	Results of spatial aggregation by majority filtering (Post-classification)

	Summary and conclusion
	Acknowledgements
	References


