

Estágio de Pós-Doutorado

Elias Ribeiro de Arruda Junior eliasarrudajr@yahoo.com.br

Calibração de modelos de escorregamento utilizando a plataforma para monitoramento, análise e alerta a extremos ambientais (TerraMA²) no município de Nova Friburgo-RJ

Supervisores: Evlyn Márcia Leão de Moraes Novo Eymar Silva Sampaio Lopes

São José dos Campos, 05 de setembro de 2014

Movimentos de massa – fenômenos naturais da dinâmica externa – agente na evolução nas formas de relevo

Corridas de massa (*debris flows*) deflagradas pelos escorregamentos translacionais generalizados

Ocupação humana – áreas de risco potencial

Desastres hidrológicos (inundações e movimentos de massa) No mundo (52,1% em 2011) No Brasil (3ª posição no ranking mundial em nº mortes) Ocorrência em paisagens montanhosas e com grande descargas hidráulicas no verão (Sudeste do Brasil)

Ultimamente uma série de eventos extremos, destaque para:

2011 - Região Serrana do Estado do RJ (Friburgo) 900 vítimas fatais 35.000 desabrigados

2013 - Região Serrana do Estado do RJ (Petrópolis)
 499 mm em 96h
 34 vítimas fatais
 1500 desabrigados

A preparação para desastres naturais é um fator chave na redução do seu impacto;

Recentes iniciativas internacionais estão promovendo o desenvolvimento de uma cultura de prevenção de riscos e promoção de sistemas de alerta precoce;

Brasil, apesar de acordo internacional - até 2015 implantação de sistemas de alerta para reduzir o risco de desastres naturais, o sistema brasileiro revelou-se frágil... Para o desenvolvimento do sistema de monitoramento da área de estudo foi utilizada a plataforma **TerraMA**², da Divisão de Processamento de Imagens do Instituto Nacional de Pesquisas Espaciais (INPE),

Permite a construção de modelos ambientais com execução em tempo real...

Implementar e calibrar os modelos matemático SINMAP e SHALSTAB para previsão de áreas suscetíveis a escorregamentos translacionais rasos na plataforma TerraMA²;

Adaptar aos modelos matemáticos, dados de chuva atualizados em tempo real advindos de várias fontes de dados;

Validar os dois modelos SINMAP e SHALSTAB com base em dados reais de inventário de cicatrizes de escorregamentos levantados no município de Nova Friburgo-RJ na mega-catástrofe de janeiro de 2011.

Área de estudo

Área de estudo

Área de estudo

Sub-bacias compreendem as regiões: Serrana, Metro politana, Baixa da Litorânea e Centro-Sul Fluminense

Sub-bacias em diferentes domínios geomorfológicos

Material

Desenvolvimento das aplicações nas linguagens: LEGAL (*Spring*) – operadores zonais; e LUA (*TerraMA²*) – desenvolvimento do modelo de alerta.

Concepção da plataforma TerraMA2

Comerciais:

```
ESRI ArcGIS 9.3
ESRI ArcView 3.2
ITT ENVI 4.8
```

Extensões (grátis):

SINMAP - extensão para ArcGIS 9.x SHALSTAB – extensão para ArcView 3.2

Principais insumos

- Mapeamento topográfico do IBGE, vetores, 1:50.000
- MDE NASA/SRTM (TOPODATA/INPE), 30 x 30m

Material

Dados Ambientais

5 x 5 km;

4 x 4 km;

14

Distribuição dos dados geoambientais

(am/dora)
JPEG público - dados para
usuários em geral
sem capacidade de processamento

11 <u>3</u> 0,4 +	1096.2 +	1077.9 +	1052.0 +	1041.7 +	1008,9 +	1000.0 +
1137.6	1129.5	1113.1	1097.7	1065.1 +	1035.0 +	1012.5 +
1158.2 +	1156.1 +	1124.9 +	109 6 .7 +	1054 4 +	1030 1 +	1000 0 +
1158.4	1141.7	1127.4 +	1105.6	1073 2	1048.5	1030 9 +
1124.0 +	1117.1 +	1120.B +	1095.2	1067 7 +	1061 2 +	1044 4 +
1087.7	11 <u>00.</u> 7	1094.4 +	1079.6 +	1044 8 +	1037 1	1027 1 +
1078.7	1071.9	1658.B +	1827.Z	0.00D1	1000.0	1000.0

Grade numérica disponível para FTP ou na forma de serviços WEB. Dados para usuários TerraMA2 com capacidade de processamento

- Dados maioria da internet (grátis)
- Integração de dados georreferenciados no TerraView
 - Compatibilização propriedades cartográficas
- Pré-processamento dos dados

Aquisição, integração e pré-processamento dos dados

1	88756	1192.6681 Setor_CPRM_pol115 Setor_CPRM_pol115	3067 Setor_CPRM_pol115 SI	2013-03-11 09:00:23 n	minvalue 0.48669	6 3067 Setor_CPRM_pol115	4	
2	54596.25	1463.0873 Setor_CPRM_pol116 Setor_CPRM_pol116	3068 Setor_CPRM_pol116 SI	2013-03-11 09:00:23 n	minvalue 0.900472	6 3068 Setor_CPRM_pol116	3	
3	38883.875	936.0333 Setor_CPRM_pol117 Setor_CPRM_pol117	3069 Setor_CPRM_pol117 SI	2013-03-11 09:00:23 n	minvalue 0.953868	2 3069 Setor_CPRM_pol117	3	
4	40800.875	884.1397 Setor_CPRM_pol118 Setor_CPRM_pol118	3070 Setor_CPRM_pol118 SI	2013-03-11 09:00:23 n	minvalue 0.815308	4 3070 Setor_CPRM_pol118	3	
111-			l seeler teese total en l					1 2

Number of Rows: 254, Pointed: 0, Queried: 0, Pointed and Queried: 0

Tela do *TerraView* com base de dados georreferenciados

- Insumo: MDE SRTM/TOPODATA
- **Software**: TerraHidro *Plugin* de TerraView
 - Ajustes MDE (eliminação depressão)
 - Direção de fluxo (8 vizinhos)
 - Cálculo de fluxo local e fluxo acumulado
 - •Delimitação da drenagem
 - fluxo acumulado > limiar (*Threshold* = 500)
 - Delimitação das sub-bacias hidrográficas
 - utilizando direção de fluxo e rede de drenagem

Extração da rede de drenagem e delimitação das sub-bacias hidrográficas

Tela do TerraHidro com extração drenagem e sub-bacias

Extração da rede de drenagem e delimitação das sub-bacias hidrográficas

Tela do TerraHidro com detalhe drenagem e sub-bacias extraídas

Variáveis morfométricas

- Declividade
- Área de contribuição
- Direção de fluxo
- Orientação de vertentes
- Curvatura da encosta

Sotwares para extração

- ESRI ArcGIS extensão Spatial Analyst Tools
- TAUDEM
- SINMAP
- SHALSTAB
- TerraHidro

Extração de variáveis morfométricas do MDE

MDE corrigido de depressões pelo SINMAP/ ArcGIS 9.3

Extração de variáveis morfométricas do MDE

Tela do ArcGIS - mapa de declividade (slope) extraído por ferramenta da extensão Spatial Analyst Tools.

Extração de variáveis morfométricas do MDE

Área de contribuição (*Contributing Area*) extraído pela extensão SINMAP no ESRI ArcGIS 9.3 Mapa de susceptibilidade expressa a probabilidade espacial e temporal de ocorrer um *processo* ou um *fenômeno* com potencial de causar danos.

Quase todos os deslizamentos ocorridos no Brasil são do tipo escorregamentos translacionais rasos, deflagrados pela redução da resistência ao cisalhamento dos solos superficiais, em médias e altas encostas, sob chuvas intensas. Várias formas na elaboração mapas de susceptibilidade:

- abordagens qualitativas e quantitativas;
- modelos estocásticos ou determinísticos;

 - Quanto à relação entre variáveis esses modelos podem ser empíricos ou baseados em processos físicos.

Usam-se *equações diferenciais* do sistema físico, onde seus *parâmetros* podem ser estimados através de medidas reais.

O desencadeamento dos escorregamentos está ligado diretamente ao conjunto de tensões presentes nos materiais das vertentes:

Onde:

- FS = Fator de Segurança ou coeficiente de segurança
- τ = forças de resistência ao cisalhamento
- T = forças motoras (que impulsionam o deslizamento)

O FS é determinado a partir de

modelo de estabilidade de encostas por talude infinito (desenvolvido em 1773 por *Mohr-Coulomb*)

$$FS = \frac{c + \cos \beta [1 - wr] tan \emptyset}{sen \beta}$$
$$w = Min \left(\frac{Ra}{Tsen \beta}, 1\right)$$

modelo hidrológico de estado uniforme

Carson & Kirkby (1972) O'Loughlin (1986)

SINMAP (Stability Index MAPping) é um modelo estocástico para mapeamento de índices de estabilidade em encostas.

É um pacote gratuito - Universidade do Estado de Utah (http://hydrology.usu.edu/sinmap/)

Pacote é executado em ambiente de SIG ArcGIS (v. 9.x)

Pack et al. (2005)

Índice de estabilidade do SINMAP Modelo matemático

Modelo SINMAP implementado na TerraMA²

$$FS = \frac{c + \cos\beta \left[1 - Min\left(\frac{R}{T} + \frac{a}{sen\beta}, 1\right) * r\right] tan\emptyset}{sen\beta}$$

onde:

 $c = (c_r + c_s)/(D\rho_s g) = coesão combinada adimensional$ relativa a espessura perpendicular do solo (D)

a = área de contribuição (m^2)

 $r = \rho_W / \rho_s = razão entre a densidade da água e do solo$

 β = inclinação do talude (graus);

R = recarga (m/hr)

- T = Transmissividade do solo (m²/hr)
- \emptyset = ângulo de atrito interno do solo

Pack et al. (2005)

Índice de estabilidade do SINMAP Classes de estabilidade

SI - Índice de Estabilidade	Classe	Classes de Estabilidade	Intervalo dos Parâmetros	Possível influência de fatores não modelados
SI > 1,5	1	Incondicionalmente Estável	Faixa não pode modelar instabilidade	São necessários fatores desestabilizantes significativos para gerar instabilidade
1,5 > SI > 1,25	2	Estabilidade moderada	Faixa não pode modelar instabilidade	São necessários fatores desestabilizantes moderados para gerar instabilidade
1,25 > SI > 1,0	3	Quase estável	Faixa não pode modelar instabilidade	São necessários fatores desestabilizantes mínimos para gerar instabilidade
1,0 > SI > 0,5	4	Limiar inferior de instabilidade	Metade do intervalo pessimista necessário para instabilidade	Fatores desestabilizantes não são necessários para gerar instabilidade
0,5 > SI > 0,0	5	Limiar superior de instabilidade	Metade do intervalo otimista necessário para estabilidade	Fatores estabilizantes podem gerar estabilidade
0,0 > SI	6	Incondicionalmente Instável	Faixa não pode modelar estabilidade	Fatores estabilizadores são necessários para gerar estabilidade

Índice de estabilidade do SINMAP Dados de entrada

Índice de estabilidade do SINMAP Modelo escrito em LUA e grades de entrada

	Parametros de entrada
	local c1 = 0.02 Coesão mínima (adimissional)
	local c2 = 0.28 Coesão máxima (adimissional)
	<pre>local t1_entrada = 34 Ângula de atrito mínimo (graus)</pre>
	<pre>local t2_entrada = 39 Ângula de atrito máximo (graus)</pre>
Dados:	local rw = 1000 Densidade da água
Grade de saída:	local rs = 2300 Densidade do solo
SI_%A%M%d_%h%m	<pre>local r = rw/rs Densidade da água/Densidade do solo (kg/m3)</pre>
Planos de entrada:	local pi = 3.14159265358979
 SRTM_s_latlong_sad69 SRTM_a_latlong_sad69 hidro_2011 	local t1 = t1_entrada*pi/180 Ângula de atrito mínimo (graus) local t2 = t2_entrada*pi/180 Ângula de atrito máximo (graus)
	local Tmin = 0.00004 Transmissividade mínima (valores arbitrados por nós)local Tmax = 0.00005 Transmissividade máxima (valores arbitrados por nós)
Y	local hidro diario = amostra('hidro 2011') or 0
	local x1 entrada = Tmin / (hidro diario/1000.0) Razão Hidro/T mínina(em metros)
	local x2_entrada = Tmax / (hidro_diario/1000.0) Razão Hidro/T máxima(em metros)
	local x1 = 1/x2_entrada Razão R/T mínina vinda da literatura (em metros)
	<pre>local x2 = 1/x1_entrada Razão R/T máxima vinda da literatura (em metro)</pre>
	Dados de entrada estáticos (raster) (nossos)
	<pre>local a = amostra('SRTM_a_latlong_sad69') or 0 Área de contribuição (m2)</pre>
	<pre>local s = amostra('SRTM_s_latlong_sad69') or 0 Declividade (rad)</pre>

Índice de estabilidade do SINMAP Modelo escrito em LUA e grades de entrada e saída

	Dados:
A PARA	Grade de saída:
	SI_%A%M%d_%h%m
	Planos de entrada:
	# SRTM_s_latlong_sad69 # SRTM_a_latlong_sad69 Image: hidro_2011
l	
Cada nova grade de	
precipitação uma nova grade	
do Índice de Estabilidade é	
criada	
	$\begin{array}{c} D110102_0900 \\ 01^{\circ} 0.000 \\ 0^{\circ} 0.500 \\ 0^{\circ} 1.000 \\ 0^{\circ} 1.250 \\ 0^{\circ} 1.500 \\ 0^{\circ} 10.001 \end{array}$

Índice de estabilidade do SINMAP Análise nas áreas de risco a partir da grade de SI

Índice de estabilidade do SINMAP **Resultados**

Q	Untitled - ArcMap - ArcInfo	- 🗇 >	
<u>File Edit View Bookmarks Insert Selection Tools Window Hel</u>	IP.		
] 🗅 😅 🖬 🚭 🕹 🛍 🛍 🗙 🗠 🗠 🔶 1:99,154	_		
📗 Initialization 🔻 Grid Processing 🔻 Stability Analysis 👻 🕘 🔯 🛛	🍳 Թ 📰 🖾 🖬 📪 🖬 100% 💌 🔳 💼 🔓 Georeferencing 🕶 Layer: 2014_03_28_SI_terraMA2.tif 💽 🖓 👻 💒		
 Stability Index Cicatrizes_wgs_utm_23S Municipios_RJ_WGS_UTM_23S Stability Index Defended Upper Threshold Lower Threshold Quasi-Stable Moderately Stable Stabile 2014_04_16_TerraMA2_chuva100mm.tif <value></value> Defended Upper Threshold Lower Threshold Quasi-Stable Moderately Stable Stable Stable Woper Threshold Lower Threshold Lower Threshold Quasi-Stable Moderately Stable Stable New Group Layer 			
- Indice de Estabilidade		12.00	
] Instável		an sea an D	
Limite superior de Estabilidade 👘	750749.59 7544909.506 Met	ers	
Limite inferior de Estabilidade			
Quase Estável	Mapa de SI calculado pelo SINMAP original		
] Moderadamente Estável	(extensão para o ArcGIS)		
je je te ve kodnak jest jest je kodnak jest jest je jest je	3	Untitled - ArcMap - ArcInfo	- 8 🔹
---	---	---	--------------------
□ □	<u>File Edit View Bookmarks Insert Selection Tools Window</u>	Help	
Initiateun - Grid Processing - Bakkity Analysis - Minicipies III, Vois JIII, 233 Ciccitaties, upg. Liking, 235 Ciccitaties, upg. Liking, 235 Ciccitati	🗅 🗃 🖨 🎒 🕺 🖻 🋍 🗙 🗠 😁 🤩 🕇 1:99,154		
Indice de Estabilidade Instável Limite superior de Estabilidade Limite inferior de Estabilidade Moderadamente Estável	Initialization 👻 Grid Processing 💌 Stability Analysis 👻 📲	🍳 🖳 🗟 🖾 🖾 🖬 🚘 🐺 100% 🔽 🔳 🖷 👼 🛛 <u>G</u> eoreferencing 🗸 Layer: 2014_03_28_SI_terraMA2.tf 💽 🔿 🛩 📌 🖽	
 Indice de Estabilidade Instável Immite superior de Estabilidade Immite inferior de Estabilidade Madorardamente Estável 	× 7	A REAL STATE AND A STATE AND A REAL AND A	1 1.1
Índice de Estabilidade Instável Limite superior de Estabilidade Limite inferior de Estabilidade Quase Estável Moderadamente Estável	 □ Cicatrizes_wgs_utm_23S □ Cicatrizes_wgs_utm_23S □ Municipios_RJ_WGS_UTM_23S □ Stability Index □ Defended □ Upper Threshold □ Lower Threshold □ Quasi-Stable □ Moderately Stable □ Stable □ Defended ■ Upper Threshold □ Lower Threshold □ Quasi-Stable □ Moderately Stable □ Defended ■ Upper Threshold □ Lower Threshold □ Quasi-Stable □ Moderately Stable □ Defended ■ Upper Threshold □ Lower Threshold □ Quasi-Stable □ Moderately Stable □ Stable □ Stable □ New Group Layer 		
Instável Limite superior de Estabilidade Limite inferior de Estabilidade Quase Estável Moderadamente Estável	Índice de Estabilidade	The Part of the state of the st	(HOLANS
Limite superior de Estabilidade Limite inferior de Estabilidade Quase Estável Moderadamente Estável	Instável		- 7
Limite superior de Estabilidade Limite inferior de Estabilidade Quase Estável Moderadamente Estável Estável		$\overline{} 10 \overline{} \mathbf{B} I \underline{\mathbf{U}} \underline{\mathbf{A}} \overline{} \underline{\mathscr{A}} $	
Limite inferior de Estabilidade Quase Estável Moderadamente Estável Estável	Limite superior de Estabilidade	735953.326	7545093.148 Meters
Quase Estável Mapa de SI calculado pelo SINMAP no TerraMA2	Limite inferior de Estabilidade		
Moderadamente Estável	Quase Estável	Mana de SI calculado nelo SINMAD no Te	rraMA2
	Moderadamente Estável	iviapa de Si calculado pelo SitviviAF 110 1e	
	Fig. 1		

Mapa de SI calculado pelo SINMAP original (extensão para o ArcGIS)

Mapa de SI calculado pelo SINMAP no TerraMA2

	Untitled - ArcMap - ArcInfo	- 🗇 🗙					
<u>File Edit View Bookmarks Insert Selection Tools Window H</u>	elp						
🗅 🗃 🖨 🎒 🕷 🛍 🛍 🗙 🗠 🖼 🚸 1:99,154							
Initialization 👻 Grid Processing 👻 Stability Analysis 👻 📲 🛛 🎑	@ @						
 Cicatrizes_wgs_utm_235 Cicatrizes_wgs_utm_235 Municipios_RJ_WGS_UTM_23S Stability Index Defended Upper Threshold Lower Threshold Quasi-Stable Moderately Stable Stable 2014_04_16_TerraMA2_chuva100mm.tif <value></value> Defended Upper Threshold Lower Threshold Quasi-Stable Moderately Stable Stable Stable Woderately Stable Stable Woderately Stable Stable Moderately Stable Stable New Group Layer 							
l - Indice de Estabilidade		C. STATION!					
Instável							
Limite superior de Estabilidade	746919	.352 7544673.396 Meters					
Limite inferior de Estabilidade							
Quase Estável	Mapa de SI calculado pelo SINMAP c	priginal					
Moderadamente Estável	(extensão para o ArcGIS)						

Detalhe de uma parte do mapa de SI gerado pelos dois programas, sobrepostos com as cicatrizes (em preto).

(a) SINMAP original e em(b) os SI do TerraMA2

Gráfico 1 - Porcentagem de área das cicatrizes de escorregamentos de janeiro de 2011 em cada classe de estabilidade mapeada pelo modelo SINMAP, nas barras coloridas da implementação original (extensão do ArcGIS) e nas barras vazadas da implementação no TerraMA2.

Gráfico 2 - Duas classes de estabilidade: Instáveis e Estáveis, a partir do agrupamentodas seis classes de estabilidade do gráfico anterior.

Comparativo entre dados de chuva do hidroestimador (DSA/INPE) à esquerda e mapas de SI gerados pelo SINMAP TerraMA2, a direita. Cada linha representa um dia, começando no dia 01/01/2011.

Níveis de alerta a partir dos intervalos dos valores calculados de SI

Intervalo de SI	Valor	Nível de alerta	Cor
SI <= 0.5	4	Alerta máximo	
0.5 < SI <= 1.0	3	Alerta	
1.0 < SI <= 1.25	2	Atenção	
1.25 < SI <= 1.5	1	Observação	
1.5 < SI	0	Normal	

Polígonos de risco, devidamente coloridos com as cores dos respectivos níveis de alerta calculados pelo SINMAP, mostrados na legenda do canto inferior direito, sobrepostos aos dados de chuva do hidroestimador. A direita, a legenda dos intervalos dos dados de chuva. SHALSTAB (Shallow Landsliding Stability Model) é um modelo determinístico para mapeamento de índices de estabilidade em encostas.

É um pacote gratuito - Universidade da California/Berkeley (http://calm.geo.berkeley.edu/geomorph/shalstab/index.htm)

Pacote é executado em ambiente de SIG ArcView (v. 3.2)

Pack et al. (2005)

Índice de estabilidade do SHALSTAB Modelo Matemático

Modelo SHALSTAB original no ArcView

$$\frac{a}{b} = \frac{\rho_s}{\rho_w} \left(1 - \frac{tan\theta}{tan\emptyset}\right) \frac{T}{Q} sen\theta \quad ou$$
Parâmetros topográficos

onde:

- a = área drenada a montante [m²]
- b = elemento de contorno de comprimento [m]

Q = precipitação [m]

- T = Transmissividade do solo [m²/dia]
- ρ w = massa específica da água [Kg/m³]
- ρ s = massa específica do solo [Kg/m³]
- g = aceleração da gravidade [constante 9,81m/s²]
- c' = coesão efetiva [KN/m²]
- z = profundidade do plano de ruptura [m]
- θ = ângulo da vertente ou declividade [°]
- Ø = ângulo de atrito interno dos materiais [°]

 $\frac{Q}{T} = \frac{sen\theta}{\binom{a}{h}} \left[\frac{\rho_s}{\rho_w} \left(1 - \frac{tan\theta}{tan\theta} \right) \right]$

Razão hidrológica

Dietrich & Montgomery (1998)

Índice de estabilidade do SHALSTAB Modelo Matemático

onde:

- a = área drenada a montante [m²]
- b = elemento de contorno de comprimento [m]
- Q = precipitação [m]
- T = Transmissividade do solo [m²/dia]
- ρ w = massa específica da água [Kg/m³]
- ρ s = massa específica do solo [Kg/m³]
- g = aceleração da gravidade [constante 9,81m/s²]
- c' = coesão efetiva [KN/m²]
- z = profundidade do plano de ruptura [m]
- θ = ângulo da vertente ou declividade [°]
- Ø = ângulo de atrito interno dos materiais [°]

Dietrich & Montgomery (1998)

Índice de estabilidade do SHALSTAB Classes de estabilidade

Classe	Classes de Estabilidade	Possível influência de fatores não modelados						
Δ	Incondicionalmente	a/b > (T/Q)senθ e tanθ ≤ tanØ(1-ρw/ρs)						
	Estável e saturado							
	Incondicionalmente	$\frac{a}{s} < \frac{\rho_s}{1} \left(1 - \frac{tan\theta}{s}\right)^T sen\theta$						
B	Estável e não	$b \rho_w (tan \phi) Q$						
	saturado	a/b < (T/Q)senθ e tanθ ≤ tanØ(1-ρw/ρs)						
C	Estável e não							
	saturado	$a/b < (T/Q)$ sen θ e tan $\emptyset(1-\rho w/\rho s) < tan\theta < tan\emptyset$						
	Instável e não							
	saturado	$a/b < (T/Q)sen\theta e tanØ(1-\rho w/\rho s) < tan\theta < tanØ$						
E	Instável e saturado							
		$a/b > (1/Q)$ sen θ e tan $\mathcal{O}(1-\rho w/\rho s) < tan\theta < tan\mathcal{O}$						
	Incondicionalmente	$\frac{a}{T} > \frac{\rho_s}{1} \left(1 - \frac{tan\theta}{T}\right) \frac{T}{sen\theta}$						
F	Instável e não	$b = \rho_w (1 \tan \phi) Q^{3 \sin \phi}$						
	saturado	tanθ > tanØ e a/b < (T/Q)senθ						
	Incondicionalmente	$\frac{a}{T} > \frac{\rho_s}{1} \left(1 - \frac{tan\theta}{T}\right) \frac{T}{sen\theta}$						
G	Instával a saturado	b ρ _w tanø/Q ³⁰⁰⁰						
		$tan\theta > tan\emptyset e a/b > (T/Q)sen\theta$						

Dietrich & Montgomery (1998)

mapa de FS gerado para o dia 12/01/2011 gerado pelo TerraMA2

Mapa de FS para 12/01/2011 sobreposto do inventário das cicatrizes dos escorregamentos, gerado pelo TerraMA2

Detalhe do mapa de FS para 12/01/2011 mostrando cicatrizes dos escorregamentos sobre as classes calculadas, gerado pelo TerraMA2.

Comparativo entre dados de chuva do hidroestimador (DSA/INPE) à esquerda e mapas de FS gerados pelo SHALSTAB TerraMA2, a direita.

Mapa de FS sobreposto pelo mapa de polígonos de risco

Polígonos de risco, devidamente coloridos com as cores dos respectivos níveis de alerta calculados pelo SHALSTAB, sobrepostos aos dados de chuva do hidroestimador.

Sub-bacias compreendem as regiões: Serrana, Metropolitana, Baixada Litorânea e Centro-Sul Fluminense

Sub-bacias em diferentes domínios geomorfológicos

A distribuição das sub-bacias representa as variações em altitude, amplitude e declividades da região.

Definição dos parâmetros morfométricos

Analisados vários parâmetros morfométricos das sub-bacias
 -Foco nos com maior potencial em produzir material às

corridas de massa através de escorregamentos generalizados

-Parâmetros morfométricos escolhidos:
•proporção de áreas com declividades entre 25º a 50º;
•amplitude topográfica; e
•circularidade das sub-bacias.

Definição dos parâmetros morfométricos

Proporção de áreas com declividades entre 25° a 50° Apresentam maior probabilidade de disponibilidade de material para ocorrência de escorregamentos

Amplitude topográfica

Diferença entre o menor e maior valor altimétrico Utilizado operadores zonais médios no *Spring*

Circularidade das sub-bacias

Definição dos pesos e ponderações para áreas potenciais a geração de corridas

- Cada parâmetro morfométrico recebeu um valor de peso que variou de 0 à 1 para cada sub-bacia;

- Definição dos pesos pela técnica AHP (Processo Analítico Hierárquico), realizada através de uma comparação pareada entre todos as variáveis, no *Spring.*

Definição dos pesos e ponderações para áreas potenciais a geração de corridas

A análise espacial no SIG:

-Transformação dos dados para o espaço de referência [0..1] -Processados por combinação numérica, através de média ponderada.

Elementos na equação	Parâmetro morfométrico	<i>Peso (variando no intervalo de 0 à 1)</i>
а	Declividades entre 25º a 50º	0,603
b	Amplitude altimétrica	0,315
С	Circularidade da bacia	0,082

Definição dos pesos e ponderações para áreas potenciais a geração de corridas

O cálculo dos valores finais para o potencial a geração de corridas, para cada polígono de sub-bacia, envolvendo os parâmetros e seus respectivos pesos

Potencial de corrida = a * 0,603 + b * 0,315 + c * 0,082

Onde:

0 significa nenhum potencial para geração de corrida e

1 significa potencial máximo.

Método empírico para previsão de corridas de massa Resultados

Peso geral para o potencial de corrida, contemplando os três parâmetros morfométricos calculados anteriormente

Método empírico para previsão de corridas de massa Resultados

Análise das sub-bacias sobre imagens do radar meteorológico.
(a) quando analisado somente com imagem do radar;
(b) quando analisada imagem do radar multiplicado pelo peso do potencial de corrida.

Método empírico para previsão de corridas de massa Resultados

Análise das sub-bacias sobre imagens do hidroestimador (ultimas 24h) e modelo de previsão Eta (próximas 12h).

(a) quando analisado somente com imagem do hidroestimador e Eta;(b) imagem do hidroestimador e Eta multiplicado pelos pesos

Extração automática de cicatrizes

Usando conceitos de Geobia e Data Mining

Ambientes: GeoDMA e TerraPixel

8							Terra	View 4.2.	2 - [Tela de	Visualização]					-	6 2	
Arqui	ivo <u>E</u> xibir <u>P</u> lano <u>V</u> ist	a Iema Apálisa	<u>O</u> peração	Plugins	Ajuda											_1 <u>0</u>]	
			NUS	9.4		ZZ +		3 ×	-			Geo	DMA Plugin				
Bancos d	e Dados		的主张	山				-A	Segmentat	on Input Festur	es Train Veu	alce Cas	sfy Validate	Muttemporal (MT)	About		
	raster0_chip4800_0				10	200		44	Select the	Laver with Polygons			- This is Ge	oDMA - Geographic Dati	a Mining Analyst		
	reater0_chip4800_0_re	giongrowir -		1	She Print	2.164	- 法法 - 行	198	Territoria de	hin4000 0 regonation	na 1		To start	ating GeoDMA select t	he input data		
	raster0_chip4800_0	23		1-31	1000	Lan.	下在图		Salact the	table associated to the	Palatane		The Lave	er with Polypons contains	objects from segmen	tation.	
12	raster0_chip4800_0_re	giongrowit'	Seed the table associated to the Polygonal					You can	import a shape file in Ter	reView menu File ->	Import						
- B T	erraHidro_ext_drena	- 1		No.	Succession and		是這個的	NEW	[ianero_c	np+ooo_o_regorgrow	ng_1		- LANKA OF	use segmentation, n	THE HET LAD.		
1	artific of the track		100	334	化合金属			14.2	Select the	Layer with Cells			TerraWe	erwith Califroontains a gr w menu InfoLaver -> 0	id of cells. To create Create Cells.	a gid, use	
		- ×		Pic -	1000	and the	100	雪器	No Cella				· The law	with Friday and and a	and all connects around a	10000	
listas/Te	mas		[1] [1]			The mail		44.3	Select the	table associated to the	Cells	_	point set	use TerraView menu Ar	alysis -> General	e Sample	
Vite	ster0_chip4800_0					唐 43				· · · · · · · · · · · · · · · · · · ·			- Pointa				
-M	aster0_chip4800_	0	彩热。 是在			16 5	and the second		Select the	Select the Layer with Points				The Layer with Raster Data contains images. To import images,			
- <u>[V]</u> [0	meru_crep+suo_u_regers	growing_1	1	34 A C	期的人能	1.000	1.38	1	No Points			-	• use rem	a view menu Fød -> Fad	ser import.		
LR	raster0_chip4800_	D_regiongravia	Alle Par	7 虚型	安静岛至		15	是山东	Select the	table associated to the	Ponts						
		20	No. of	1 1	的复数	and the second	A STREET						+				
						100		1 . C. B.	Select the	Laver with Reader Data							
		1	1.00					12 3	Contest) of	4004900 B	10					Firme	
		1		A STATE	「なる語言	512	all a	and a	Transid	1004000_0			-			OK	
			のに必要	in the	S TANK	(BREAM)		調整									
d.			ALC: No.		25. 10			12.5									
d	id training class	Lustdation class	n anda	0.300	n hor area (n	usinia In	comparate.	n denstu	n alletic fr	n fortal denancion	n available radius	n length	n narimater	n contrator area of	n metano lar fi	n shane in 4	
1	2538	Addition Cragas	0.6033914	104 96	230.4	0 7367917	0.05951744	9.316154	0.8361037	1 191594	5 349458	14.4	h Persiana	64 0.6097561	0.4555556	1	
and the second second	2362		0.9550448	76.8	184 32 0	0.8835278	0.09033619	5,291998	0.7806524	1.253705	7 222019	14.4	6	0.8 0.7916667	0.4156657		
2	3-3-3-946		0.0000041	66.50	225 28 0	0.9370675	0.1178583	3 627597	0.4045633	1.320877	8 774692	17.6		64 0.9615385	0.2954545	1.4	
2	121		0.9802013						and the second sec				10 TA	22 1 22 1 22 1 22 1 2 2 2 2 2 2 2 2 2 2		1	
2 3 4	121		1.515552	145.92	286.72 0	0.8334595	0.04175472	8.737603	0.7025807	1,168901	8.407348	22.4	7.	3.6 0.504386	0,5089286	1	
2 3 4 5	121 3134 1198		1.515552 0.5715347	145 92 107 52	286.72 0 184.32 0	D 8334595 D 8864895	0.04175472 0.05453429	8.737603 6.192095	0.7025807 0.9145964	1.168901	8.407348 8.130083	22.4		3.6 0.504386 0.8 0.5654762	0.5089286 0.5833333	1	
2 3 4 5 6	121 3134 1198 1286		0.5602013 1.515552 0.5715347 1.168358	145 92 107 52 117.76	286.72 0 184.32 0 358.4 0	D 8334595 D 8864895 D 8734403	0.04175472 0.05453429 0.06510684	8 737603 6 192095 6 842606	0.7025807 0.9145964 0.7003157	1.168901 1.163524 1.272878	8.407348 8.130083 6.284534	22.4 12.9 22.4	7. Si	3.6 0.504386 0.8 0.5654762 3.2 0.7065217	0.5089286 0.5833333 0.3285714	1	

Tela do GeoDMA

66

Extração automática de cicatrizes Resultados preliminares

Classificação Geobia + Data Mining

a) Extração de dados hidrológicos e morfométricos:

A partir de MDE, podem ser usadas várias técnicas e ambientes diferentes, onde cada software específico apresenta maior eficácia na geração de cada produto;

b) Modelo SINMAP:

Funcionamento bem mais otimizado no TerraMA2;

Resultados com maior acurácia por conta da maior precisão na manipulação dos parâmetros e variáveis envolvidos nos cálculos e processamentos;

Perdeu a limitação de tamanho da implementação original;

b) Modelo SINMAP:

A grande melhoria foi a capacidade de ser executado para monitoramento em tempo real utilizando entrada de dados geoambientais dinâmicos;

Resultados gerados foram muito satisfatórios, podendo ainda ser melhorados com a entrada de dados de maior qualidade (principalmente altimetria), dados esses não disponíveis no momento dessa pesquisa;

c) Modelo SHALSTAB:

Funcionando no ambiente TerraMA2, mas necessita de algumas melhorias para ficar operacional;

Necessita dados para validação. Visto ambiente original não funcionando bem e com muitas limitações.

d) Método empírico para previsão de corridas de massa:

Gerou bons resultados e encontra-se operacional na plataforma TerraMA².

e) Extração automática de cicatrizes de escorregamento:

A partir da grande demanda por inventários de cicatrizes;

Mostrando-se uma alternativa complementar na geração de tais inventários;

Coisa nova, precisam de mais investimento de tempo para estar operacional na extração das cicatrizes de escorregamentos.

Pretende-se continuar colaborando e mantendo atividades de pesquisa com a equipe do INPE/TerraMA2.

Ser agente disseminador do TerraMA2 e suas funcionalidades, bem como das iniciativas para minimizar os impactos provocados pelos eventos ambientais extremos e evitar os desastres naturais.
a) Adquirir e gerar dados (ex.: dados altimétricos, mapeamento urbano etc.) de melhor qualidade e em escala de maior detalhe, para entrada nos modelos aqui implementados, a fim de produzir análises com maior confiabilidade e com possibilidade de validação através de métodos estatísticos mais robustos;

b) Promover atividades de campo para coleta de pontos de apoio com receptores GNSS para correção geométrica de imagens de satélite, geração de dados altimétricos complementares de qualidade, atualização de base existente, validação das cicatrizes extraídas de forma automática e das áreas de risco mapeadas, medidas de parâmetros de solo, geologia e geomorfologia etc.; c) Continuar investigando sobre parâmetros de entrada dos modelos (ex.: transmissividade e espessura dos solos etc.) para refinamento e aprimoramento dos modelos ora implementados;

d) Dados de chuva acumulada em tempo real:

previsão + dados observados

Hoje, faltam operadores zonais implementados na plataforma TerraMA2. (Previsão para nova versão do TerraMA2).

e) Possibilidade de integração de dados de chuva de melhor qualidade:

ex.: radar meteorológico e pluviômetros da Prefeitura do RJ

Publicados ou no prelo:

1) Título: Análise morfométrica em sub-bacias hidrográficas para monitoramento do risco potencial a corridas de massa (debris flows) na Região Serrana do Rio de Janeiro. Publicado e apresentado nos Anais do 14 CBGE (2013), no Rio de Janeiro-RJ;

2) Capítulo: Sensoriamento Remoto para Deslizamentos, será lançado no livro: Sensoriamento Remoto para Desastres
Naturais, no XVII SBSR 2015, pela Editora Oficina de Textos.
No prelo, em fase de edição final pela editora.

Em fase de redação do manuscrito:

9 título em fase de redação do manuscrito, a serem submetidos para publicação em periódicos científicos;

1 título em fase de redação para o XVII SBSR 2015.

Agradecimentos...

Referências Bibliográficas (apresentação)

- ARRUDA JUNIOR, E.R. & LOPES, E.S.S. Análise morfométrica em sub-bacias hidrográficas para monitoramento do risco potencial a corridas de massa (*debris flows*) na Região Serrana do Rio de Janeiro. Anais do 14º Congresso Brasileiro de Geologia de Engenharia e Ambiental, dez de 2013, Rio de Janeiro.
- CARSON, M. A.; KIRKBY, M. J. Hillslope Form and Process. Cambridge: Cambridge University Press, 1972.
- DIETRICH, W. and D. MONTGOMERY. SHALSTAB: A Digital Terrain Model for Mapping Shallow Landslide Potential. NCASI (National Council of the Paper Industry for Air and Stream Improvement), pp. 29, 1998.
- O'LOUGHLIN, E. M. Prediction of Surface Saturation Zones in Natural Catchments by Topographic Analysis. Water Resources Research, v.22, p.794-804, 1986.
- PACK, R. T.; TARBOTON, D. G.; GOODWIN, C. N.; PRASA A. SINMAP 2. A Stability Index Approach to Terrain Stability Hazard Mapping, technical description and users guide for version 2.0. Utah State University. 2005. Disponível em: http://hydrology.usu.edu/sinmap2/sinmap2.PDF, acesso em: 10 fev 2012.

SELBY, M. J. Hillslope Materials and Processes. New York: Oxford University Press, 1993. 446p.