
LEPTOSPIROSIS IN 2024 FLOOD-AFFECTED AREAS OF RIO GRANDE DO
SUL: EXPLORING THE ROLE OF GIS, REMOTE SENSING, AND

DASYMETRIC MAPPING
Vinícius Lima Guimarães1

1National Institute for Space Research (INPE), São José dos Campos, SP, vinicius.lima@inpe.br

ABSTRACT

Leptospirosis, a bacterial disease acquired through contact
with contaminated water or soil, is the focus of this study,
which examines the effect of the 2024 floods in Rio Grande
do Sul, Brazil, on the onset of the disease. Population
distribution, land use, and disease prevalence were assessed
using Geographic Information Systems (GIS) and remote
sensing. Descriptive analyses compared the demographics
of the affected low-income group to the state’s general
population. Using dasymetric mapping, the incidence of
leptospirosis was estimated, and its correlation with land
use, elevation, and socioeconomic variables was examined.
The study also highlights discrepancies in the reported
proportion of flooded areas. Despite employing advanced
models like Random Forest and Gradient Boosting, the
statistical analysis struggled to reliably link leptospirosis
incidence with other factors associated with the disease.
More accurate data are needed to further investigate
leptospirosis transmission dynamics in flood-prone areas..
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1. INTRODUCTION

Leptospirosis is a bacterial disease that humans can contract
through direct contact with the urine of infected animals or
indirect exposure to water and soil contaminated by their
urine. For infection to occur, the pathogen Leptospira must
penetrate the skin barrier, especially if the skin is damaged
[1]. In humans, symptoms appear after an incubation period
of 7 to 12 days, varying from three days up to a month [2].

Activities like swimming or rice cultivation can lead
to indirect transmission through exposure to contaminated
water and soil , making them potential reservoirs for
leptospires from infected animals [1]. In urban environments,
rats (Rattus norvegicus and Rattus rattus) carry Leptospira
icterohemorrhagiae and shed it in their urine, while in rural
areas, dogs and cattle serve as reservoirs for the serovars L.
canicola and L. hardjo, which are dominant in these regions
[3]. The transmission cycle of Leptospira is illustrated in
Figure 1.

Historically, leptospirosis is a disease with high incidence
in the state of Rio Grande do Sul, presenting about 10
cases per 100000 inhabitants, affecting primarily male gender
(>80%) and rural population (>60%). More than 60% of the
cases occur in farming areas, particularly low-altitude regions
(<300 meters) with irrigated rice fields. The transmission
occurs both at the workplace and at home. In addition,
rodents (capybaras and nutria) but also cattle and horses

Figure 1: Transmission cycle of Leptospira.

serve as important amplifying hosts in the chain of disease
transmission [3].

In May 2024, 251 cases of leptospirosis were reported
in the municipalities of Rio Grande do Sul, representing
the greatest number of notified cases in 24 years [4]. This
rise is potentially associated with the floods caused by the
heavy rains from April 29, 2024, onwards, which raised
the water levels of state’s aquatic systems [5], affecting 485
municipalities. These cases, however, are linked not only
to the historically disease-prone rural areas but also to urban
flooded zones, where rats serve as disease carriers.

In floods, there is increased dispersion of the bacterium
Leptospira due to the movement of contaminated water,
raising cases among populations in vulnerable areas [6, 7].

Ecological studies have suggested that environmental
features, such as regions experiencing flooding, increase
the risk of leptospirosis outbreaks. The contribution of
Geographic Information Systems (GIS) and remote sensing in
these studies is essential to estimate flooded areas [5], identify
environmental characteristics associated with leptospirosis,
such as land use [3, 6, 7], and model the distribution of the
population potentially affected by flooding and, consequently,
exposed to Leptospira [8].

Thus, this study aimed to evaluate the relationship between
population distribution, land uses, and leptospirosis incidence
in the municipalities of Rio Grande do Sul following the
natural disaster. Firstly, an exploratory analysis of the
characteristics of low-income population affected by the flood
was conducted. After that, it attempted at estimating the
incidence rate in flooded regions, using dasymetric mapping.
Moreover, the study sought to elucidate the relationship
between land use and cover, territorial arrangement in rural
and urban areas, and elevation with disease incidence.

Remote sensing and GIS techniques were used to model
population distribution and identify land uses, elevation and
slope within flooded areas. The exploratory analysis on
the characteristics of the population affected by the floods



focused on differences in sex, age, race, and socioeconomic
conditions to understand how the natural disaster impacted
distinct groups.

2. MATERIAL AND METHODS
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The state of Rio Grande do Sul is located in the south
Brazilian region, between latitude -32.03º and longitude
-52.09º, covering an area of 52,80 square kilometers,
bordering Argentina and Uruguay, and with Porto Alegre as
its capital city. The state has 10882965 inhabitants within 499
municipalities [9], of which 485 were affected by the 2024
floods. Figure 2 presents its location .

Figure 2: Study area location: (a) World Map and Brazil, (b)
South America and Brazil, (c) Rio Grande do Sul State and the

flooded areas of 2024.

The methodology is divided into four complementary parts,
as illustrated in 3. These parts includes the exploratory
analysis of official data on the affected population; the
estimation of leptospirosis incidence in the flooded areas
of the municipalities; the treatment of variables potentially
associated with leptospirosis; and the statistical analysis of
associations between disease incidence and the potentially
related variables.

Figure 3: Flowchart of the Water Surface Extraction and
Analysis Process.

2.1. Exploratory analysis of the officially affected
population

The exploratory analysis of the officially affected population
was based on the data from the Unique Map Plan Rio Grande
(MUP RS) [10]. This is an integrated mapping system
of the areas directly impacted by the natural disaster that
occurred in May 2024 in Rio Grande do Sul, developed by the
State Secretariat for Planning, Governance, and Management
(SPGG). The system includes information on the areas
consolidated by the SPGG as affected, based on the analysis
of PlanetScope satellite images with a spatial resolution of 3
meters, as well as areas reported by each municipality Civil
Defense, for which there is no public information about the
methodology used for their definition.

To analyze the affected area defined by the MUP RS,
a comparison was made with the area identified by the
National Institute for Space Research (INPE), in the open-
source software QGIS 3.22. The area defined by INPE
will be used for the payment of the Reconstruction Aid,
which is the official Federal Government program aimed at
providing financial assistance to people affected by the floods,
specifically in the areas where the water reached [11]. This
is based on satellite image analysis and the contribution of
information from other governmental and defense agencies
at the federal, state, and municipal levels. This area has an
official character regarding the definition of the flooded area
boundaries.

The MUP RS also provides data on the composition by sex,
race, education, age group, and income of families registered
in the Cadastro Único para Programas Sociais (CadÚnico),
which collects information from low-income families. Using
Python programming language, a graphical analysis of these
characteristics was conducted, comparing the characteristics
of the low-income families affected by the floods with the
characteristics of the entire population of the state of Rio
Grande do Sul.

2.2. Estimation of leptospirosis incidence

The estimation of leptospirosis incidence, in turn, was
conducted using the open-source software TerraView and
QGIS 3.22. Initially, data collection was carried out for the
population by census tract, based on the 2022 census data.

Data with 10-meter spatial resolution of built-up residential
areas from the Global Human Settlement Layer (GHSL)
[12] were also collected to obtain information on the spatial
distribution of built surfaces. The GHS-BUILT-C dataset
was derived from composite images from Sentinel-2, using
advanced machine learning methods to estimate fractions of
built surfaces (BUFRAC) and automatically classify built
areas into residential (RES) and non-residential (NRES)
domains. The GHS-BUILT-C classification methodology
uses radiometric and morphological image descriptors in
a symbolic machine learning (SML) approach, enabling
identification of built surfaces at a 10-meter resolution. This
product applies spatiotemporal interpolation of built surfaces,
using a combination of data from multiple sensors and
platforms, including Landsat and Sentinel-2, for the periods
of 1975, 1990, 2000, 2014, and 2018 [13].



GHS-BUILT-C validation was performed by comparing
the predictions of built surface fractions (BUFRAC) with
reference data from building delineations available in vector
format at a scale of 1:10,000. The test dataset, composed
of approximately 50,000 globally representative test cases,
showed a high correlation between the reference data and the
GHSL predictions [13].

With the population data by census tract P and residential
areas from GHS-BUILT-C, a binary dasymetric mapping
(BDM) [14] was applied to redistribute the population from
the census tracts into the built residential areas. The BDM
method assumes that the population is exclusively present in
the built-up areas and, therefore, redistributes the population
proportionally to the area of the buildings.

In occupied areas, the redistribution of residents was done
proportionally to the number of residential pixels, assuming
that the population distribution is homogeneous within the
census tract. The formula used to calculate the redistributed
population in each destination zone was [14]:

P̂d =
Ao∩d

Ad
× Po

where:

• P̂d is the estimated population for each pixel d;

• Po is the known population in the census tract o;

• Ao∩d is the area of residential pixels within the
destination zone d that intersects with the census tract
o;

• Ad is the total area of residential pixels in the destination
zone d;

• n is the number of residential pixels in the destination
zone.

The sum of the dasymetric population in the flooded areas
of each municipality was calculated using the flood map
provided by INPE. Using confirmed leptospirosis case data
from the Notifiable Diseases Information System (SINAN)
[4] the incidence rate of leptospirosis in the flooded areas
of each municipality was calculated according to the formula
below:

If =
Nc

ΣP̂d,m

× 100,000

where:

• If is the incidence rate of leptospirosis in the flooded
areas of each municipality;

• Nc is the number of confirmed cases of leptospirosis
in May 2024, by municipality. Confirmed cases are
defined as those that have laboratory confirmation
with identification of the etiological agent, or clinical-
epidemiological cases associated with the same
epidemic or outbreak with laboratory-confirmed
cases [15];

• ΣP̂d,m
is the sum of the dasymetric population in the

flooded areas of each municipality;

This calculation assumes that confirmed cases in the
municipality in May 2024 are exclusively linked to the
population exposed to the floods.

2.3. Treatment of variables associated with leptospirosis

To understand how population characteristics may impact
flooding exposure and disease outcomes, population
characteristics by municipality were obtained from the 2022
census population composition data [16].

The variables included in the analysis consisted of
components of the total dependency ratio, the economically
inactive male and female population across each age group
(up to 14 years and over 65 years); the total economically
active population; and the percentage distributions by
different categories — male, female; and racial composition.
These information were aggregated for each municipality.

Data from the 2010 census were also used, considering that
they include the classification of areas as rural or urban at
the census sector level. The census sectors were classified as
urban or rural, firstly, based on municipal legislation related
to urban perimeters, zoning, and taxes when such information
could be accurately mapped. If no relevant legislation
exists or if it is outdated, the classification relies on images,
cartography, and field observations by IBGE staff to assess
land use, density, and urban expansion. Additionally, physical
features that are easily identifiable in the field are used to
determine sector boundaries, which can lead to discrepancies
with municipal legislation, especially when relying on hard-
to-define lines [17]. In TerraView The flooded areas by
municipalities were classified as rural, if more than 50% of
its area was rural, and the same rule was used to urban class.

To assess how various land use characteristics influence
flooding exposure and disease outcomes, 2022 MapBiomas
data was gathered [18]. MapBiomas uses satellite images
from the Landsat series (Landsat 5, 7, and 8) to produce
annual land use and land cover maps in Brazil, with a spatial
resolution of 30 meters per pixel. The images are processed
on the Google Earth Engine platform through algorithms
that create temporal mosaics, reduce spectral features, and
classify land use classes using techniques like Random Forest.
The results are integrated and filtered temporally to ensure
consistency, producing detailed maps of the entire national
territory.The maps are validated by comparing them with
existing reference maps and performing accuracy analyses at
sampling points, with an overall accuracy ranging from 73%
to 80%.

From these data, was made an aggregation on the
percentage of flooded areas within municipalities for different
land uses: wetlands, grasslands, pastures, mosaics of uses,
soybeans, rice, and other temporary crops. This includes
areas historically inhabited by disease rural and urban carriers
such as dogs, cattle, and rodents, which heightens the risk of
indirect infection [3]. Additionally, the sum of the percentage
of rural land uses associated with leptospirosis was analyzed.
These factors were evaluated to understand their impact on
disease transmission and public health outcomes.

Considering that elevation and slope are related not only to
the distribution of flooding but also to the higher incidence
of leptospirosis in lower altitude areas of Rio Grande do Sul



State [3], data from the ANADEM digital elevation model
was collected [19]. The ANADEM is a digital elevation
model developed to correct the bias caused by vegetation
in global elevation models, such as the Copernicus DEM
GLO-30 (COPDEM). This model utilizes a combination
of altimetry data from the GEDI sensor, multispectral
information from satellites like Landsat 8 and Sentinel 2,
and advanced machine learning techniques, particularly the
TreeBoost algorithm, to identify and remove the influence of
vegetation cover on recorded elevation. It has a resolution
of 30 meters. To validate the accuracy, ANADEM was
compared with high precision measurements from ICESat-
2. The validation results indicated that ANADEM has a root
mean square error (RMSE) of 6.55 meters, demonstrating
superior performance compared to other global which also
corrects for vegetation bias.

2.4. Statistical analysis

In Python, by utilizing boxplot analysis and distinguishing
between rural and urban flooded areas, different groups to
examine the Spearman correlation with variables potentially
associated with incidence were created. This approach
helped assess linearity and the potential for linearization.
For variables with non-linear associations, regression
analysis was conducted using Random Forest, CART, and
GMBoosting.

Random Forest is a machine learning ensemble method that
builds many classification and regression trees and combines
their output. It creates a "forest" of decision trees from
random samples of the training data. The idea is that
while individual decision trees often struggle with overfitting,
the aggregation of multiple independent decision trees in
Random Forest can reduce such risks and increase overall
generalizability. The final prediction is then taken as the
average of predictions (for regression) or the majority vote
(for classification) across all trees.

CART (Classification and Regression Trees) is another
machine learning algorithm that uses decision trees for
classification and regression. Unlike Random Forest, which
uses an ensemble of trees, CART constructs a single binary
tree node that divides the data into two pieces based on an
input variable. For classification tasks, CART uses metrics
like Gini impurity or entropy to determine the best splits,
while for regression, it minimizes the mean squared error
(MSE). Although decision trees are simple and interpretable,
they can be prone to overfitting if not properly pruned or
regularized.

Building on the concept of combining models, Gradient
Boosting Machine (GBM) is a machine learning method
that produces a strong predictive model from a set of
weak learners, usually decision trees. Unlike Random
Forest and CART, GBM trains additional trees iteratively
to correct the errors of previous models using a gradient-
based optimization process to minimize a loss function.
This approach is particularly effective at capturing complex
nonlinear relationships in the data.

3. RESULTS

3.1. Officially affected population

The flooded area reported by MUP RS was 17890,60
square kilometers, including 16527,40 km² from areas
consolidated by SPGG and 1363,19 square kilometers self-
reported by municipal civil defenses. This represents an
area approximately 771,33 km² smaller compared to the
18661,93 square kilometers reported by INPE. However,
these differences do not imply that the areas will always be
smaller in all municipalities, as illustrated in Figure 4.

Figure 4: Example of the difference in flooded areas reported
by the state of Rio Grande do Sul and INPE in the cities of

Passo Fundo (a), Bom Princípio and Feliz (b), and Canoas (c),
in a R5G3B2 PlanetScope composition.

Considering the area recognized by the state of Rio Grande
do Sul, it’s possible to observe that the characteristics of the
affected population is similar to the overall population of the
state, as shown in Figure 5.

Figure 5: Comparison of the flood-affected population and the
overall population of Rio Grande do Sul in terms of race (a),

gender (b), and age group composition (c).

Differences in education level and monthly income among
the low-income population affected by the flood can also
be observed, as shown in Figure 6, where the most
affected groups are those in extreme poverty and those with
incomplete elementary education.

Figure 6: Composition of the affected population according to
income (a) and education level (b).



3.2. Results of leptospirosis incidence estimation

When analyzing the distribution of residential areas in GHS-
BUILT-C, it is apparent that the algorithm performs well in
identifying both rural and urban residential areas, as shown in
Figure 7.

Figure 7: Examples of GHS-BUILT-C residential areas in rural
regions of Passo Fundo (a) and Feliz (b), and urban areas in

Canoas (c), in a true-color PlanetScope composition.

The disaggregation using the dasymetric method is shown
in Figure 8. In areas with large urban concentrations, the
disaggregation is less perceptible due to the size of the census
sectors and the quantity of residential pixels. In contrast, in
rural areas, the disaggregation is more noticeable, as large
sectors are broken down into smaller amounts of residential
pixels.

3.3. Results of statistical analysis

When analyzing the incidence of leptospirosis based on
the dasymetric population aggregated by affected area in
municipalities and distinguishing between predominantly
urban or rural areas, six possible groupings were identified,
as shown in Figure 9.

For these groups, Spearman’s correlation and scatter matrix
were checked with variables potentially associated with
leptospirosis. It was found that there is no linear relationship
or possibility of linearization between the dependent variable
(leptospirosis incidence) and the independent variables, as
illustrated in Figure 10. Thus, non-linear models should be
applied.

When applying Random Forest, CART, and GMBoosting
models to each group, as shown in Figure 11, it was observed
that the models did not perform well in reducing errors
between the dasymetric population-based incidence and the
other variables potentially associated with leptospirosis.

4. DISCUSSION

The results indicate notable spatial and area differences
between the flood-affected areas reported by INPE and those
identified by the government of Rio Grande do Sul. Utilizing
the data from Rio Grande do Sul assumes that these figures
are approximations of the flooded area, with some areas being
over- or underestimated. It is important to highlight that

Figure 8: Example of results from the dasymetric
disaggregation method in Canoas, showing aggregated

population by sector (a), GHS-BUILT-C residential areas (b),
and dasymetric population (c), in a true-color PlanetScope

composition.

Figure 9: Groupings based on leptospirosis incidence in flooded
areas. Group 1 (a) and 2 (b) show incidence considering all

flooded areas; Group 1 (c), 2 (d), and 3 (e) focus on
predominantly rural flooded areas; and Group 4 (f) represents

predominantly urban flooded areas.

the methodology for self-reporting by civil defenses lacks
transparency, potentially introducing additional errors into the
analysis.

Exploratory data analysis reveals that, while the affected



Figure 10: Example of a scatter plot between leptospirosis
incidence and the ten variables with the highest Spearman

correlation for Group 1 of predominantly rural flooded areas.

Figure 11: Example of a CART tree for Group 1 of
predominantly rural flooded areas.

populations share gender, race, and age characteristics similar
to the overall state population, they consist of historically
more vulnerable social groups [20]. These groups are more
susceptible to flooding, as evidenced by the higher number of
low-income individuals affected and, consequently, exposed
to flood risks. Future governmental actions are necessary to
address this issue, alongside supplementary studies to analyze
leptospirosis incidence among these groups.

Visually assessing examples of the GHS-BUILT-C’s
performance in identifying residential areas suggests that the
model performs reasonably well. However, further efforts are
needed to validate its performance in the study area.

Improvements in population estimation could be achieved
through intelligent dasymetric mapping and dasymetric
binary mapping incorporating data from the National
Address Register for Statistical Purposes (CNEFE). These
enhancements could potentially improve the accuracy of
statistical analyses.

The statistical approach employed in this study, despite
aiming to capture nonlinear relationships, did not robustly
elucidate the connection between leptospirosis incidence in
flooded areas and associated factors. Assumptions that
confirmed cases within municipalities as of May 2024 were
all related to the natural disaster, coupled with the chosen
disaggregation methods and variables, may contribute to
the observed discrepancies. Georeferenced data on likely
infection locations and the application of alternative methods
could provide further insights into the complex relationships

between leptospirosis, flooding, and associated variables.

5. CONCLUSIONS

This study provides a comprehensive evaluation of the
relationship between population distribution, land use, and
leptospirosis incidence in Rio Grande do Sul following the
2024 floods. The analysis revealed notable discrepancies
between the flood-affected areas reported by different
agencies, indicating potential inconsistencies in data
collection and reporting methods of Rio Grande do Sul
state. The self-reported data from civil defenses, lacking
transparency, may have introduced additional errors,
highlighting the need for standardized and transparent
methodologies for assessing flood impact.

The exploration of the affected population’s demographics
showed that although the characteristics of those affected
are broadly similar to the overall state population,
vulnerable groups such as low-income individuals with
incomplete education were disproportionately impacted. This
underscores the heightened susceptibility of these populations
to flood risks and subsequent health issues like leptospirosis,
pointing to a critical need for targeted public health
interventions and support for these at-risk communities.

Despite the effective application of dasymetric mapping
in redistributing population data within residential areas, the
statistical models used to analyze leptospirosis incidence
struggled to robustly identify significant relationships with
associated variables. The limitations in the data assumptions
and methodological approaches suggest that future studies
should incorporate more precise geospatial data and explore
alternative analytical methods to better understand the
complex interactions between flooding, land use, and
leptospirosis incidence.
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