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Abstract

Despite the improvements made in census procedures over recent decades, the availability of detailed population data is limited. For many
applications, including environmental and health analyses, methods are therefore needed to model population distribution at the small-area level.
With the development of GIS and remote sensing techniques, the ability to develop such models has greatly improved. This paper describes a GIS-
based approach using remotely sensed land cover and nighttime light emissions data to model population distribution at the land parcel level
across the European Union. Light emission data from the DMSP satellites were first resampled and modelled using kriging and inverse distance
weighting methods to provide a 200-m resolution light emissions map. This was then matched to CORINE land cover classes across the EU.
Regression methods were used to derive models of relationships between census population counts (at NUTS 5 level) and land cover area and light
emissions. Models were developed at both national and EU scale, using a range of different modelling strategies. Model performance, as indicated
by the regression statistics, was seen to be good, with R2 typically in the order of 0.8–0.9 and SEE ca. 4000 people. In southern countries,
especially, incorporation of light emissions data was found to improve model performance considerably compared to models based only on land
cover data. More detailed post hoc validation in Great Britain, using independent data on population at census tract (enumeration district and
output area) and postcode level, for 1991 and 2001, showed that models gave good predictions of population at the 1 km level (R2N0.9), but were
less reliable at resolutions below ca. 500 m. Impending enhancements in the available land cover and light emissions data are expected to improve
the capability of this modelling approach in the future.
© 2007 Elsevier Inc. All rights reserved.
Keywords: Population; GIS; Light emissions; Land cover; Spatial modelling
1. Introduction

Reliable information on population distribution is essential
for a wide range of applications in both the science and policy
domains. Without an adequate knowledge of where people live
and spend their time, it is all but impossible to model human
activities, to plan service provision, to estimate pressures on the
environment, or to assess human exposures and risks to health
outcome. Across most of the world, census data provide
routinely available information on population numbers and
composition, at least on a decennial basis. For many applica-
tions, however, these data suffer from a number of important
limitations. Apart from uncertainties or biases in the censuses
themselves (Boyle & Dorling, 2004; Cook, 2004), these relate
⁎ Corresponding author.
E-mail address: d.briggs@imperial.ac.uk (D.J. Briggs).
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mainly to the ways in which the census tracts used for collecting
and reporting the data are defined. Often, these are relatively
large and of variable population number, shape and size.
Marked differences in both the visual representation of
population distribution, and in the scale or reliability of any
derived measures for which they are used as denominators (e.g.,
disease rates), may thus occur across a study area. Use of
different spatial units may greatly change the apparent spatial
patterns and associations — the classic Modifiable Areal Unit
Problem, or MAUP (Openshaw & Taylor, 1981; Openshaw,
1984). Census districts change over time as a result of
administrative restructuring, making analysis of long-term
trends difficult. In many cases, also, census tracts do not
conform to, or nest within, the other spatial structures (zone
systems) for which information is available, so that population
data may need to be translated between different spatial
structures for the purpose of data linkage and analysis.

mailto:d.briggs@imperial.ac.uk
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For all these reasons, there is a need for methods to estimate
small-area population numbers. Various methods have been
applied for this purpose. Probably the most widely used, and
simplest, is by area-weighting — that is, to redistribute
populations according to the proportion of each census tract
that falls within the target zones of interest (Goodchild & Lam,
1980). This is the approach used, for example, to construct the
gridded population of the world (GPW-3) database (CIESIN,
2000). It is clearly highly approximate, for it relies on the
(usually false) assumption that the population is evenly
distributed within each census district. Another, albeit rarely
used, approach is to model population patterns as continuous
surfaces, for example using smoothing algorithms to fit a
surface through tract centroids (Tobler, 1979; Tobler et al.,
1995; Martin, 1989). Again, however, this fails to recognise
that, in most areas, population patterns are highly disjunct, with
large settlement centres separated by wider areas of dispersed
homesteads or smaller population nuclei.

More reliable models of population distribution thus require
more sophisticated techniques, and above all the use of
additional data on exogenous variables that can be assumed to
reflect lower level (i.e., within census tract) variations in
population density. This approach has been labelled dasymetric
mapping (Flowerdew & Green, 1994), and has been pursued,
especially, with the help of land cover data derived from satellite
imagery (Harris & Longley, 2000; Mennis, 2003).

Land cover clearly provides a useful indicator of where
people live. As a basis for detailed population mapping,
however, it still suffers from a major limitation — namely, how
to derive weights for each land cover class or parcel that reflects
its population density. This paper explores the use of nighttime
light emission data, linked to land cover data, for this purpose.
Models are developed and used to derive a high-resolution
(200 m) population map of the European Union (EU-15,
excluding Sweden and northern Finland). The work described
here was undertaken as part of two EU-funded studies:
MANTLE (Mapping Night-Time Light Emissions) and APMo-
SPHERE (Air Pollution Modelling for Support to Policy on
Health and Environmental Risks in Europe). The authors
gratefully acknowledge the financial support received through
these two studies, and for the collaboration and assistance from
the many other researchers involved.

2. Methods

2.1. Modelling strategy

Mapping population distributions on the basis of land cover
class is likely to be a significant improvement on simple area-
weighting methods. It is nevertheless likely to under-estimate
local variations in population density for no allowance is made
for intra-class (e.g., between land parcel) heterogeneity. More
realistic modelling requires that weights or functions be derived
to represent these intra-class variations. In principle, these may
be derived in a variety of ways. They may, for example, be
imputed a priori (on the basis of pre-existing knowledge). They
may be derived stochastically by analysing relationships
between land cover distribution and population numbers. They
may be based on known covariates of population distribution
derived either from exogenous sources or secondary features of
the land cover classes: Chen (2002), for example, proposed
using textural information (derived for small windows — 5×5
or 7×7 pixels) to help assess housing density in areas classified
as residential land. In some cases, also, independent information
on population distribution may be available, in the form of
cadastral, postcode or address point data.

Whatever approach is used, the models developed must
satisfy four crucial criteria:

1. Population estimates must be provided for every land parcel;
2. All population estimates should be non-negative;
3. Population estimates should be non-stationary (i.e., should

be free to vary from one land parcel to another);
4. Errors in population estimates should be intrinsic to each

census tract; thus models should be pycnophylactic (Tobler,
1979; Flowerdew and Green, 1994), such that the popula-
tions derived sum to actual totals for larger, containing
census tracts, for which the populations are known.

The approach developed here uses data on nighttime light
emissions as covariates of population density. Potential
advantages of these data are that they: (a) may be expected to
provide good proxies for population distribution; (b) are readily
available on a world-wide basis; and (c) are updated regularly,
so that they might be used to model short-term changes in
population.

The light emissions data used are derived from the Defense
Meteorological Satellite Program (DMSP), operated by the US
Air Force. This programme first provided low-light imaging data
in 1972, and now provides a routine source of nighttime light
emissions data. The DMSP satellites are in low-altitude (830 km)
sun-synchronous polar orbits, and carry oscillating scan radio-
meters – Operational Linescan Systems (OLS) – with low-light
visible and thermal infrared imaging capabilities. Whilst the main
purpose of these satellites is to monitor global weather conditions
during daylight hours, at least one sensor has been regularly
operated at night, at a gain setting capable of detecting clouds
using moonlight. To achieve this, the sensor on the OLS
intensifies the observed VNIR radiance in the 0.5 to 0.9 μm
waveband using a photomultiplier tube. As a consequence, faint
sources of VNIR emission can be detected on the Earth's surface,
and the sensor is reported to be four orders of magnitude more
sensitive than other, currently available, satellite sensors. Under
cloudless conditions, they thus yield data on nighttime light
emissions from ground-level sources.

The use of light emissions data as a proxy of population
distribution and density has received growing attention in recent
years. Data from DMSP have already been used, for example, to
map patterns of human settlement at both continental and
national or regional level (Nizeyimana et al., 2001; Pozzi et al.,
2002). Broad scale relationships between nighttime light
emissions and population density have likewise been demon-
strated across a number of countries and used as a basis for
mapping population distribution (Elvidge et al., 1997a,b;
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Imhoff et al., 1997; Sutton et al., 2001). Changes in light
emissions over time have also been used as an indication of
urban development both at the national level and for individual
cities (Cinzano, 2000; Lawrence et al., 2002).

Use of nighttime light emission data as covariates for
population density nevertheless faces a number of problems.
One of these is the spatial resolution of the available data. In the
past, data were collected and provided at two resolutions: a fine
resolution of ca. 500 m (ground sample distance), based on the
original observed data, and coarse resolution of 2700 m, derived
from on-board averaging of 5×5 pixels. At the time of this
study, technical problems with the on-board storage devices
meant that only the coarser resolution data were available. The
resolution of these data inhibits their use for small-area popu-
lation mapping. The second difficulty is caused by ‘blooming’
Fig. 1. Population mo
due to surface reflection and scattering and refraction in the
atmosphere. This, too, generates ambiguity in the signal
received by the sensor, and degrades the image to some extent.
The third problem relates to temporal variations in light emis-
sions, as a result of changes in source activity, weather con-
ditions (and thus variations in surface reflection and
atmospheric scattering), cloud cover and natural light (espe-
cially moonlight). For this reason, data from a number of
satellite images usually need to be averaged in order to estimate
the so-called stable light emissions. The fourth problem relates
to likely variations in the relationship between light emissions
and population density from one area to another. This is due in
part to contributions from a wide range of non-residential
sources, including transport, recreational, commercial and
industrial activities. It is also due to variations in affluence
delling strategy.



Fig. 2. Light emissions modelling strategy.
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Table 1
Grouping of land cover classes for light emission modelling

Group name Member classes N
‘training’
set

N
‘validation’
set

Continuous urban fabric 1 17,188 1,890
Discontinuous urban fabric,
industry, infrastructure

2, 3, 4, 5, 10 81,381 8,946

Airports, sport and leisure 6, 11 4,423 483
Construction/Dump sites 8, 9 961 111
Orchards, agro-forestry,
woodland, dry heath, shrub
grassland

7, 15, 21, 22, 24,
25, 26, 28, 29, 32

2,643,736 294,109

Irrigated land, pasture, salt
marsh, inter-tidal

13,18, 20, 37, 39 1,828,105 203,277

Moors, annual/permanent crops,
burnt areas

19, 27, 33 393,409 43,687

Rice, broad-leaf forest, dunes,
marshland

14, 23, 30, 35 690,399 76,902

Non-irrigated, intensive
agricultural land

12, 16, 38, 49 4,379,638 486,735

Peat bogs 36 68,934 7,685
Bare rocks and ice 31, 34 59,680 6,646
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(and thus in levels of street-lighting or energy use), street-
lighting technology (e.g., the use of low-reflection lighting
systems), street and building configuration, and lifestyle
(Elvidge et al., 1997a). For this last reason, light emissions
cannot be assumed to represent a direct, linear proxy of popu-
lation density; instead, local functions may need to be derived,
based on an analysis of local relationships between light emis-
sions and population density.

In order to model population density on the basis of these
data, therefore, several different analytical steps are necessary.
First, the light emissions data need to be sampled and analysed
to reduce the effects of blooming and to obtain improved
estimates of emissions at the small-area level. Second, the data
need to be matched to land cover, to enable the light emissions
to be redistributed more reliably to their source. Third, local
relationships with land cover need to be analysed in order to
derive weights applicable to specific land cover parcels.

The methodology used to achieve this is summarised in
Fig. 1 and described below. All data were compiled and
integrated in ArcGIS, and spatial analysis undertaken in the
same environment. Statistical modelling was done in SPSS.

2.2. Land cover data

Land cover data were obtained from the CORINE Land Cover
Map of Europe (CLC90). This was compiled on the basis of
Landsat and, in some countries, SPOT imagery, using a
combination of semi-automated and manual interpretation techni-
ques (Commission of the European Communities, 1993). Source
imagery derives from the late 1980s and early 1990s, but the full
digital map coverage of the EU was not completed until the mid-
1990s, and coverage for Sweden has never been available. For this
reason, Sweden is excluded from this analysis. (A new data set,
CORINE2000, based on imagery from the late 1990s and covering
all 26 countries in the expanded EU is now becoming released on a
country-by-country basis — see Nunes de Lima, 2005.)

CLC90 provides data on 45 land cover classes, at three levels
of interpretation. Eleven of these classes relate to urban land, of
which two explicitly define residential areas (continuous urban
fabric and discontinuous urban fabric) — though residential
properties may obviously be contained in almost all other
classes. Digital data are available both in vector and raster form:
for the sake of computational convenience, raster data were
used here. These provide a 100-m pixel resolution, though
according to the CORINE guidelines the minimum mapping
unit recognised in the data is ca. 25 ha. For this study, the land
cover was resampled to 200-m cell size, in order both to reduce
computational demands and in recognition of the underlying
limits of accuracy of the data being used.

2.3. Light emission data

Data on light emissions (from DMSP F-12) were obtained
from the NOAA National Geophysical Data Center. To remove
the effects of short-term variations in emissions and cloud
cover, data from 10 more-or-less cloud-free nights during the
winter of 1999–2000 were selected and averaged. As supplied,
these data had a nominal GSD of ca. 750×600 m. This
represents a notional enhancement of the original coarse
resolution data produced by the currently operating sensors
(2. 7 km), as a result of resampling during preprocessing. At the
time of this study, data were acquired and delivered at three
different gains (high, medium, low), representing different
sensitivity ranges of the sensors. For the purpose of this study,
these were first converted into radiances using the pre-flight
calibration, and then combined using a purposely designed
weighted sum procedure (developed and applied by partners at
CeSIA, Italy), to give a single 32-bit measure of light emission,
across all gains. Inspection of the distributions of the values in
the three gains for a sample of areas suggested that:

1. The lowest values in each gain represented noise in the data;
2. At high values (digital number=63) the high gain became

saturated;
3. There was overlap between the lower values in the low/

medium and the high values in the high gain.

The weighted sum procedure was therefore designed (a) to
stretch the distributions, (b) to trim the left (lower) tail of the
distribution from the low and medium gains, and both tails from
the distribution for the high gain data, and (c) to scale the
adjusted values into a 16-bit number. To this end, intensity
values were calculated as:

I ¼ ad ILVþ bd IMVþ gd IHV ð1Þ

where L=low gain, M=medium gain, H=high gain and:

IiV¼ f Ii if IizðPIi−kdriÞ
0 otherwise

i ¼ L;M

IHV¼ IH if IHaðPIH−kdrH ;PIH þ kdrH Þ
0 otherwise

� ð2Þ



Fig. 3. Light emissions map of the EU.
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where
P
Ii and σi indicate the mean and standard deviation

respectively of intensities measured with gain i;k ¼ 1:5; a ¼
2ðN−nLÞ; b ¼ 2ðN−L−nM Þ, γ=1, and N=nL+nM+nH is the total
number of bits used to quantify the weighted intensity I.

The three intensities, II′, were then coded with ni bits and
organised into an N-bits word in a sequence that reflects the
information content of the data: nL, nM, nH.

Values of intensity are therefore based on the most
informative gain available at each location, using high gain
data where low and medium gain values are low (more than
1.5 SD below the overall mean for each gain) and low or
medium gain data where the high gains approach saturation
(N1.5 SD above the overall mean for that gain). Clouded areas
were identified using the OLS thermal band and omitted from
the computation, as were faulty pixels.

Light emission data were not available for northern Finland,
so this was excluded from the analysis (along with Sweden). To
enable registration with land cover, the data were resampled to a
200-m grid scale, and then reprojected to the Lambert
Azimuthal grid.

Further processing of the data was undertaken as shown in
Fig. 2. A key element of this processing was to remove
blooming from the data, due to surface reflection and
atmospheric scattering. Because of this, the light intensity
values derived from the OLS data cannot be related directly to
the underlying land cover, but represent a somewhat smoothed
average across a wider area. Use of the original data is therefore
likely to lead to systematic biases in the modelled population
distribution, with exaggeration of the extent or urban areas and
people being incorrectly assigned to areas affected by blooming
from neighbouring brightly lit areas (Henderson et al., 2003;
Small et al., 2005).

To address this problem, the light emissions were first
reprojected into Lambert Azimuthal projection and overlaid
onto land cover boundaries. The match between the two was
then inspected visually along boundaries between what might
be considered to be lit and unlit land cover classes (e.g., where
urban areas were bounded by forest or open grassland). Based
on this, it was estimated that blooming was usually confined to
an area of no more than 400 m; a buffer zone of this diameter
was therefore used to trim areas on either side of a land cover
boundary, where blooming might have contaminated the light
intensity data. To facilitate processing, the gridded data were
converted to points, each representing the 200-m pixel centroids



Table 2
Summary statistics for census data

Country N Area Population

Mean SD Mean SD

Austria 2358 35.6 37.5 3312.8 32738.1
Belgium/Luxembourg 708 46.9 36.8 14636.5 26367.4
Denmark 277 156.2 101.3 18579.3 36070.5
Finland 434 721.5 832.5 11190.3 30265.2
France 36570 15.0 15.3 1548.5 13938
Great Britain1 10528 21.8 61.9 5204.1 3894.9
Germany (East)2 114 953.3 736.3 153948.4 317426.4
Germany (West)3 8789 28.3 34.1 7458.4 35468.9
Greece 1034 127.9 107.7 9938.0 28216.5
Ireland4 3990 21.2 18.8 1262.9 1550.5
Italy 8109 37.2 50.8 6998.1 42428.6
Netherlands 505 82.1 91.2 29447.9 51724.1
Portugal5 4007 22.3 36.1 2335.5 4833.3
Spain6 8094 61.7 93.0 4603.9 43768.9
EU7 85403 31.0 91.9 3965.9 25480.9

Notes: (1) based on 1991 census and ward data; (2) based on NUTS 3 regions;
(3) based on 2003 population data; (4) includes N. Ireland; (5) excludes
Madeira; (6) excludes Canary Islands; (7) excludes E. Germany.
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of the land cover grid. The data were then interrogated using a
moving window technique to identify all points that lay within a
single land cover class, and were at least 400 m (i.e., 2 pixels)
from any other land cover class. These points thus represented
areas for which the attached DMSP value could be considered
to provide a reliable estimate of light emissions for that land
class, unaffected by blooming from adjacent classes. Data for
these points were then randomly split into two subsets — one
containing 90% of the selected points for each land class (to be
used as a ‘training’ set) and the other containing the remaining
10% of selected points (to be used for validation). In order to
simplify computation, the distribution of light intensities for the
45 land cover classes in CORINE were compared, and the
classes combined into 11 broader groups (Table 1).

Estimates of light emissions at each of the validation loca-
tions were then made using inverse distance weighting (IDW)
and universal kriging techniques in ArcGIS. For IDW, an inverse
square function was applied, with a search radius (r) of 10 km, a
minimum number of sample points to be used in each estimation
(nmin) of 4, and the maximum number of contributory points
(nmax) of 100. For kriging, a range of models was tested and
compared, including linear, cubic and quadratic models, with
and without global trend. Results from all models were assessed
by comparing predicted light emissions with the 10% of ‘pure’
points retained for validation purposes.

Universal kriging slightly outperformed IDW in terms of the
resulting regression statistics (R2 =0.97 and 0.96, respectively,
SEE=113 and 125 respectively, for n=1,130,467 pixels).
Kriging, however, occasionally produced extreme values in
areas with poor data control (i.e., where there were few training
points). IDW was therefore selected as the preferred method.
This was therefore applied to predict light intensities at the
points eliminated during buffering (i.e., those potentially
affected by blooming), and a map of modelled light emissions
derived. Fig. 3 shows the resulting map of Europe, aggregated
to 1-km scale.

2.4. Population data

Census data are clearly the best available baseline data on
population, and thus provide reference data against which any
population model can be calibrated and validated. At the time of
this study, the most recent high-resolution population data for
Europe related to the 1991 census (even at the time of writing,
small-area data for the 2001 census are not available for the
whole EU). Data on 1991 population numbers were therefore
obtained from the SIRE database, maintained by Eurostat. Data
comprised population totals, subdivided by age and gender, for
the whole of the EU at what was known as NUTS (Nationales
Unites Territoriales Statistique) 5 level (now termed Local
Administrative Units — LAU-2). These represent the smallest
set of administrative regions for which data are consistently
available; in Great Britain (GB), for example, they are rep-
resented by wards, and in France by communes.

Boundaries of NUTS 5 regions were obtained in digital form
from GISCO, which serves as a warehouse for geographical
data in the EU. Boundaries dated from 2001. Some problems
were consequently encountered in matching population data to
these boundaries, largely because of changes in administrative
geography of the member states since the 1991 censuses. For
this reason, only NUTS level 3 data (equivalent to Kreis) were
available for eastern Germany, and 2003 population data at
NUTS 5 level had to be used in western Germany. For the UK,
the 1991 boundaries and population counts obtained from the
national data sources (see below) were substituted for those
from GISCO and SIRE in order to facilitate post hoc validation
against national data.

Details of the resulting database are summarised in Table 2.

2.5. Population modelling

Modelling was done using regression analysis techniques in
SPSS, with the NUTS 5 level population count as the dependent
variable, and the area of lit land, area of unlit land and total light
emissions for each land class type in each NUTS 5 region as
predictor variables. Weights derived from these models were then
used to redistribute the NUTS 5 level population totals to each
pixel pyconphylactically. To enable this, the point coverage of
modelled light emissions was first intersected with the NUTS 5
boundaries. For each of the 45 land cover classes, three variables
were then computedwithin eachNUTS 5 region: NU, the number
of points for which the light emission was zero (equivalent to area
of unlit land); NL, the number of lit points (equivalent to the area
of lit land); and LE, the total light emissions.

Four different modelling strategies were applied, with
different aggregations (groups) of the original land cover
classes, as shown in Table 3. These were designed to represent
increasingly simplified classifications, from strategy 1 to
strategy 4, in order to determine how robust the models were
to the spectral resolution of the land cover data. In each case
regression models were constructed in a supervised, stepwise
process, entering groups of variables (for lit area, unlit area and



Table 3
Land cover categories, and order of entry, for each modelling strategy

CORINE
land cover
class(es)

Strategy 1 Strategy 2 Strategy 3 Strategy 4

Order Category Order Category Order Category Order Category

1 2 Continuous urban 2 Continuous urban 2 Continuous urban 1 Residential
2 1 Discontinuous urban 1 Discontinuous urban 1 Discontinuous urban
49 3 Unclassified surfaces 3 Unclassified surfaces 3 Unclassified surfaces 2 Unclassified surfaces
3 5 Industrial/commercial 5 Industrial/Commercial 5 Non-residential urban 3 Non-residential urban
10 8 Institutions 7 Open urban
11 9 Urban green space
4–6 10 Transport 8 Other urban
7–9 13 Waste, extraction and construction sites
12–17, 19 4 Arable and permanent crops 4 Arable and permanent crops 4 Cultivated 4 Rural
18 6 Pasture 6 Pasture
20 11 Complex cultivation patterns 10 Other cultivated
21 12 Land principally occupied by agriculture
23 7 Broad-leaved woodland 9 Woodland 6 Uncultivated
22, 24, 25 14 Other woodland
26–29 15 Unimproved grass and scrub 11 Unimproved grass and scrub
30–38 16 Other uncultivated 12 Other uncultivated
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light intensity) in the order shown. This order is important,
because colinearity between several of the land cover classes
means that they compete to explain the variations in population
density, creating instability in the models. The entry sequence
shown in Table 4 was thus defined, a priori, to reflect the likely
population density of the land cover groups — an assumption
that can be assessed by comparing the slope coefficients derived
from the regression analysis.

Variables were retained only if they had positive coefficients
and were significant at the 0.05 confidence level. In order to
maintain the pre-defined hierarchy of importance of land cover
groups, new variables were also allowed to enter the model only
if they did not cause the removal of entire land cover groups
entered earlier in the analysis, though individual variables (e.g.,
NU, NL or LE) could be removed if their significance fell below
p=0.1. For the final model, also, an additional criterion was
specified, that the constant should also be positive. By applying
these criteria, therefore, the models selected were not
Table 4
Regression statistics for light emissions models

Strategy 1 Strategy 2

R2 SEE SEE/Mean R2 SEE SEE/Mean

AT 0.90 2581 0.78 0.90 2702 0.82
BE-LU 0.87 7255 0.50 0.86 7451 0.51
DE-east 0.84 25414 0.17 0.83 26200 0.17
DE - west⁎ 0.97 4246 0.57 0.97 4670 0.63
DK 0.95 4071 0.22 0.95 4097 0.22
ES-PT 0.81 7886 2.05 0.80 8117 2.11
FI 0.97 5459 0.49 0.97 5555 0.50
FR 0.83 2794 1.80 0.82 2848 1.84
GB 0.73 2033 0.39 0.73 2032 0.39
GR 0.82 6644 0.67 0.81 6835 0.69
IE-NI 0.73 802 0.63 0.73 801 0.63
IT 0.86 7386 1.06 0.85 7449 1.06
NL 0.92 7946 0.27 0.92 7576 0.26
EU 0.82 4518 1.14 0.81 4551 1.15

Notes: ⁎ Modelled using 2003 population data for western DE.
necessarily those that gave the best prediction of population at
the NUTS 5 level, but instead were constrained to avoid the
possibility of negative population predictions for any location,
to avoid counter-intuitive relationships (e.g., negative associa-
tions with light emissions) and to provide estimates of
‘background’ population densities in land cover classes not
incorporated into the model.

The resulting models thus took the general form:

PWk ¼ PBk þ
Xn
j¼1

½ðl:NLÞ þ ðu:NUÞ þ ðe:LEÞ�j ð3Þ

where: PWk=population in NUTS area k; NLj=number of lit
pixels of land cover group j in NUTS area k; NUj=number of
unlit pixels of land cover group j in NUTS area k; LEj= total
light emission from land cover group j in NUTS area k; l, u
and e=variable-specific weights (regression coefficients);
PBk= ‘background’ population (as defined by the constant).
Strategy 3 Strategy 4 Population
threshold

R2 SEE SEE/Mean R2 SEE SEE/Mean

0.92 2362 0.71 0.89 2740 0.83 1,500,000
0.81 8708 0.59 0.83 8267 0.56 400,000
0.83 26002 0.17 0.82 26712 0.17 3,000,000
0.97 4611 0.62 0.96 5160 0.69 900,000
0.95 4367 0.24 0.91 5606 0.30 260,000
0.80 8140 2.11 0.74 9252 2.40 1,600,000
0.97 5367 0.48 0.94 7146 0.64 NA
0.82 2862 1.85 0.80 3060 1.98 400,000
0.73 2037 0.39 0.72 2050 0.39 NA
0.81 6889 0.69 0.70 8660 0.87 300,000
0.73 813 0.64 0.72 815 0.65 NA
0.85 7611 1.09 0.81 8387 1.20 900,000
0.92 7632 0.26 0.92 7968 0.27 200,000
0.81 4634 1.17 0.77 5063 1.28 300,000



Table 5
Light emission models: strategy 2

Land cover class Index EU AT BE-LU West DE East DE DK ES-PT FI FR GB GR IE-NI IT NL

Constant 87.3 140.2 2368.3 427.5 42977.5 3413.9 125.0 2150.2 82.4 1597.2 1586.7 414.0 30.0 1087.6
1: Continuous urban Nl 187.5 470.9 988.4 770.2 545.7 251.7 366.2 394.0 167.3 664.9 116.3 192.0

Nu 140.2 1288.1 1205.9 161.2 200.0 178.6
Le 0.023 0.049 0.013 0.003 0.002 0.042 0.007

2: Discontinuous urban Nl 100.7 176.6 106.5 39.1 49.9 115.6 115.0 66.7 98.7 129.9 52.3
Nu 84.8 71.1 37.8 25.0 75.5 52.8 71.1 94.8 100.7 121.7 112.2
Le 0.007 0.003 0.026 0.018 0.036 0.013 0.005 0.027 0.008 0.012 0.006 0.012

3: Industrial/commercial Nl 145.5 229.9 212.1 86.9 110.8 97.5 303.9 65.3 162.3 63.3 129.9
Nu 95.0 234.8 327.4 213.8 197.4 99.3 49.9 42.2
Le 0.064 0.005

4–9: Other urban Nl 9.1 26.4 94.2 32.9 19.6 15.1
Nu 11.0 61.1 13.3 92.6
Le 0.006 0.010 0.011 0.054 0.046

10, 11: Open urban Nl 119.3 45.3 582.1 209.6
Nu 24.0 149.9 59.7 2941.5 115.4 129.2
Le 0.170 0.050 0.024 0.020 0.006 0.001 0.074 0.049

12–17, 19: Arable and permanent crops Nl 0.6 3.1 2.3 5.1
Nu 0.2 1.1
Le 0.005 0.010 0.008 0.005 0.012 0.013

18: Pasture Nl 1.3 5.7 0.9
Nu 0.5 3.3 2.8 4.9 0.2
Le 0.035 0.049 0.001

20, 21: Other cultivated Nl 5.9 12.1 1.3
Nu 8.0 1.3 1.0 0.9
Le 0.015 0.093 0.094 0.003 0.014 0.018

22–25: Woodland Nl 10.0 1.7 1.2 5.2
Nu 0.0 1.8 0.1
Le 0.010 0.059 0.006 0.007

26–29: Unimproved grass and scrub Nl 6.5 1.2 1.1
Nu
Le 0.009 0.027 0.012 0.047

30–38: Other uncultivated Nl
Nu 0.4 0.8
Le 0.021 0.564

49: Unclassified surfaces Nl 18.2 54.4 28.8 53.1
Nu 1.0 12.3 52.9
Le 0.484

Adj.R2 0.813 0.895 0.863 0.967 0.828 0.953 0.796 0.966 0.822 0.728 0.812 0.733 0.852 0.923
Standard error 4551 2702 7451 4669 26200 4096 8116 5555 2848 2031 6834 801 7448 7576
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Themodels obtained were then applied to calculate population
numbers (PM) for each 200-m pixel within the study area, by
redistributing the total population (PC, from the census) in each
NUTS area to the constituent pixels. Pixels were classified (0 or 1)
according to three types for this purpose: lit (i.e., pixels with light
emissions in land classes included in the model), unlit (i.e., pixels
with no light emissions, but in land classes included in themodel),
and background (i.e., pixels in land classes not otherwise included
in the model). Populations were then computed as follows:

PMijk ¼ PCk :½ðl:litÞ þ ðe:LEÞ þ ðu:unlitÞ þ ðbackground⁎Pbk=NbkÞ�Pn
i¼1

½ðl:litÞ þ ðe:LEÞ þ ðu:unlitÞ þ background⁎Pbk=NbkÞ�i
ð4Þ

where Nbk=the number of background pixels in NUTS area k
(i.e., all pixels not otherwise included in the model).

Thus the modelled population was rescaled pycnophylacti-
cally to match the actual (census-derived) population in each
NUTS area.

Models were developed at both national level, and for the EU
as a whole (EU models excluded East Germany because of the
Fig. 4. Population density: an example of disparities in national mod
different NUTS level of the population data). In each case,
distributions of the population data were first explored to
identify outliers that might bias the regression models. Thresh-
olds were then selected to exclude these NUTS areas. The
number of excluded areas ranged from 0 (three countries) to 4
(Italy). Predictions for these areas were then made from the
model. As a basis for comparison, models were also developed
for each strategy and geographic area using land cover area
alone (i.e., without light emissions data). Results of the different
models and modelling strategies were assessed and compared
by reference to the regression statistics (R2, SEE and SEE/
mean) and then further validated by comparison with
independent, small-area population data in Great Britain.

3. Results

Results of modelling using the light emissions data are
summarised in Table 4, and details of the models for Strategy 2
are given in Table 5. As Table 4 shows, all the modelling
strategies performed relatively well at both national and EU
level, with R2 generally between 0.8 and 0.9, and SEE in the
range of 2–5000 people. Differences between strategies were
els — France– Belgium–Netherlands border region (strategy 2).
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slight, though overall performances declined slightly as the
models were simplified (from strategy 1 to strategy 4).

Some differences in model performance (as indicated by the
regression statistics) are apparent between countries. The lowest
R2 values (∼0.7) are seen in Great Britain and Republic of
Ireland/Northern Ireland. In part, this possibly reflects the way
in which the administrative areas in these countries are designed
to limit variations in population totals, such that the NUTS
populations on which the models are built vary relatively little
(see Table 2). Reflecting this, the SEE in both sets of countries is
small. The large SEE values seen in East Germany, in contrast,
reflect the necessity to use population data from NUTS 3
regions, rather than NUTS 5.

The structure of national models is broadly similar across all
countries: data for strategy 2 (Table 5) are typical in this respect.
In most cases, the numbers of lit pixels and light emissions for
the two main residential classes (continuous urban and
discontinuous urban) are included and dominate the model
(typically accounting for between 70 and 90% of the total R2).
Unlit areas of these land classes also appear in the model in a
number of cases. The numbers of lit and unlit pixels of industrial
Fig. 5. Population density:
and commercial land likewise appear in many of the models, as
do lit areas (and light emissions) for areas classified as open
urban land. The role of other (including rural) land classes is
more variable, though these rarely account for more than 10–
20% of the overall variation in modelled population.

Coefficients for these various parameters are generally
logical, and follow expected variations in population density.
Weights (i.e., implied population densities) for continuous
urban areas, for example, are typically higher than those for
discontinuous or other urban land cover groups, and much
greater than those for rural areas. Similarly, coefficients for lit
areas are usually greater than for unlit areas, especially for urban
land cover groups. The intercept value (constant), which is
taken to represent the ‘background’ population, varies substan-
tially: as might be expected, it tends to be low in countries
where several rural land classes enter the model, and higher in
those where the number of rural land classes is small.

A single EU-wide model was also developed and is reported
in Tables 4 and 5. In terms of R2, this performs less well than the
median of the national models (0.77–0.82 across the four
strategies compared with a median of 0.82–0.87), but the SEE is
EU model (strategy 2).
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slightly smaller than the national median — 4518–5063
compared with 4852–6376, (excluding East Germany).

Both national and EU models were also applied to compute
population numbers for each 200-m pixel, using Eq. (3) above,
and the results then aggregated to 1 km for mapping. National
maps were in every case realistic, which is to be expected given
that the modelled populations are conditioned to tally with the
NUTS 5 totals, but when mapped across the EU the results in
some cases showed marked discontinuities at national borders—
e.g., between France, Belgium and TheNetherlands (Fig. 4 shows
the example for strategy 2). These discontinuities were not visible
in maps based on the EU model. For EU-wide population
modelling, therefore, the EU model is preferred. Fig. 5 shows the
example from strategy 2.

As noted, models were also developed using only the area of
each land cover class (i.e., without light emissions). Models for
Austria, Finland and The Netherlands all perform well, with R2

in excess of 0.9 and standard errors small compared to the mean
population size of the NUTS regions (Table 6). For Spain and
Portugal, Greece and France, in contrast, the models are
relatively poor, with R2 in the range of 0.4–0.55 and standard
errors substantially in excess of the average population size. For
most countries, model performance (as indicated by the
regression statistics) tends to decline as the models are
simplified — in some cases (e.g., Spain/Portugal, Finland,
France, Italy and East Germany) quite markedly. Instability is
also evident in some national models: in both Denmark and
Belgium/Luxembourg R2 recovers for strategy 4. The EU
model is again intermediate, with R2 between 0.72 and 0.77 and
a standard error of 5038–5560 (compared to an average NUTS
population of 3966).

Comparisons between the results in Tables 4 and 6 are
informative. They suggest that models based only on land
cover perform as well as those with light emissions in several
northern and western countries, and in mountain areas such as
Austria, but markedly worse in the south. The reasons for this
are not clear. It may reflect differences in the way the
CORINE land cover classification has been applied in dif-
Table 6
Regression statistics for land cover area models

Strategy 1 Strategy 2

R2 SEE SEE/Mean R2 SEE SEE/Mean

AT 0.95 1954 0.59 0.92 2328 0.70
BE-LU 0.75 10160 0.69 0.73 10387 0.71
DE-east 0.77 30410 0.20 0.74 32227 0.21
DE - west⁎ 0.92 7461 1.00 0.90 8186 1.10
DK 0.81 8210 0.44 0.81 8303 0.45
ES-PT 0.40 13954 3.62 0.25 15529 4.03
FI 0.96 6258 0.56 0.95 6555 0.59
FR 0.56 4486 2.90 0.55 4556 2.94
GB 0.71 2095 0.40 0.71 2107 0.40
GR 0.42 11977 1.21 0.42 12020 1.21
IE-NI 0.72 822 0.65 0.72 824 0.65
IT 0.71 10421 1.49 0.69 10837 1.55
NL 0.92 7777 0.26 0.91 8352 0.28
EU 0.77 5038 1.27 0.77 5057 1.28

Notes: ⁎ Modelled using 2003 population data for western DE.
ferent member states. It might also reflect inherent differences
in the relationships between land cover and light emissions in
different parts of Europe — for example, because of
differences in parcel size and heterogeneity of urban land
classes, differences in building characteristics or surface
materials and hence reflection properties, or differences in
lighting technology and practice. Whatever the cause, the
results suggest that there are advantages in using light
emissions as part of the modelling process for EU-wide
analysis. This interpretation is supported by the differing
sensitivities of the land cover and light-based models to the
different modelling strategies. Inclusion of light emissions in
the models (Table 4) seems to allow for local differences in
population density, even when the land cover categories
themselves are aggregated. When light data are not used
(Table 6), more detailed land cover classifications are needed
to provide adequate discrimination of variations in population
density.

3.1. Post hoc validation

3.1.1. Data acquisition and preprocessing
Opportunities for independent validation of the population

models are limited by the lack of suitable reference data for
most countries. Detailed cadastral and census data do exist for
several countries, notably The Netherlands and Scandinavia,
but these are not readily available for research purposes. Post
hoc validation was possible in Great Britain, however, using the
detailed population counts provided by the Office for National
Statistics. For 1991, data are available for enumeration districts
(ED, n=147,596); for 2001 they are available both for output
areas (OA, n=218,038) and postcodes (n=1.38 million).

For the purpose of validation, modelled population data had
to be transformed to the same geographic units as the reference
counts. Modelled populations (by 200-m pixel) from both the
GB national and EU models were therefore totalled to match the
1991 EDs and 2001 OAs: to avoid the large computational
demands involved in polygon overlay, this was done by
Strategy 3 Strategy 4 Population
threshold

R2 SEE SEE/Mean R2 SEE SEE/Mean

0.91 2502 0.76 0.87 2970 0.90 1,500,000
0.39 15703 1.07 0.61 12633 0.86 400,000
0.73 32913 0.21 0.45 46974 0.31 3,000,000
0.86 9790 1.31 0.82 10872 1.46 900,000
0.64 11274 0.61 0.84 7607 0.41 260,000
0.23 15755 4.09 0.05 17558 4.56 1,600,000
0.97 5084 0.45 0.60 19208 1.72 NA
0.43 5122 3.31 0.01 6729 4.35 400,000
0.71 2107 0.40 0.69 2156 0.41 NA
0.38 12369 1.24 0.37 12508 1.26 300,000
0.72 827 0.65 0.71 832 0.66 NA
0.56 12828 1.83 0.45 14367 2.05 900,000
0.90 8478 0.29 0.89 9012 0.31 200,000
0.76 5165 1.30 0.72 5560 1.40 300,000
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attaching the modelled populations to the centroid of each pixel,
and carrying out a point-in-polygon overlay. In addition,
comparisons were made for a regular 1 km grid. For 1991,
1 km totals for the reference populations (PR) were derived
from the enumeration district (ED) totals by postcode weight-
ing, as follows:

PRk ¼
Xn
i¼1

PEi:pik
pi

ð5Þ

where: PEi=population in ED i; pik=number of postcodes in
ED i in grid cell k; pi=number of postcodes in ED i.

Postcode locations were obtained from the 1991 All Fields
Postcode Directory (AFPD) maintained by the Post Office, but,
because of known errors, were subjected to extensive checking
and revision by comparison with later postcode files before use.
Intersection between the corrected postcode locations and EDs
was done in ArcGIS. For 2001, 1 km population counts were
obtained by summing the postcode headcount data, based on an
intersection of postcode locations from Codepoint 2001.

Four sets of population data were thus compiled for
validation purposes, as follows:

• ED1991 — enumeration district totals, derived from the
1991 census,

• KM1991 — 1 km totals for 1991, obtained by postcode
weighting of ED1991 data to a 1 km grid,

• OA2001— output area totals, derived from the 2001 census,
• KM2001 — 1 km totals for 2001, obtained by summing the
2001 headcount data to a 1 km grid.

3.1.2. Model comparison and evaluation
Results for the different validation studies are shown in

Table 7. Two measures of performance are reported: R and the
root–mean–square error (RMSE). In general, the GB national
model performs marginally better than the EU model. At the 1-
km scale, an extremely strong correlation is evident for all
strategies, and for both census years, with R=0.90–0.96 and
RMSE in the order of 300 (compared with a mean population of
218). For ED1991 the correlations were much weaker (0.33–
0.40), and RMSE values relatively high (∼350). At the yet finer
Table 7
Results of validation analyses

Validation data set Target population Strategy 1

File N Mean SD R RMSE

GB models
ED1991 147596 370 191 0.391 346
KM1991 238790 228 835 0.958 239
OA2001 218034 239 134 0.264 276
KM2001 263101 218 838 0.951 265

EU models
ED1991 147596 370 191 0.334 412
KM1991 238790 228 835 0.938 290
OA2001 218034 239 134 0.234 320
KM2001 263101 218 838 0.931 307
output area level, model performance declines further, with
R=0.23–0.27 and RMSE ca. 275–300.

In interpreting these results, a number of factors must be
considered. Differences in the dates of the various datasets used
clearly represent an important source of uncertainty, though
changes in population in Great Britain between 1991 and 2001
(like the rest of the EU) have generally been small, so these
effects are likely to be limited. The population data used for
validation at the 1-km scale are also subject to potential error,
due to the way in which the counts have been spatially
transformed using postcode locations or headcounts.

Validation at the ED and OA faces further difficulties be-
cause of the small size of these units: for 1991 EDs, the median
area (and inter-quartile range) was 0.10 km2 (0.04–0.35), for
2001 OAs it was 0.06 km2 (0.03–0.15). At their smallest,
therefore, these units are finer than the 200-m (0.04 km 2) cell
size used in the population modelling. Because they are also
designed to have more-or-less equal populations, both EDs and
OAs are especially tiny in densely populated urban areas. A
small percentage (0.8%) of EDs are also false, in that they
contain no population, whilst a few EDs represent large
institutions (e.g., prisons) with very limited spatial extent.
These therefore constitute very challenging targets for model-
ling, and it is likely that, in many instances, pixel centroids
became attached to the incorrect administrative area. At the
same time, modelling in rural areas faces the problem of
predicting the location of small, often scattered settlements
across large land cover parcels and large EDs or OAs. The
effects of these factors are indicated by analysis of the residuals
from the population modelling at output area level (Fig. 6).
For output areas less than 0.01 km2 in area, the absolute
residual is relatively large, even though the average
population of these areas is small (233). For output areas
between 0.01 and 0. 2 km2, the residual is smaller, though
more variable; for the larger, mainly rural OAs (N0. 2 km2)
it increases again, with greater variability.

Overall, therefore, the results of post hoc validation suggest
that the models provide a very good estimate of population
number in Great Britain at 1 km level. At finer resolutions (e.g.,
at ED or OA), and especially at the scale of the smallest
administrative area (b0.01 km 2), the estimates are less reliable.
Strategy 2 Strategy 3 Strategy 4

R RMSE R RMSE R RMSE

0.391 345 0.394 343 0.397 342
0.958 238 0.959 239 0.959 239
0.264 277 0.265 275 0.266 274
0.951 264 0.951 263 0.951 263

0.334 411 0.343 401 0.353 397
0.938 281 0.942 276 0.944 240
0.233 321 0.235 316 0.240 312
0.931 306 0.935 298 0.937 293



Fig. 6. Boxplots of absolute residuals from the GB model (strategy 2) by size of
output area.
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Because model performance is somewhat poorer in Great
Britain than other countries, this probably represents a worst-
case condition. In other countries, where the regression models
are seen to be intrinsically more robust at the NUTS 5 level,
reliability of the modelled estimates might be expected to be
better.

4. Discussion

Despite efforts to improve and standardise population census
procedures over recent decades, difficulties clearly remain in
obtaining reliable small-area population estimates in many parts
of the world. Even when the population counts are reported,
access to the geographical information (e.g., census tract
boundaries) needed to analyse and map the data is often
difficult. A coherent set of detailed population counts and
matched boundary files for the 2001 census across the EU, for
example, is not available, so any analysis would involve
collating the population counts and boundary data from each
country and building a European coverage (no simple task
because of the inevitable lack of consistency between these files
both within and between countries). Where international
comparisons are necessary, as across different members of the
EU, differences in the size and character of the census tracts also
pose problems. In addition, for many applications, there is a
need to transform population data between different zone
systems, in order, for example, to obtain denominators for
health outcome data, to estimate population exposures to
environmental pollutants, or to derive indices of population
pressures on the environment. There is thus a continuing need
for methods for small-area population modelling.

With the development of remote sensing and GIS techniques,
opportunities for such modelling have been greatly enhanced.
Simple, traditional approaches of area-weighting can therefore
be improved, using land cover data. In order to make maximum
use of land cover data, however, methods are needed that enable
the derivation of parcel (or even sub-parcel) level indicators of
variations in population density. The approach presented here,
using light emission data, offers one such methodology. Based
on the results obtained, this would seem to provide a basis for
reliable population modelling to a resolution of at least 1 km,
and in many circumstances possibly finer scales.

That said, the limitations of the methods used here need to be
recognised. Amongst these, statistical issues are of particular note.
In common with many geographical analyses (Anselin, 1989;
Haining, 1990, 1991), the data used here do not conform fully to
the demands of regression analysis, in that they often depart from
conditional normality. Consideration was given to normalising
the data (e.g., by log-transformation), which would also have
resolved the problem of negative population predictions. The
large proportion of zero values for several of the independent
variables used for population modelling nevertheless meant that
this could not fully resolve the distributional problems of the data,
and was also found in many cases to lead to illogical weights in
the regression models. Use of index values to transform the
independent variables was also considered to be inappropriate,
since it would have resulted in substantial loss of information.
Modelling was therefore carried out with un-normalised
variables, whilst acknowledging that the goodness of fit measures
(e.g., R2 and SEE) thereby produced are liable to be somewhat
unreliable. No account is also taken in the models used here of
spatial auto-correlation: use of Bayesian techniques to take
account of spatial structure in the data was not computationally
feasible with the large data sets involved in this analysis. Again,
this is likely to mean that model performance is somewhat over-
estimated. It needs to be stressed, however, that the purpose of
regression analysis was not to developmodels that were then used
directly to predict population numbers, nor to test hypotheses
about spatial relationships, but rather to derive weights for each
land cover class in each NUTS area that could be used to
redistribute the population totals. This pycnophylactic rescaling
of the modelled estimates to match the small-area population
counts means that any errors are intrinsic to each NUTS area.
Independent validation of the modelled results in the UK suggests
that the results are broadly reliable, at least to a spatial resolution
of ca. 1 km.

Uncertainties in the relationships between light emissions and
population distribution or density also need to be recognised.
Previous studies exploring and exploiting these relationships at
national level (Elvidge et al., 1997a,b; Sutton et al., 2001) have
reported strong associations between lit area and population
number, but they have also shown that light emissions depend on
affluence (e.g., as expressed by GDP) and economic structure
(e.g., degree of industrialisation). At the small-area level analysed
here many other factors are also likely to intercede, including
differences in urban configuration, transport infrastructure,
energy and lighting policies (and their level of implementation)
and lighting technology. In many western cities, commercial
advertising, sports facilities and security lighting represent
additional, though often local, sources of light emissions. For
all these reasons, light emissions do not translate directly or
consistently into population distribution. In this study, linkage of
the light emissions data to land cover information helped to
reduce some of these effects (e.g., by reducing the weight given to
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commercial and industrial areas), and this certainly improved the
predictions from the models. Interpolation of the light emissions
data also acts to smooth out local lighting hotspots (e.g.,
associated with sports stadia) and may thus improve local
estimates. Nevertheless, differences in the form of the national
models, and the fit of the EU model, between countries suggest
that residual uncertainties remain. Further analysis of some of the
regional variations in model performance may give indications of
possible confounding factors, and provide a basis for improving
the models by incorporating additional variables (e.g., GDP,
building heights). The limited availability and quality of such data
need, however, to be recognised.

Other issues are circumstantial, and could be avoided or
reduced in the future as improved data become available.
Population modelling was carried out using the 1991 population
data (for most countries), land cover data from about the same
date, and light emissions data derived from 1999–2000. The
mismatch in the dates of the data sets used inevitably creates
temporal ambiguity in the modelled populations and generates
errors in the population models. Improved estimates (and more
interpretable results) could be achieved when data for a common
time period become available. The spatial resolution of both the
CORINE land cover data (notionally 100 m but resampled here
to 200 m) and the light emissions data (originally 2.7 km, but
resampled and remodelled to provide notional 200-m resolution)
is also sub-optimal. The new land cover data for the EU, now
being released, will improve on these resolutions, and new
generation satellites (e.g., Envisat) will provide further improve-
ments in the future. The analysis undertaken here was also
restricted by the resolution of the light emissions data available
to the study, following problems with the on-board storage
devices in the mid-1990s. In recent years, fine resolution data
supply has been resumed. Use of these data would further
enhance the capability for population modelling. In the future,
therefore, the opportunity to improve on the results obtained here
will undoubtedly arise. In the meantime, the methods used, and
population estimates obtained, are offered for wider use. Both
the input data and results may be obtained from the authors.
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