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Abstract Spatially distributed estimates of population 

provide commonly used demand surfaces in support of 

spatial planning. In many countries, spatially detailed 

population estimates in small areas are not available. 

For such cases a number of interpolation methods 

have been proposed to redistribute summary 

population totals over small areas to estimate locally 

nuanced demand surfaces. Population allocations to 

small areas are commonly validated by comparing the 

estimates with some known values for those areas. 

This paper explores different interpolation methods 

applied at different spatial scales in locations where 

the validation of estimated surfaces is possible in 

order to suggest appropriate interpolation parameters 

for locations where it is not. The results show binary 

dasymetric mapping applied at medium scales provide 

the best estimates of population, among the methods, 

areal weighting the worst at all scales and 

pycnophylactic interpolation shows significant 

improvement on areal weighting at all scales. This 

paper provides a comprehensive evaluation of these 

techniques, using different scales of input data and 

residual mappings to compare and evaluate the 

spatial distribution of errors in the estimated surfaces. 

The application of such methods for estimating 

spatially distributed demand population values in 

different types of spatial data analysis and in locations 

where validation data do not exist are discussed.  

 

Keywords areal interpolation, dasymetric mapping, 

areal weighting, pycnophylactic interpolation, 
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I. INTRODUCTION  

Population estimates for small areas are important 

for many types of spatial data analysis. They are 

especially important for accessibility studies and 

facility location-allocation analyses, both of which are 

commonly used to support spatial planning and policy 

development. Population censuses provide a reliable 

record of socioeconomic characteristics and the spatial 

distribution of residential population [1] and thereby 

support geodemographic analyses [2]. In the U.K. 

census, population counts are collected for each 

household and published as aggregate counts and 

statistics for fixed pre-defined spatial units with 

Output Areas (OA) being the most detailed. The OA is 

similar to a U.S. census block. The OA was designed 

to be as homogenous as possible and to have a similar 

population size [3,4]. The target size of an OA is 125 

households or approximately 300 people [3]. The 

main reason for aggregating population census counts 

in this way is to maintain confidentiality and 

respondent anonymity. In some countries census data 

are spatially aggregated only to very coarse summaries 

that limit their use in further spatial analysis. For 

example, in Nigeria, simple population totals are 

provided for each state and local government areas 

(LGAs), with the LGA providing the most spatially 

detailed information. An LGA is similar to the size of 

a county or Unitary Authority (UA) district in the U.K. 

This level of aggregation makes many types of spatial 

data analysis difficult because more detailed 

population estimates are often required than those 

provided [5]. 

II. BACKGROUND 

Areal interpolation is the process of transforming 

values of interest from source zones to provide 

estimates over a set of target zones with unknown 

values [6]. A number of areal interpolation techniques 

have been developed and their performance has been 

found to relate to specific characteristics of the input 

data including its errors, extent and spatial properties 

[7,8], as well as the characteristics of any ancillary 

data used, for example, to constrain the disaggregation 

[1]. 

 One of the simplest areal interpolation techniques 

is areal weighting. In this total data volumes are 

maintained under the assumption that population is 

uniformly distributed within the source zones [6]. In 

reality, population distributions are not uniform within 

source zones and assigning the same population 

density to every location may not represent the actual 

population distribution because of the presence of 

unpopulated areas (water bodies, parks, industrial 

areas, etc.). Point-based areal interpolation methods [9] 

have been used to overcome some of the errors 

associated with the assumption of uniform densities 

within source zones. These methods assign census 

zone populations to the centroid of each source zone, 

and then population counts are estimated by summing 

all points within the target zone. The major 

shortcoming of this method is that the polygon 

centroid is used to represent the total population 

within the polygon. When the source and target zones 

are spatially intersected, the total population is 

completely allocated (or not) to the target zone, 

depending on location of the centroid [10]. This can 

cause errors when the populations allocated in this 

way are used as demand surfaces for measuring access 
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to service facilities [11]. Tobler [12] proposed 

pycnophylactic interpolation as a technique to 

overcome this shortcoming. These generate spatially 

varying but smooth surfaces, whilst preserving the 

total data volumes and assign a non-zero population 

density value to target zone. In reality, the target zones 

may have sudden changes in population density that 

coincide uninhabited areas. Thus approaches that 

make use of ancillary data to constrain areas within 

source zones have been suggested [13,14,15] and 

ancillary data on urban extent has been commonly 

used. 

Remotely sensed data such as aerial photographs 

have been used to map urban extent since the 1950s 

and estimate populations [16]. Lo [17] describes three 

main approaches used to visually interpret aerial 

photographs for population mapping: counting 

individual dwelling units, extracting the extent of 

urban settlement and measuring areas of different land 

use. Digital images and statistical classification of 

broad land use types are now common [18,19], and 

land cover derived in this way has been used as 

ancillary data in spatial interpolation [1,15,20].  

The dasymetric mapping approach is an areal 

interpolation technique that incorporates ancillary data 

sources as control variables in order to identify zones 

having different population densities [20,21]. It 

constrains the disaggregation of population values 

from source zones to specific target zones, which can 

be weighted by for example expected residential 

density [13,14,15,20,22,23]. Binary dasymetric 

approach [20] divides source zones into populated and 

unpopulated areas and allocates population only to the 

populated areas. Su et al. [24] extended this idea by 

further dividing the populated area into multiple 

classes using transportation layers, topography and 

land use zoning. A 3-class dasymetric model has been 

proposed [14,25], but has not been shown to provide 

any additional benefit to binary dasymetric approaches. 

Recent research has improved areal interpolation 

approaches by applying simple proportions as well as 

various forms of regression analysis [26], quantile 

regression [21] and through improved ancillary data 

such as LiDAR [27], open access vector map data [1] 

and household survey data [5].   

In many interpolation studies population totals are 

redistributed from an initial area, the source zone (e.g. 

MSOA in the U.K.) to smaller target zones such as 

OAs and the results are compared with known 

population counts at the lower level in order to 

validate the method. Additionally, much previous 

research has used multispectral imagery mainly of 

30m spatial resolution to redistribute aggregate census 

data to a lower level census unit as the target zones for 

which true populations are known [15,17,24,25]. 

Langford [1] draws attention to the implications of 

this practice: first, the performance of the most 

spatially detailed census data are not often measured 

because they are reserved for testing the performance 

of the interpolation methods; and second, it is difficult 

to evaluate the performance of target zones smaller 

than the lowest level census spatial unit because their 

true values are not known. He demonstrates the 

possibility of using unit postcodes (UPCs) in the UK 

as the target zones with an acceptable precision. The 

UPCs are smaller than the finest census zone division, 

the OA in the U.K. The population totals of the UPCs 

are not reported in the U.K. hierarchy of census units 

but are known and available at the Office of National 

Statistics (ONS) U.K.  

This study evaluated areal weighting, dasymetric 

mapping and pycnophylactic interpolation applied 

across different spatial scales and using ancillary land 

cover data classified from satellite imagery of 

differing spatial resolutions. Different interpolation 

methods and input parameters were applied to a U.K. 

case study to determine how well the populations 

reported in census small areas were estimated, and 

thus how well population values generated in this way 

could be used for accessibility studies, location-

allocation analyses etc. It sought to address two 

specific research questions:  

 The relationship between estimated 

populations from different interpolations and 

the known census counts? 

 Which is the most appropriate interpolation 

method to apply in the absence of a 

universally accepted methodology in 

estimating population surfaces? 

 

III. MATERIALS AND METHODS  

A. Study area 

The study area was the city of Leicester in the UK, a 

location where the actual population distribution is 

known and where interpolation model output 

validation was possible. Leicester covers an area of 

about 73 km
2
. The population of Leicester has 

increased between 1990 and 2011 as shown in Table I. 

Figure 1 shows the location and extent of Leicester in 

the county of Leicestershire, in England. This location 

was chosen because of its proximity and the authors’ 

knowledge of the area. The 2001 population data were 

used in this study. 

Table I Percentage change in population for Leicester from 1951 to 

2011 

Census Year Population 

1951 285200 

1961 288100 

1971 284200 

1981 280300 

1991 272133 

2001 279921 

2011 329839 

 

../../Downloads/www.internationaljournalssrg.org


SSRG International Journal of Geo informatics and Geological Science (SSRG-IJGGS) – volume 4 Issue 3 May to June 2017 

ISSN: 2393 - 9206           www.internationaljournalssrg.org                          Page 14 

 

Fig 1: The map of (a) England showing location of Leicestershire 

County; (b) Leicestershire County with location of Leicester UA; (c) 

Leicester UA. The digital boundaries are © Crown Copyright and/or 

database right 2013. An Ordnance Survey/EDINA supplied service 

B. Data 

The aim of this research is to develop a novel and 

comprehensive analysis of the operation of three 

classic spatial interpolation approaches and how they 

interact with different target zone sizes, support grids 

and different scales of ancillary data. The source zone 

was the city of Leicester, a unitary authority 

administrative area and the target zones evaluated 

were, in order of increasingly granularity, MSOAs, 

LSOAs and OAs. Satellite imagery covering the study 

area was acquired to generate land cover data and 

support the dasymetric approaches. Medium 

resolution satellite imagery and fine resolution (25cm 

aerial photography) were used to generate ancillary 

data for the dasymetric analyses. Table II summarises 

the data used in this study.  

Table II Data for the city of Leicester 

 

C. Analysis 

An overview of the analysis is shown in Figure 2. 

Areal weighting and dasymetric methods were applied 

to Leicester unitary authority as the source zone. The 

pycnophylactic interpolation method was applied to 

census totals for Leicester unitary authority together 

with all the surrounding unitary authorities 

(Harborough, Blaby, Charnwood and Oadby and 

Wigston) to generate an interpolated gridded 

population surface at resolutions of 100m and 30m 

which were then summed over MSOA, LSOA and OA 

target areas. This is because the pycnophylactic 

method cannot be applied to a single polygon such as 

the Leicester unitary authority. The estimated 

populations were then compared with the known 

census counts in each case, for validation.  

 

Fig 2: An overview of the method 

1)  Areal weighting 

Areal weighting is based on the assumption that the 

true population is uniformly distributed within source 

zones [6]. It uses the size (area) of each target zone to 

proportionally allocate the population. It was 

implemented in six steps: (1) the area of the source 

zone was calculated; (2) the population density was 

calculated using Equation 1; (3) the source zone and 

target zones were spatially intersected; (4) the 

intersect areas were calculated; (5) a population value 

for each intersected zone was calculated from its area 

and the population density as in Equation 2; and (6) 

The interpolated population estimate for each target 

zone was calculated by summing all intersected areas 

within each target zone. A flowchart describing these 

steps is shown in Figure 3. The population density of 

the source zone is expressed mathematically as: 

 

Data Format Date Source 

Landsat7 

(ETM) 30m 

spatial 

resolution 
Image 

16 April 

2003 

United States 

Geological 

Survey (USGS) 

website 

(http://www.usg

s.gov/) 

Ortho-

rectified 

aerial 

photograph 

25cm spatial 

resolution  

Image 22 May 

2010 

Ordnance 

Survey, U.K. © 

Crown 

copyright 

and/or database 

right 2013. All 

rights reserved. 

Census data 

with 

boundaries of 

OAs, LSOAs 

and MSOAs 

Shapefile 2001 

Census 

Census Area 

Statistics on the 

Web (casweb) 

(http://casweb.

mimas.ac.uk/20

01/start.cfm). 
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Where  is the population density of the source zone, s,  is the 

total population of source zone s and  is the area of source zone s.  

 

The estimated population for the overlaid zones is 

expressed mathematically as: 

 

 
 

Where  is the estimated populations of overlaid zone, t;  is the 

number of source zones,  is the area of intersection between 

overlaid zone t and source zone s and as defined in Equation 1. 

 
 

 

 
 

Fig 3: Implementation steps for areal weighting (vector mode) 

2)  Binary dasymetric  

The binary dasymetric uses ancillary data to 

spatially constrain the disaggregation. It follows the 

same steps as above but the source zone and target 

zone areas are modified by removing non-populated 

areas from the analysis. The result is that the 

population density is calculated by dividing the 

population count of the source zone by the total size of 

all built-up areas within the source zone. In this case 

urban / non-urban areas were identified from Landsat7 

(ETM) 30m spatial resolution data. This was classified 

into 3 classes Built-up, Water and Vegetation, with the 

first class forming the urban area and the last 2 the 

non-urban areas. The 25cm ortho-rectified aerial 

photography was used to resample image pixels to 3m 

and 10m without altering the projected coordinate 

system. Cubic convolution resampling was used to 

compute each output cell value because this method 

reduces blurring and produces a smoother output 

image than other commonly used method such as 

nearest neighbour or bilinear interpolation. The 

resampled images were classified to derive land cover 

data of the Leicester area at 10m and 3m spatial 

resolution. A supervised maximum likelihood 

classification identified the built-up areas and was 

repeated several times and the data with the highest 

classification accuracy of 87.89%, 83.20% and 

82.03% for 30m, 10m and 3m resolution respectively 

were chosen. Accuracy of classification was assessed 

by comparing 256 randomly chosen pixels for which 

the land cover class was known. Figure 4 shows the 

classified Landsat7 (ETM) data and Figure 5 shows 

the binary mask derived from the classified image. 

The application of the binary dasymetric method is 

summarised in Figure 6. 

 
Fig 4: The classified Leicester image derived from Landsat7 (ETM). 
The digital boundaries are © Crown Copyright and/or database right 

2013. An Ordnance Survey/EDINA supplied service. 

 
 
Fig 5: A binary mask derived from land cover data derived from 

classified Landsat7 (ETM). The digital boundaries are © Crown 
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Copyright and/or database right 2013. An Ordnance Survey/EDINA 

supplied service. 

 

 

 
 

Fig 6: Implementation of the binary dasymetric method 

 

3)  Pycnophylactic Interpolation 

Pycnophylactic interpolation can only be applied to 

two or more areas. In this analysis the aim was to 

derive an interpolated surface of the population count 

for Leicester over 100m and 30m grids which were 

then aggregated up to the MSOA, LSOA and OA 

target units. The unitary authority of Leicester was 

represented by a single polygon and so data for 

adjacent county districts (Charnwood, Harborough, 

Blaby, Oadby and Wigston) were included in the 

analysis to generate a pycnophylactic surface with five 

source zones (as in Figure 7). The total population for 

each source zone is shown in Table III.    

 

Table III Population totals for source zones used to implement 

pycnophylactic interpolation 

Unitary Authority Total Population 

Blaby District 90252 

Charnwood District 153462 

City of Leicester 279921 

Harborough District 76559 

Oadby and Wigston District 55795 

 

 

 
Fig 7: Source zones used for the pycnophylactic interpolation 

method with the City of Leicester (study area) shaded in grey.  

 

The basic principle of the pycnophylactic 

interpolation is to create a smooth surface across the 

study area with no sudden changes across target zone 

boundaries, such that the total value of target polygons 

must equal that of the source polygons with each 

source zone population being the same [12]. Figure 8 

illustrates the general concept of the pycnophylactic 

interpolation. The method iteratively distributes 

populations, whilst seeking to smooth adjacent cells 

values and maintain total population volumes. It 

computes a continuous population density (per cell) in 

each source zone. The population density per cell is 

then smoothed repeatedly by replacing the value of 

each cell with the weighted average of its neighbours. 

The volume of the attributes within each source zone 

remains unchanged but varies smoothly at the 

boundaries. 

 

The procedure for generating the pycnophylactic 

surface has been described by Qiu et al. [28] and 

involves the following steps: (1) converting the source 

zone data to raster grids; (2) preserving the vector 

attributes in the raster; (3) computing the population 

density per grid cell; (4) calculating a new density by 

replacing the value of each cell with the weighted 

average of its neighbours; (5) estimating the density 

for each source zone using the new per cell density; (6) 

adjusting the new density by multiplying each cell 

value with the ratio between the original population 

and the estimated total population density of each 

source zone; (7) repeating steps 3-6 until no more 

adjustment is required for example when the 

maximum change in any pixel density values between 

iterations falls below a threshold level, such that zone 

total equals original value (the pycnophylactic 
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condition); (8) obtaining the estimated interpolated 

gridded population of each target zone by summing 

the adjusted population density of each cell falling 

within each target zone. The implementation steps 

described above are illustrated in Figure 9. 

 

 
Fig 8: The pycnophylactic interpolation method 

(Source: Tobler, W. R., 1992) 
 

 

 

 
Fig 9: The implementation steps for the pycnophylactic 
interpolation method 

 

D. Evaluation of surfaces 

The interpolated gridded pycnophylactic surfaces, 

the areal weighting and the dasymetric population 

surfaces at 100m and 30m resolutions of the output 

grid were overlaid with the boundaries of MSOA, 

LSOA and OA target zones for Leicester and then 

aggregated to obtain estimates of the populations for 

these zones. These were assessed for accuracy by 

comparing the estimated populations with known 

census counts in each case. The boundaries of the 

target zones were spatially overlaid with the 

interpolated gridded population surfaces from which 

the target zone populations were calculated. Figure 10 

shows an example of the results, in this case from the 

pycnophylactic interpolation at 100m resolution. The 

estimated target zone populations were then compared 

with known census counts in that target zone. The 

same procedure was repeated to obtain population 

estimates for the three U.K. census units, MSOAs, 

LSOAs and OAs that were used as the target zones. 

 

 
Fig 10: Leicester LSOAs intersect interpolated gridded 
pycnophylactic surfaces at resolutions of 100m Support grids. 

 

For each analysis residuals were calculated and 

mapped to visually explore the nature of the error 

[1,14,28,29]. The residual is calculated from the 

estimated population subtracted from the actual 

populations of each census unit. The accuracy of the 

interpolation is measured using the root mean squared 

error (RMSE) metric [1,14,23,29]. The RMSE metric 

gives a summary of the error within census units and 

was used to evaluate the different approaches. The 

error within a given source zone (RMSE) uses the 

absolute difference between estimated populations and 

the populations reported for the census units within 

each of the target zones and is calculated as in 

Equation 3. 

 

 
 

Where:  is the known census count at zone i,  is the estimated 

population from the interpolation at zone i, and n is the number of 
target zones.  

 

The RMSE metric has been found to be ‘less useful 

for comparing between different sets of source and 

target units’ [1, p.337], particularly where resolution 

change is involved. This is because the RMSE metric 

is affected by the absolute size of estimated values 

(e.g. MSOA counts are as expected larger than LSOA 

counts and would have a larger RMSE values). 

Previous research [1,14,29] has considered the 

variation in actual population of the target zones (e.g. 

MSOA and OA). To account for these variations, the 

RMSE score is divided by the average known 
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population of each target zone to obtain the coefficient 

of variance (CoV). The CoV provides a relative error 

metric suitable for comparing values across the target 

zones. This is a useful metric as this research seeks to 

test performance over census areas of differing 

resolutions and CoV is more appropriate for cross-

resolution comparisons. The CoV is calculated as in 

Equation 4.  
 

 
Where: x̄  is the mean population of the known census count for 

each target zone. 
 

 

IV. RESULTS AND DISCUSSIONS 

 

The accuracy of the various interpolations was 

measured using the RMSE metric and CoV. Tables IV 

to IX summarise the performance measures for the 

various analyses in order of increasing accuracy. 

Tables IV and V show the interpolation results using 

30m and 100m support grids respectively, aggregated 

at MSOA. Tables VI and VII show the interpolation 

results using 30m and 100m support grids respectively, 

aggregated at LSOA, and Tables VIII and IX show the 

interpolation results using 30m and 100m support 

grids respectively, aggregated at OA. The areal 

weighting method provides a baseline against which to 

compare the other techniques [1]. As expected, areal 

weighting performs least well in all the experiments 

undertaken. 

 

Table IV shows the interpolation results using the 

30m support grid, aggregated at MSOAs. The areal 

weighting method performed least well with RMSE 

score of 4486.9 and a CoV of 0.577. The 

pycnophylactic method slightly improves on areal 

weighting with a RMSE of 4233.4 and a CoV of 0.544. 

Interpolations using binary dasymetric with classified 

land cover data used as the ancillary data input are 

better than the pycnophylactic method. The binary 

dasymetric methods using ancillary data input of 

differing spatial resolutions recorded slightly different 

CoV scores. The binary dasymetric model using land 

cover data derived from classified Landsat7 (ETM) 

30m spatial resolution as the ancillary data input 

provided the best estimates among the methods tested 

with the lowest recorded RMSE of 2943.8 and a CoV 

of 0.379. The most striking feature in Table IV is that 

the binary dasymetric model using land cover data 

derived from classified resampled aerial photo data of 

10m spatial resolutions as the ancillary data input 

achieved a RMSE values of 3314.4 which marginally 

improves to 3304.9 compared to a binary dasymetric 

model using land cover data derived from classified 

resampled aerial photo data of 3m spatial resolutions 

as the ancillary data input. This is surprising because 

higher resolution land cover data that offer greater 

spatial precision in the depiction of building locations 

does not automatically improves interpolation 

performance. One possible reason for this could be 

because they are both from the same source.  

 

Table IV Table V Interpolation results using the 30m support grids, 

aggregated at MSOA 

Interpolation method RMSE CoV 

Areal weighting using zone boundaries 

only 

4486.9 0.577 

Pycnophylactic interpolation 4233.4 0.544 

Binary dasymetric using 10m resolution 

classified land cover 

 

3314.4 

 

0.426 

Binary dasymetric using 3m resolution 

classified land cover 

3304.9 0.425 

Binary dasymetric using 30m resolution 

classified land cover 

2943.8 0.379 

Note: Mean population of target units is 7776. 

 

 

Table V shows the interpolation results of the 100m 

support grids, aggregated to MSOAs in order of 

increasing accuracy. The results are similar to those in 

Table IV with the areal weighting method performing 

least well and the binary dasymetric model using land 

cover data derived from classified Landsat7 (ETM) 

30m spatial resolution providing better target zone 

estimates. At MSOA, interpolations to 30m support 

grids are better compared to 100m support grids. Also, 

in contrast to Table IV, the RMSE value and CoV 

recorded for the binary dasymetric model using land 

cover data derived from 10m data marginally 

improves those recorded for the binary dasymetric 

model with 3m spatial ancillary data. 
 

Table V Interpolation results using the 100m support grids, 

aggregated at MSOA 

Interpolation method RMSE CoV 

Areal weighting using zone boundaries 

only 

4934.1 0.635 

Pycnophylactic interpolation 3974.9 0.511 

Binary dasymetric using 3m resolution 

classified land cover 

3668.7 0.472 

Binary dasymetric using 10m resolution 

classified land cover 

3661.5 0.471 

Binary dasymetric using 30m resolution 

classified land cover 

3579.7 0.460 

Note: Mean population of target units is 7776.  

 

Tables VI and VII show the interpolation results 

using 30m and 100m support grids, aggregated to 

LSOAs in order of increasing accuracy. The results 

recorded have similar pattern to those in Table V. The 

areal weighting method performed least well with 

RMSE of 1497.8 and 1805.3 (using 30m and 100m 

support grids respectively). The binary dasymetric 

model using 30m land cover data provided the best 

target zone estimates with a RMSE of 1087.5 and 

1309.4 for the 30m and 100m support grids 

respectively. 
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Table VI Interpolation results using the 30m support grids, 

aggregated at LSOA 

Interpolation method RMSE CoV 

Areal weighting using zone boundaries 

only 

1497.8 1.001 

Pycnophylactic interpolation 1368.5 0.914 

Binary dasymetric using 3m resolution 

classified land cover 

1173.9 0.784 

Binary dasymetric using 10m resolution 

classified land cover 

1155.6 0.772 

Binary dasymetric using 30m resolution 

classified land cover 

1087.5 0.726 

Note: Mean population of target units is 1497. 
 

 

Table VII Interpolation results using the 100m support grids, 
aggregated at LSOA 

Interpolation method RMSE CoV 

Areal weighting using zone boundaries 

only 

1805.3 1.206 

Pycnophylactic interpolation 1517.7 1.014 

Binary dasymetric using 3m resolution 

classified land cover 

1467.5 0.980 

Binary dasymetric using 10m resolution 

classified land cover 

1436.1 0.959 

Binary dasymetric using 30m resolution 

classified land cover 

1309.4 0.875 

Note: Mean population of target units is 1497. 

 

 

Table VIII Interpolation results using the 30m support grids, 

aggregated at OA 

Interpolation method RMSE CoV 

Areal weighting using zone boundaries 

only 

586.2 1.861 

Pycnophylactic interpolation 516.8 1.641 

Binary dasymetric using 3m resolution 

classified land cover 

458.1 1.454 

Binary dasymetric using 10m resolution 

classified land cover 

447.4 1.420 

Binary dasymetric using 30m resolution 

classified land cover 

429.6 1.364 

Note: Mean population of target units is 315.  

 

Tables VIII and IX show the interpolation results 

for the 30m and 100m support grids respectively, 

aggregated to OAs in order of increasing accuracy. 

The results show a similar pattern to the LSOA results. 

The areal weighting method performed least well with 

RMSE of 586.2 and 761.9 (using 30m and 100m 

support grids respectively) and CoV of 1.861 and 

2.419 (using 30m and 100m support grids 

respectively). The binary dasymetric model using 30m 

land cover provided the best target zone estimates at 

this resolution of interpolation with a RMSE of 429.6 

and 503.5 (for 30m and100m support grids 

respectively) and CoV of 1.364 and 1.598 (for 30m 

and 100m support grids respectively).  

 

Table IX Interpolation results using the 100m support grids, 

aggregated at OA 

Interpolation method RMSE CoV 

Areal weighting using zone boundaries 

only 

761.9 2.419 

Pycnophylactic interpolation 664.3 2.109 

Binary dasymetric using 3m resolution 

classified land cover 

630.1 2.000 

Binary dasymetric using 10m resolution 

classified land cover 

614.4 1.950 

Binary dasymetric using 30m resolution 

classified land cover 

503.5 1.598 

Note: Mean population of target units is 315. 

 

The binary dasymetric method shows significant 

improvement when compared with the pycnophylactic 

and areal weighting methods: it provides the best 

estimates among the models tested. This improved 

performance, quantified in this research, is because the 

technique uses land cover data to constrain the 

population distribution to only populated areas. The 

results presented show how the underlying 

assumptions of each interpolation technique and the 

scales of analysis interact to influence the target zone 

estimates. The dasymetric method was found to 

consistently provide better target zone estimates when 

compared to other areal interpolation techniques. 

 

The binary dasymetric model using land cover data 

derived from classified Landsat7 (ETM) 30m spatial 

resolution as the ancillary data input provided the 

lowest recorded RMSE score for all the models tested, 

for the three target zones compared to land cover data 

derived from classified resampled aerial photo of 10m 

and 3m spatial resolutions. The expectation is that 

high resolution satellite image, which appears to offer 

greater spatial precision in identifying urban extent, 

could lead to reduction in land cover classification 

error. This is because the spectral signatures for each 

land cover type are likely to generate as little 

confusion as possible with a clear separation of land 

cover classes before classification. A possible reason 

for this result is the classification algorithm used in 

this study, the maximum likelihood classifier. 

Maximum likelihood classification algorithm can 

provide reasonably good classification results for 

Landsat imagery [30,31]. The algorithm classifies land 

cover based on spectral signatures at per pixel level, 

while ignoring spatial features in an image. However, 

there are a number of issues related to using maximum 

likelihood classifier for medium and high resolution 

imagery. This is because a significant proportion of 

medium and high spatial resolution imagery in urban 

areas can be affected by shadows [32]. In this study, 

extracting urban land cover from resampled aerial 

photo data was more difficult compared to using the 

Landsat (ETM) source. Lu et al. [33] have shown how 

the use of spatial features improves land cover 

classification, especially when high spatial resolution 

images are used. Object-based classification provides 

an alternative for classifying remotely-sensed images 
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into thematic map. Lu et al. [30] compared object-

based classification with maximum likelihood and 

found object-based classification to be especially 

valuable for higher spatial resolution images. The 

object-based classification algorithm was not applied 

in this study. Also, the performance of 10m and 3m 

resampled aerial photo data can be attributed to using 

land cover information of different resolutions of the 

same source. 

 

The interpolation results aggregated at MSOAs 

have larger RMSE values than those aggregated at 

LSOAs, which are also larger than those aggregated at 

OAs. This is expected because the RMSE metric is 

affected by the absolute size of estimated values and 

the target size population for an OA is less than that of 

an LSOA, which is also less than that of an MSOA. 

The CoV scores, which are appropriate for 

comparison across target zones, show interpolation 

results from Leicester unitary authority to 30m support 

grids, aggregated at MSOAs provided the lowest CoV 

score among the solutions tested and for the three 

census areas used as the target zones. This indicates 

that larger census units are more likely to produce 

better results as it shows improvements in RMSE and 

the values of CoV as the size of the spatial 

aggregation increases. This result is not surprising as 

one would expect higher accuracies when values are 

disaggregated over coarser spatial units. This result is 

similar to findings of Comber et al. [34] where a 

combination of pycnophylactic interpolation with the 

dasymetric method was used to create the National 

Agricultural Land Use Dataset. They reported 

improvement in R
2
 and RMSE values for Arable and 

Grass land uses for Kent, U.K. as the size of the 

spatial aggregation increases by the plots from 1 km
2
 

to 25 km
2
. 

 

The residuals in all the census units tested were 

calculated and mapped to show the spatial distribution 

of the error (Figures 11, 12 and 13). The class 

intervals are shown by standard deviation from the 

mean error for each target zone. Standard deviations 

are the best way to symbolise normally distributed 

quantitative data on maps, as it makes classes easier to 

interpret. From the residual maps presented in Figures 

11 to 13, some patterns persist across scales. It 

becomes increasingly clear that a degree of spatial 

‘smoothing’ is present in the estimates. That is, the 

very densely populated inner city OAs are 

underestimated, the less dense band running alongside 

the river north-south through Leicester is 

overestimated, and many large rural OAs are 

overestimated. Evidently, the residual maps show 

more census areas are subject to overestimation, as 

compared to underestimation, at greater than one 

standard deviation. The residual maps show that 

relatively large rural census units tend to be 

overestimated while relatively small urban census 

units tend to be underestimated. This is because they 

are designed to have a common target population 

count [3]. Similar patterns have been found by other 

researchers e.g. [14,29], where relatively large rural 

blocks tend to be overestimated while relatively small 

urban blocks tend to be underestimated. The 

underestimated units are mainly the smaller census 

areas in the more densely populated areas such as the 

city centre while the overestimated units are the larger 

spatial areas in the less densely populated areas away 

from the city centre. A possible reason for this is that 

the satellite data being used as the ancillary data input 

may be more likely to identify houses and other built-

up areas but not how many people live inside them. It 

is also likely in some areas there may be 

socioeconomic or cultural reasons why some houses 

have greater occupancy rates than the others. 

 
 

Fig 31: The spatial distribution of residuals at MSOA from a 100m 

gridded pycnophylactic population surface. The mean count error is 
0 and a standard deviation of 3975. The digital boundaries are © 

Crown Copyright and/or database right 2013. An Ordnance 

Survey/EDINA supplied service. 

 

 
Fig 42: The spatial distribution of residuals at LSOA from a 30m 

gridded dasymetric population surface using land cover data derived 
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from classified resampled aerial photo data of 3m spatial resolutions 

as the ancillary data input. The mean count error is -233 and a 

standard deviation of 1151. The digital boundaries are © Crown 

Copyright and/or database right 2013. An Ordnance Survey/EDINA 

supplied service. 

 

 
Fig 53: The spatial distribution of residuals at OA from a 30m 
gridded dasymetric population surface using land cover data derived 

from classified resampled aerial photo data of 10m spatial 

resolutions as the ancillary data input. The mean count error is -107 
and a standard deviation of 434. The digital boundaries are © 

Crown Copyright and/or database right 2013. An Ordnance 

Survey/EDINA supplied service. 
 

 

V. CONCLUSION 

 

This study has developed a novel and 

comprehensive analysis of the operation of three 

classic spatial interpolation approaches and how they 

interact with different target zone sizes, support grids 

and different scales of ancillary data. The results show 

how the underlying assumptions of each interpolation 

technique and the scales of analysis interact to 

influence the target zone estimates. The dasymetric 

method was found to consistently provide better target 

zone estimates when compared to other areal 

interpolation techniques. Much previous research 

using dasymetric methods have used land cover 

information derived from classified satellite imagery 

as the ancillary data input [1,7,15]. However, deriving 

such information from satellite imagery requires 

specialized skills and such data cannot determine 

population density levels, providing a potential source 

of error associated in analyses using such data as the 

ancillary data input. This study evaluated land cover 

data classified at different spatial resolutions (30m, 

10m and 3m) as ancillary data input to the dasymetric 

method and found the coarsest resolution data 

generated the best results, with the lowest values of 

RMSE and CoV for all the models tested. These 

results, along with the free availability of 30m spatial 

resolution remote sensing data (Landsat etc.) and the 

ease with which it can be classified into urban and 

non-urban areas suggests its suitability as input for the 

dasymetric method. Thus this research suggests that 

additional costs and computational effort associated 

with finer scale remote sensing imagery (e.g. 10m and 

3m resolution) has no analytical advantage and that 

the quality of the land cover data is not as important as 

its ability to predict the population estimates. 

 

This study provides an important contribution to 

knowledge, with respect to estimating population 

surfaces. Fine scale estimates of spatial population 

have relevance for a broad range of applications, and 

therefore the findings of this research are of value 

beyond the field of Geographical Information Science. 

Research in the field of small area population 

estimates remains relevant because of the absence of a 

universally accepted methodology in estimating 

population surfaces. There is the need to apply areal 

interpolation techniques to different areas to be able to 

understand why a particular method consistently 

provides better target zone estimates. 
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