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Abstract

A majority of statistical methods used in the analysis of land use and transportation systems implicitly carry the assumption that rela-
tionships are constant across locations or individuals, thus ignoring contextual variation due to geographical or socio-economic heter-
ogeneity. In some cases, where the assumption of constant relationships is questionable, market segmentation procedures are used to
study varying relationships. More recently, methodological developments, and a greater awareness of the importance of geography, have
led to increasingly sophisticated ways to explore varying relationships in land use and transportation modeling. The objective of this
paper is to propose a simple probit model to explore contextual variability in continuous-space. Some conceptual and technical issues
are discussed, and an example is presented that reanalyzes land use change using data from California’s BART system. The results of the
example suggest that considerable parametric variation exists across geographical space, and thus underlines the relevance of contextual
effects.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The analysis of land use and transportation systems
often relies on the use of statistical or econometric models
for explanatory or forecasting purposes. Regression
analysis, for example, is a technical element for the study
of trip generation, trip distribution and modal split in
the standard 4-stages modeling approach (McNally,
2000b). Other aspects of travel behavior, including modal
choice and route choice are studied using discrete choice
models—that is, limited dependent variable models embed-
ded in an economic utility maximization framework.
Models of this type can be used to study travel behavior
from the perspective of activities in the activity-based
analysis paradigm (McNally, 2000a). Locational analysis,
such as applied in land use models, also makes use of
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discrete choice models (e.g. Martı́nez, 1992; Miyamoto,
1993), and land use change has been studied using limited
dependent variable models (e.g. Landis et al., 1995;
McMillen, 1989). Discrete choice models and limited
dependent variable models share the same technical basis.
They also share some common simplifications, including
the assumption of stationary (i.e. stable) relationships
between variables. Stationary relationships, in turn, ignore
the possibility of local variation (i.e. contextual effects) due
to heterogeneity.

The assumption of stationary relationships is useful to
obtain relatively simple and easily estimable models. Such
models, however, may be of limited value when the empir-
ical evidence does not support the assumption. In other
cases, the assumption itself may be inconsistent with given
theoretical propositions. In geographical analysis, for
example, a candidate principle for the second law of geog-
raphy is that of spatial heterogeneity (e.g. Goodchild,
2004). In the specific case of transportation systems, for
example, many analysts have first-hand experience of
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168 A. Páez / Journal of Transport Geography 14 (2006) 167–176
geographical and socio-economic variations due to hetero-
geneity: tastes with regards to modal choice may not be the
same at different levels of income (socio-economic context),
and trip generation, distribution and commuting prefer-
ences often show clear geographical patterns (spatial con-
text). Over the years, a number of approaches have been
proposed to solve the problem of non-stationary relation-
ships (e.g. market segmentation, dummy variables, and
multilevel models). These approaches are satisfactory in
many types of applications, in particular when contextual
dimensions can be discretely classified (for example, by
gender, ethnicity or employment type). However, these
schemes may be of more limited appeal when there is a
need to study contextual effects in a continuous-space
setting, such as geographical space.

The objective of the present paper is to propose a simple
binary probit model for continuous-space contextual
effects. This line of inquiry is relevant to current research
activities that explore the effects of space in transportation
and land use modeling. The present paper follows directly
from recent work in the field of spatial analysis, in partic-
ular local forms of spatial analysis (Fotheringham and
Brunsdon, 1999). As documented by Páez and Scott
(2004), it also attends to an incipient, but growing interest
in transportation and land use studies concerning the
implications and potential of spatial effects in model deve-
lopment and testing (see for example Bhat and Zhao, 2002;
Bhat and Guo, 2004; Miyamoto et al., 2004; Páez and
Suzuki, 2001).

The structure of the paper is as follows. In the following
section, the relevant literature is briefly reviewed to place
the paper within the context of existing methods. Next,
the method of geographically weighted regression, a local
form of spatial analysis on which the proposed model is
based, is described and discussed. A heteroscedastic probit
model with geographical weights is then proposed, and its
use exemplified using land use data from California’s
BART system. Finally, some conclusions are drawn and
directions for future research are sketched.

2. Background

A characteristic of many statistical methods is the impli-
cit assumption that relationships are constant over the
space of the sample; in other words, coefficients are
assumed to be identical, or stationary, for all individuals,
locations, zones, etc. within the sample. There are many sit-
uations, however, in which the assumption of stationarity
is violated and/or difficult to maintain. For example, when
studying the demand for public transportation, it is perti-
nent to ask whether the variables explain the response iden-
tically at different times of the day (temporal context), at
different locations (geographical context) or for users with
different income levels (socio-economic context). Over the
years a number of methods have been developed to deal
with these types of questions. These include:
(1) Market segmentation (e.g. Ben-Akiva and Lerman,
1985, pp. 202–204). This is a relatively simple proce-
dure that can be applied to the data before a formal
modeling effort, whenever the relationships in differ-
ent regions or between socio-economic groups are
believed to be non-constant. Segmentation means
that the sample is subdivided into a small number
of mutually exclusive and collectively exhaustive
sub-samples (e.g. samples in geographical space,
income, type of job, etc.). The method of market seg-
mentation is simple to implement. Since it is based on
standard discrete choice models, existing software
can be used for estimation and testing. Further, it is
amenable to hypothesis testing using, for example,
likelihood ratio tests. The method is also limited
and there are at least three problems with it: Firstly,
it is not always clear how to divide the sample, and
the classifications tend to be arbitrary. In a spatial
context, this leads to the problem of modifiable areal
units: the results of the model will be highly depen-
dent upon the definition of the zoning system (Open-
shaw and Taylor, 1979). Secondly, the estimation
scheme of separate models for each sub-sample
means that the procedure does not make efficient
use of total information content, since it effectively
isolates each sub-sample (i.e. each market segment
is taken out of context). As a secondary consequence
of this, the impact of other market segments on the
segment of interest is ignored. Finally, the segmenta-
tion scheme implicitly assumes that the sample can be
divided into discrete categories. Although such a clas-
sification may be reasonable in many cases, it
involves discontinuities that may not be reasonable
when the contextual dimension is continuous. When
areal zoning systems are used, individuals in different
zones are assumed to be systematically different
regardless of how short the distance between them
is, while individuals who are far apart, but within
the same zone will be identical from a spatial
perspective.

(2) Dummy variables. The variables in this case relate to
coefficients that are specific to a zone, socio-economic
group, class, or individual. Dummy variables can be
used to represent contextual effects, as for example
in a model that classifies observations into two cate-
gories, say ‘downtown’ and ‘suburbs’, or ‘high
income’, ‘medium income’ and ‘low income’. Dummy
variables can be tested by means of standard t-values,
and their use helps to overcome the problem of
non-linearities in relationships (see Ortúzar and
Willumsen, 2001, pp. 139–140). However, as with
the procedure of market segmentation, this form of
segmentation involves discontinuities at the interface
between classes or regions. The use of dummy vari-
ables loses further appeal when we note that the
classifications are often arbitrary (an exception to
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arbitrary classifications is the use of switching regres-
sions with implicitly determined regimes, e.g., in pop-
ulation density analysis; see Alperovich and Deutsch,
2002).

(3) The expansion method (Casetti, 1972). A more
sophisticated form of modeling contextual variations
is by means of the expansion method. A variant of
this has recently been proposed in the transportation
literature as a flexible way to use socio-economic
information to model individual tastes (Rizzi and
Ortúzar, 2002). The method operates by expanding
the coefficients of an initial model as functions of
expansion variables, to obtain a terminal model that
incorporates contextual effects. Although the expan-
sion method does not implicitly involve discontinu-
ities of the estimated parametric surface, it has been
criticized because it is limited to deterministic expan-
sions (Jones and Bullen, 1994). In addition, depend-
ing on the form of the expansion (i.e. the order of
the polynomial, such as linear, quadratic, cubic,
etc.), it might arguably fail to capture more complex
variation patterns (Fotheringham et al., 1998).
Higher order expansions may pose interpretability
problems, as the interactions become increasingly
complex.

(4) Multilevel models. This modeling approach has a rel-
atively long history in geographical analysis (Jones,
1991), and in other disciplines where it is referred to
variously as ‘‘hierarchical’’, ‘‘random-’’ or ‘‘varying-
coefficients’’ models (e.g. Lawson et al., 2003). More
recently, this modeling form has also attracted the
attention of transportation/land use modelers (e.g.
Bhat and Zhao, 2002). Multilevel models operate
on a principle similar to that of the expansion
method, but allow the introduction of random com-
ponents as part of the expansion. Operationally, indi-
viduals in the sample can be nested in one or more
higher levels according to districts, schools, age
groups or any other suitable classification. The use
of hierarchical levels and classifications is an attrac-
tive concept because heterogeneity in several dimen-
sions can be simultaneously defined and estimated.
Multi-level models, however, share some shortcom-
ings with the methods previously described. In addi-
tion to the difficulty of having to categorize the
observations prior to the analysis, an important con-
sequence of introducing a random element in the
expansion is that parametric variation becomes frag-
mented, giving rise to discontinuities in the bound-
aries between classes or regions. In addition, it
could be argued that models of this type impose a
hierarchical structure that may not be present in the
process under analysis.

The objective of this paper is to propose a model that
addresses some of the limitations of the approaches
described above. To do this, we build upon the method
of geographically weighted regression (GWR), a local form
of spatial analysis useful to study geographical relation-
ships (Brunsdon et al., 1996; Páez et al., 2002a). An impor-
tant characteristic of GWR is its ability to estimate
location-specific relationships that are tied to a focal (or
regression) point. Local coefficient estimates can be
obtained by displacing the focal point. This generates
smooth parametric surfaces useful to study spatial sta-
tionarity or lack thereof. In the past, GWR has been devel-
oped mainly within a linear regression framework (but see
the geographically weighted logistic regression developed
by Atkinson et al., 2003). In order to broaden the range
of applications of the method to situations commonly
encountered in land use and transportation analysis, we
extend some of these results to introduce continuous-space
contextual effects into a model for limited-dependent vari-
ables. In the following section, GWR is briefly described
and discussed.
3. Geographically weighted regression

Geographically weighted regression was proposed by
Fotheringham, Brunsdon and Charlton (Brunsdon et al.,
1996; Fotheringham et al., 1998) as a simple, but powerful
method to study the issue of complex spatial parametric
variation or spatial non-stationarity. The method, in
essence a locally weighted regression, operates by assign-
ing a weight to each and every observation i depending
on its distance from a specific geographical location o
termed the focal or regression point. The weighting system
is based on the concept of distance-decay, made opera-
tional by means of a kernel function that reduces (i.e.
down-weights) the influence of distant observations on
estimation for location o (which could be any point includ-
ing i), while implicitly emphasizing the influence of neigh-
boring observations.

A more recent proposal uses distance-based variance
functions to investigate non-stationarity (Páez et al.,
2002a,b). In this version of the method, the geographical
weights are applied to the variance of the error terms to
give a form of heterogeneity that depends on relative loca-
tion. To understand the operation mechanism of the
method, begin by considering the classical regression
model:

yi ¼
XK

k¼1

bkxik þ ei ð1Þ

where the constant term is obtained by defining xi1 = 1 for
all i. It is usually assumed that the error terms ei in (1) are
normally and independently distributed, with an expected
value of 0. In addition, it is assumed that the variance of
the error terms is constant:

E½e2
i � ¼ r2 for all i ð2Þ
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Relaxing the assumption of constant variance leads to a
broader class of models that reveals a number of interesting
modeling possibilities. The general form of a non-constant
variance model is defined by the following set of expres-
sions (see Davidian and Carroll, 1987):

E½e2
i � ¼ -ii ¼ r2gðc; ziÞ ð3Þ

E½eiej� ¼ 0 ð4Þ

In the above formulation the variance corresponding to
error term i is modeled as a function of a (p · 1) vector of
known variables zi associated with vector c (p · 1), and a
base variance parameter r2. To ensure regularity condi-
tions, it is assumed that xii > 0 for all i, and that xii is a
twice differentiable function of r2 and c. The alternative
model of constant variance is obtained by assuming that
there is a unique set of values c = c* for which the function
g(c, zi) = 1 for all i. This of course means that Eq. (3)
reduces to Eq. (2) to give the classical regression model.

Different functions have been proposed to model the
variance. For instance Davidian and Carroll (1987) con-
sider, among other forms, a model of the variance that is
quadratic in the explanatory variables (p = 2K):

gðc; ziÞ ¼ 1þ
Xk

p¼1

cpxip þ cpþkx2
ip ð5Þ

The above equation suggests a spatial model for the var-
iance that takes the form of a quadratic trend surface, if we
let the known vector zi (6 · 1) be the coordinates (cx, cy),
squared coordinates, and cx–cy interactions of location i:

gðc; ziÞ ¼ 1þ c1cxi þ c2cyi þ c3c2
xi þ c4cxicyi þ c5c2

yi ð6Þ

In this case p = 5 and the null hypothesis of variance
homogeneity is given by c = c* = 0. An alternative vari-
ance model takes the exponential form, a function that is
parsimonious and has the desirable property of being
strictly positive.

gðc; ziÞ ¼ expðz0icÞ ð7Þ
The above models with non-constant variance address

the problem of variable dispersion in the distribution of
the error terms, but do not address the question of para-
metric non-stationarity. There are a number of ways to
define a non-constant variance model that is at the same
time a model with variable coefficients (e.g. multi-level
models). A different approach that does not imply discon-
tinuities or within-class constant relationships is to adopt
an exponential function for the variance, as in (7), using
geographical distance from a given point as the explana-
tory variable. The following is an example of a distance-
based variance function:

-ii ¼ r2
o expðcod2

oiÞ ð8Þ

In this case, the variance is defined as a function of two
parameters, namely r2

o and co, and one explanatory vari-
able, that is, the distance between the focal point o and
observation i. The above specification complies with the
usual regularity conditions: clearly, the ith diagonal ele-
ment of the covariance matrix xoi > 0 as long as r2

o > 0
(the usual non-negativity condition of the variance), and
xoi is a twice differentiable function of r2

o and co.
A useful property of the above function is that it is not

translation invariant. This means that as the focal point
is displaced, the estimated values of the coefficients vary
as they attempt to approximate an underlying non-station-
ary parametric surface. As a consequence of this prop-
erty, GWR can be defined as a locally linear model in the
mean, with a location specific vector of coefficients bo as
follows:

yo ¼
XK

k¼1

bokxok þ eo ð9Þ

Again, defining xo1 = 1 at every point gives the inter-
cept of the equation. Note that now the coefficients of
the model are not spatial constants, but correspond to
focal point o. In addition, all coefficients and diagnostics
are assigned to this point, to give a self-contained model
that applies to this location alone. It is important to note
that a local model is completely defined by the 2 + K vec-
tor of parameters ho ¼ ½b0o; r2

o; co� in the same way that a
model with non-constant variance is complete. The only
difference, in fact, is that the origin of the explanatory var-
iable (i.e. distance) is relocated to conduct local estima-
tion. The underlying model of homogeneity is given by
co ¼ c�o ¼ 0, in which case the model reduces to the usual
constant variance situation and what might be termed the
global model since the variance does not depend on loca-
tion, and consequently neither do other parameters. By
allowing the possibility that the variance varies in a given
geographical direction we define a model of heteroscedas-
ticity that is simple and that has a clear spatial
interpretation.

The power of adopting a specific geographical location
for estimation is that it allows us to move from a global
to a local perspective of the problem. In this sense, an
important characteristic of GWR is that it is not limited
to estimation at the location of recorded observations
(i.e., location o needs not be one in the sample set), and
in general any number of models can be estimated
(o = 1, . . . , m), with m P 1 and no implied relationship
between m and the number of observations n. The method
can be seen as the experiment of observing the same dataset
from a number of different perspectives—meaning that we
enjoy the advantage of being able to study the parametric
‘landscape’ from different vantage points. In practice mod-
els can be estimated and tested on a location-specific basis,
for a single location of interest, or for m > 1 when non-
stationarity is of interest.
4. Heteroscedastic probit with geographical weights

Limited-dependent variable models, otherwise known as
discrete choice models within a utility-maximization frame-
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work, have a long history of development and applications
in transportation planning, in particular in the field of tra-
vel demand modeling (McFadden, 1974; Yai, 1989). These
models are characterized by the use of dependent variables
that assume discrete, rather than continuous values. In a
modal choice situation, for example, one and only one of
a number of alternative modes is used. Likewise, when
modeling locational choice, the decisions involved are dis-
crete in nature: either a location is taken or it is not (Anas,
1982). Seen from the locator’s perspective, only one loca-
tion may be chosen: the outcome of the decision is limited.
These two are examples of problems that interest transport
and land use modelers. For a long time it was assumed that
the use of locational variables (e.g. distance to the CBD)
was enough to explain the geography of the problem; it
is now realized that geography plays a more critical role
than previously thought. For example, it has been argued,
in the context of discrete choice models, that the process of
making a decision might be influenced by the behavior and
opinions of agents with whom there is contact (Case, 1992).
Adopters of a new technology, for example, influence oth-
ers in the ‘neighborhood’ with the result that some may be
encouraged to become adopters themselves. This intro-
duces the concept of neighborhood (locations that share
some affinity such as contiguity, which is geographical in
this case) and the necessity to consider neighborhood
effects in the model. Definition of the neighborhood pre-
sents an additional challenge, as a neighborhood will prob-
ably be, in effect, the manifestation of complex contextual
effects that traditional modeling approaches do not strive
to capture.

Consider for example the case of land use change (or
development). In addition to factors such as accessibility
and availability of land, which can be and have been ana-
lyzed using standard limited-dependent variable models
(Landis et al., 1995; McMillen, 1989), it is reasonable to
expect that land developments of one kind will tend to
encourage similar changes at adjacent locations. Landis
et al. describe three reasons why we would expect this:
reduced development costs (e.g. infrastructure and public
services), the possible existence of agglomeration econo-
mies, and land-use regulations. In addition to this, there
is a possibility that the explanatory variables will exert their
influence in different ways at different locations. For exam-
ple, accessibility to a large transportation facility may elicit
a different response depending on location. Locating too
close to the facility may result in undesirable effects such
as congestion, pollution and noise. On the other hand,
locating too far from the facility may reduce overall acces-
sibility to employment centers, recreational and other
activities. Availability of vacant land may encourage devel-
opment in certain areas (for example in the urban–rural
interface, as the cost of opportunity increases) but discour-
age change or development in other areas, where a surplus
of vacant land may be seen as a liability instead of an asset.
The interest then is to apply the concept of geographical
weights described before, in order to obtain a spatial lim-
ited-dependent variable model for the analysis of contex-
tual effects. Model development is described next.

Under the limited-dependent variable approach of the
probit model, it is assumed that there is an underlying
response variable defined in regression form by

y�i ¼ X ibþ ui ð10Þ

In the above expression Xi is a 1 · k vector of character-
istics or explanatory variables and b is a k · 1 vector of
coefficients. It is assumed that, in practice, the response
variable is unobservable (hence the sometimes used term
of latent variable models), and instead what is observed
is a dummy variable defined by

yi ¼
1 if y�i > 0

0 otherwise

�
ð11Þ

The dummy variable determines which of two possible
outcomes is observed. From the above, it follows that the
probability of observing outcome 1, when yi = 1, is

Prðyi ¼ 1Þ ¼ Prðy�i > 0Þ ¼ Pr ui > �
X ib

ri

� �

¼ 1� U �X ib

ri

� �
ð12Þ

whereas the probability of observing outcome 2 is

Prðyi ¼ 0Þ ¼ 1� Prðyi ¼ 1Þ ð13Þ

In the above expressions, U is a cumulative distribution
function for error term ui. Adoption of the logistic distribu-
tion leads to the logit model. The cumulative normal distri-
bution (with ri as a variance or scale parameter), on the
other hand, leads to the probit model with its more flexible
covariance structure. A common simplifying assumption
for the above model is that the variance is constant. When
this assumption is accepted, the value of ri can be, and usu-
ally is arbitrarily determined. The probabilities of observ-
ing either outcome do not change when the coefficients
are rescaled by a positive constant. It is thus usually
assumed that ri = r = 1 (Ben-Akiva and Lerman, 1985).
The assumption of constant variance, or homoscedasticity,
while the most common approach, can make estimation of
the coefficients inconsistent (McMillen, 1992). In addition,
it could mask potentially interesting variation across the
parametric landscape.

In order to introduce contextual effects, which in this
case are a consequence of heterogeneity, the variance
parameter is defined by adopting a distance-based variance
function such as discussed in the previous section. Thus,
instead of assuming a constant and arbitrary value for ri,
this parameter is given by

ri ¼ gðco; doiÞ ¼ expðcod2
oiÞ ð14Þ

where the parameters are defined as before.
The log-likelihood of the above model is given by the

following expression:
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ln L ¼
Xn

i¼1

yi ln U
X ib

expðcod2
oiÞ

 !" #

þ
Xn

i¼1

ð1� yiÞ ln 1� U
X ib

expðcod2
oiÞ

 !" #
ð15Þ

The model has a total of k + 1 locally linear parameters,
in vector form ho ¼ ½b0o; co�. Note that the variance takes a
value of 1 when doi = 0, that is, at the focal point. The var-
iance at other locations will be given relative to the vari-
ance at the focal point. To obtain estimates of these
parameters, the log-likelihood function is maximized with
respect to them. McMillen (1992) presents the following
procedure to estimate heteroscedastic probit models.

Define the following terms for the standard normal dis-
tribution and the cumulative normal distribution functions
evaluated at point i:

/i ¼ /
X ib

ri

� �
ð16Þ

Ui ¼ U
X ib

ri

� �
ð17Þ

Also, define a matrix R [n · (k + 1)] as follows:

ð18Þ

a diagonal matrix H (n · n):

H¼

1

½U1ð1�U1Þ�1=2
0

1

½U2ð1�U2Þ�1=2

. .
.

0
1

½Unð1�UnÞ�1=2

2
666666666664

3
777777777775

ð19Þ
and a vector e (n · 1) as follows:

e ¼

y1 � U1

y2 � U2

..

.

yn � Un

2
66664

3
77775 ð20Þ

The vector of first derivatives can then be expressed as

o

oho
ln L ¼ R0H0He ð21Þ

while the expected value of the second derivative matrix is

E
o

2 ln L
ohooh0o

� �
¼ �R0H0HR ð22Þ
Estimation follows an iterative process, with the change
in estimates between steps given by

hs
o � hs�1

o ¼ ðR0H0HRÞ�1
R0H0He ð23Þ

As noted by McMillen (1992) the estimator is equivalent
to a non-linear weighted least squares estimator, derived
from the regression of e on R with weights given by matrix
H. Initial values for the optimization procedure can be
obtained if a regular (i.e. homoscedastic) probit model is
estimated.
5. Example: Transportation infrastructure and land use

change

5.1. Study area and data

The example in this paper reanalyzes data collected and
analyzed by Landis et al. (1995) from California’s Bay
Area Rapid Transit (BART) system. One objective of the
analysis by Landis and colleagues was to assess the impact
of transit investment (i.e. transportation infrastructure) on
land uses, and in particular whether or not proximity to a
BART station encouraged new development or redevelop-
ment of existing areas. Several stations were studied, and a
regular grid was superimposed to produce square zones of
1 ha in which land uses where measured. A number of vari-
ables were examined to explore their effect on land use
change. These included a measure of proximity to a BART
station (which was not found to be a significant explana-
tory factor in any of the stations studied), and a measure
of intervening opportunities in the form of percentage of
land available for new development closer to the station
(also not significant). In addition to these variables, a mea-
sure of interaction or cohesiveness among locations was
introduced in the form of a ‘similarity index’, used to
describe the prevailing land use in the eight immediately
adjacent cells to each location. In most cases, Landis
et al. (1995) found that high similarity indices (i.e. similar
land use in the neighborhood) tended to discourage further
land use change. Similar findings were obtained in a reanal-
ysis of the data, in an example that applied spatial model-
ing techniques to explore the issue of the dynamics of
residential land use change (Páez and Suzuki, 2001).

In this section, we reanalyze the data from Union City
BART station using the probit model with geographical
weights introduced in the preceding section. This particular
station is an example of a location where the present pat-
tern of land uses was determined between 1965 and 1990,
concurrently with the development of BART. Unlike previ-
ous studies by Landis et al. (1995) and Páez and Suzuki
(2001), the objective here is not to incorporate spatial inter-
actions between locations (i.e., similarity or autocorrela-
tion), but to explore the issue of coefficient variability in
geographical space. In this sense, the analysis looks at a dif-
ferent form of spatial effects. The dependent variable in the
analysis that follows indicates land use change by use of
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two possible values: 1 if land use changed and 0 otherwise.
Two variables from the original analysis are used: distance
to station (station is at the center of the area), and percent-
age of undeveloped land use closer to the station. In total
there are 324 cells in the study region, covering an area
of 3.24 square kilometers around Union City BART Sta-
tion. Of the 324 cells in the sample, 61 changed to residen-
tial land use in the period between 1965 and 1990.

5.2. Results and discussion

The first step in this empirical section was to estimate a
regular binary probit model with constant variance, to
serve as a benchmark model to compare the results of the
local modeling exercise. The results of estimating such a
model appear in Table 1. The variables used are as
described in the preceding section. The table shows that,
apart from the constant, the coefficients of the model are
not significantly different from zero. These results confirm
previous findings by Landis et al. (1995), who used a binary
logit model and a different combination of variables, and
Páez and Suzuki (2001), who used a dynamic spatial logit
model. These studies suggest that proximity to transit
service did not contribute substantially to determine land
use change in this case.

As a second step, a set of local coefficients was estimated
using the proposed probit model with distance-based vari-
ance functions. An attempt was made to obtain local coef-
ficient estimates at each of the 324 cells in the study area.
Of these, the iterative process used to estimate the coeffi-
cients did not converge in a number of locations (29 cells,
or about 9% of the points in the sample). Upon closer
examination, it was found that the points where estimation
failed combined values of the explanatory variables and
parameters in the variance that lead to undefined values
of the log-likelihood function. More generally, when there
is local zero variance in the response variable, or when the
variance is extremely high, the model cannot be estimated
for the location [see Eq. (15)]. A similar problem could
be expected in cases when there is strong collinearity
among some or all explanatory variables, which would
require a reassessment of their selection. In the present case
it is possible to represent the landscape of general variation
in the study area by interpolating the coefficient values at
ill-conditioned locations using the values at surrounding
locations. Interpolation is commonly used when preparing
maps of local coefficient variability with linear regression
Table 1
Logit model

Variable Coefficient Estimate Standard
deviation

Constant b1 �3.011 0.936
Distance to station b2 3.287 2.64
% of vacant land closer to station b3 �1.002 2.189

Log-likelihood = �121.98.
(see for example Fotheringham et al., 2002), and appears
to be justified in the case of the model here by the fact that
the spatial distribution of the coefficient estimates supports
the idea of spatially continuous variation before interpola-
tion. As in the case of conventional GWR models, it is
important to note that the objective of interpolation is
for presentation only, and that estimation results are
strictly valid only for those locations where coefficients
and diagnostics are actually obtained. The results appear
in Figs. 1–3.

Regarding the spatial variation of the coefficients, the
results for the constant suggest that land use change is less
likely to take place in the immediate surroundings of the
station; a clear west–east trend suggest that land use
change is a more likely outcome to the east of the station.
This east–west trend is observed also in the variation of
coefficients b2 and b3. An interesting exercise is to calculate
Fig. 2. Spatial distribution of coefficient b2 (distance to station).



Fig. 3. Spatial distribution of coefficient b3 (% of vacant land closer to
station).
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the t-scores of the local coefficients. The constant, which
was significant in the global model, was also significant
for most of the region in the local modeling approach. Still,
it was found that for at least 25 locations in the study area,
this coefficient was not significant. On the other hand, the
coefficient associated with distance from the station, which
was found to be not significant in the global model, turned
out to be significant for at least 40 cells in the area sur-
rounding the station in the local modeling approach. This
result suggests that while the presence of the station may
not have had an effect on land use change at longer dis-
tances, it may have decreased the likelihood of change to
residential uses at short distances (i.e. in areas near the
station).

The goodness of fit of the local estimations was evalu-
ated by means of the value of the log-likelihood function.
It was found that the local log-likelihood ranges between
�121.97 and �100.48. Furthermore, the likelihood ratio
tests (v2 distributed with 1 degree of freedom, reflecting
one constraint being imposed on the restricted model)
show that the local model produces a higher likelihood in
as many as 215 locations when compared to the model with
constant variance and global coefficients. Although the test
was not adjusted for multiple comparisons (this would
require an adjustment to the nominal level of significance
based on the Bonferroni or a similar approach; see Páez
et al., 2002a), it is still clear that the local modeling
approach can improve the performance of the model.

5.3. Land use change: relation to other analytical

approaches

The lattice used for the analysis of land use change in the
example above is reminiscent of the lattices used in cellular
automata (CA) simulations. Cellular automata are models
in which each cell in a (usually regular) lattice may be in
one of a series of defined states (defined by the attributes
or characteristics of the cell, i.e., alive or dead, developed
or undeveloped, etc.) Moreover, the state of a cell may
change based on the repetitive application of simple transi-
tion rules that depend on the situation in the neighbor-
hood, or in other words, on the status of neighboring/
contiguous/nearby cells (Batty, 1997). As noted by Batty
(1997), transition rules in CA can be interpreted as genera-
tors of urban growth or decline—in essence land use
change. CA models have attracted substantial attention
as a tool to model self-organizing cities, urban form, and
complex systems (for recent work see Caruso et al., 2005;
Wu and Webster, 2000). Application of the probit model
with geographical weights in the example above shares with
CA the following characteristics (see Torrens and O’Sulli-
van, 2001): the previously noted spatial lattice, the set of
allowed states for the cells (i.e. residential and non-residen-
tial in the example), and the spatial effect determined by the
neighborhood. The probit model itself could be seen as the
embodiment of a probabilistic transition rule. On the other
hand, the probit model, being a cross-sectional model,
lacks the dynamic aspects of CA. Despite this difference,
the model in this paper, as well as the dynamic spatial logit
model developed by Dubin (1995), and used by Páez and
Suzuki (2001) to study land use change, could be seen as
a complement to CA models. While the dynamic spatial
logit model explicitly incorporates the status of cells in
the neighborhood in the transition probabilities, the model
and example in this paper suggest that transition rules may
not be all that simple, and that they could, in fact, vary by
location. Indeed, statistical and econometric models such
as those mentioned here could be used as tools to investi-
gate transition rules, and to validate the process of change
in CA. Process validation is an area currently underdeve-
loped in CA research, with much of existing work concen-
trating on validation of form by means of pattern
recognition approaches (Torrens and O’Sullivan, 2001).

6. Conclusions

Traditional statistical methods commonly used to study
land use and transportation systems tend to ignore or
underestimate the importance of geography. This is now
beginning to change, as more research is devoted to the
study of spatial effects in models for land use and transpor-
tation analysis. This paper aims at contributing to this rel-
atively recent strand in the literature. The objective of the
paper has been to propose a simple binary probit model
with geographical weights, useful to explore the issue of
spatial parametric non-stationarity, that is, the variation
of coefficients in geographical space. The method follows
on the heels of recent developments in the geographical
analysis literature, in particular heteroscedastic probit
models (McMillen, 1992), and the method of GWR
(Brunsdon et al., 1996; Páez et al., 2002a). The model pro-
posed was applied to a case study that assesses the impacts
of transportation infrastructure on land use change. The
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specification of the model in the example was very simple,
with only two variables, but sufficient to demonstrate the
relevance of exploring spatially varying relationships.
Two findings are worth noting. The first relates the degree
to which relationships vary in the study area. The level of
variation suggests that non-stationarity should be seriously
considered, as it may mask potentially large differences in
the operation of the process. Coefficients that were not sig-
nificant in the global model, for example, were significant
at some locations when local models where estimated.
The second finding relates to the statistical fit of the local
models, which was found, by means of a likelihood ratio
test, to be higher than that of the global (homoscedastic)
model.

An important issue detected in the application of the
model, on the other hand, was its inability to converge at
certain locations. Detailed exploration of these locations
showed that certain combinations of explanatory variable
values and coefficients estimates (for example a negative
value of co with a large distance value in the variance com-
ponent of the specification), can cause problems in estima-
tion. In cases like these, very small probability values lead
to indeterminate values of the log-likelihood function.
Although a way around this issue is to interpolate using
estimated values, this remains a feature of the model that
requires attention in future research. In relation to this,
the issue of collinearity and/or local zero variance should
be further explored. Possible avenues of research include
the adoption of semi-parametric methods, in which the
geographical weight parameter is exogenous (and
bounded). In addition, it would be interesting to combine
the proposed model for heterogeneity in continuous space
with some recent work that incorporates spatial autocorre-
lation in discrete choice models (e.g. Bhat and Guo, 2004;
Miyamoto et al., 2004; Mohammadian and Kanaroglou,
2003).
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