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A B S T R A C T

Though urbanization is often linked to development gains, some regions in Asia, Latin America, and Sub-Saharan
Africa have grown in urban population, while remaining bereft of basic services like reliable electricity. Daytime
optical remote sensing has tracked urban land cover change for decades, but there have been few studies that
have monitored whether infrastructure is keeping pace with demographic and land transitions. Here, we explore
how fusing multi-temporal population and land data with nighttime lights data, derived from the Suomi-NPP
VIIRS Day Night Band, can add to our understanding of urban infrastructural transitions. We classify urban
changes in India and the US, using these three measures in tandem to create a typology of urban development
processes. When compared against survey data, our results indicate the classification can track rural elec-
trification and identify growing informal settlements with inadequate infrastructure, and is therefore useful for
monitoring progress towards two Sustainable Development Goals: Goal 7.1 (ensure universal access to afford-
able, reliable and modern energy services) and Goal 11.1 (ensure access for all to adequate, safe and affordable
housing and basic services and upgrade slums). The classification results also illustrate the diversity of urban
development processes, and how uni-dimensional measures of urbanization, greatly under-represent urban
change, particularly in high-income countries.

1. Introduction

Urbanization, at its core, is motivated by the search for a better life.
For 10,000 years, humans have moved to cities, in part, to access social
and economic opportunities and to escape rural poverty. This motiva-
tion continues to be a main driver of urbanization in the 21st century.
In India, 300 million new urban residents are projected from 2016 to
2050 (UN-HABITAT, 2016), approximately the current population of
the United States. Many of these new residents will migrate to urban
areas in hopes of capitalizing on economic growth to improve their
standard of living (Lee, 1966; Harris and Todaro, 1970; Fay and Opal,
1999).

The urban areas these migrants will arrive in vary considerably,
both in their current capacity to provide improved living standards and
their development trajectories. In some urban areas, urban population
growth has been accompanied by economic growth, business, invest-
ments, increased revenues, and subsequent advancements in infra-
structure services and human well-being. In other urban areas, urban

population growth has increased pressure on infrastructure that is al-
ready insufficient, under-funded, and under-developed (Brückner,
2012; Fox, 2012), leaving communities without the basic services ne-
cessary to live healthy lives. Cities in low and low-middle income
countries have experienced the expansion of slums, widening inequal-
ities, and lags in development as a by-product of their growing popu-
lations (Montgomery et al., 2013; Ravallion et al., 2007). Currently,
24% of India's urban population lives in informal settlements, without
access to basic infrastructure services, like electricity (UN-HABITAT,
2017).

The divergent development trajectories of urban settlements have
great importance to the quality of life of their residents (Amis and
Kumar, 2000), human heath (Satterthwaite, 2009; Boadi et al., 2005),
and sustained economic growth (Turok and McGranahan, 2013). Un-
derstanding these trajectories is a key focus of multiple UN Sustainable
Development goals (SDGs) and targets. In particular, targets 7.1 and
11.1 center on addressing the infrastructural challenges of urbaniza-
tion—aiming to reduce the population living in areas with inadequate
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infrastructural investment. Target 7.1 aims to ensure universal access to
electricity, focusing mostly on electrification, while target 11.1 focuses
on bolstering infrastructure inside urban areas, and upgrading slums.
Both targets explicitly devote attention to energy services as one of the
primary infrastructural needs of the inhabitants of developing settle-
ments.

These targets require new ways of conceptualizing and monitoring
urbanization, defining it not only as a demographic transition, but also
as an infrastructural transition, a departure from how urbanization is
predominantly characterized. Currently, urbanization is most often ei-
ther monitored strictly as the percentage of the population residing in
urban areas (e.g. by UN population projections (World urbanization,
2014)), or as land change process by remote sensing. Though popula-
tion growth and urban land expansion are important for understanding
a myriad of environmental and social processes, neither directly link to
quality of life improvements for urban residents. In contrast, growth in
access to infrastructure services is central to human well-being—im-
proving health, education, and income for the residents who benefit
(Ramaswami et al., 2016; Parikh et al., 2015; Kanagawa and Nakata,
2008), and is a key focus of the SDGs. During this era of unprecedented
urbanization, science and policy communities like those involved in
UN-SDG bench-marking, require information about how well infra-
structure advancements and access to basic services are paralleling
urban population and land transitions. This information is critical for
tracking development progress and guiding future investment.

Satellite images of the earth at night, which capture nighttime
lighting (NTL) in urban areas, offer an opportunity to help close this
information gap. By measuring increases in NTL over time, improve-
ments in the availability of electricity to communities can be mon-
itored. Use of nighttime data to study urban change is not new. NTL has
been used extensively as a composite index of urbanization, where
growth in NTL tracks some ambiguous combination of settlement ex-
pansion or densification, population growth, and infrastructural growth
(Sutton et al., 2001; Sutton, 2003; Zhou et al., 2014; Ma et al., 2015;
Zhang and Seto, 2011). Similarly, NTL have been applied in smaller
urban settlements with the aim of tracking electrification, though dis-
tinguishing between electrification initiatives and settlement growth or
redevelopment has required local knowledge (Min et al., 2013; Dugoua
et al., 2018; Min and Gaba, 2014). This study is a departure from past
work as it aims to disentangle infrastructure trends, from land and
population trends, considering each of the three as independent tran-
sitions, that are all included under the umbrella term “urbanization”.
Each dimension adds different information about “how” an area is
being transformed, and taken together they can resolve a wider variety
of urban development trajectories.

The goal of this re-conceptualization of urbanization is to identify
areas with new investment, or insufficiency, in provision of basic ser-
vices to residents. We aim to differentiate between urbanization where
infrastructural development has kept pace with land and population
changes versus where has it has lagged behind. This paper explores the
following questions: How ubiquitous is the predominant conception of
urbanization—where infrastructure development occurs simulta-
neously with land change and population growth? Do satellite-derived
infrastructure trends diverge from population, and land trends? If so,
where and under what circumstances? How well do these divergences
identify places with infrastructure deficits (e.g. slum development) as
well as infrastructure initiatives (i.e. electrification)? By answering
these questions, our methodology and results create relevant informa-
tion for tracking the two aforementioned UN SDGs, and more broadly,
for understanding the developmental trajectories of urbanization.

2. Prior uses of remote sensing to understand urban areas and
urbanization

Remote sensing has played a central role in monitoring urbaniza-
tion. Because Earth observation data is objectively measured, it

provides a means for consistent characterization of urban land and land
change. There is a vast body of work that uses satellite data to map,
measure, and quantify the amount of land taken up by human settle-
ments (Mertes et al., 2015; Angel et al., 2011), contributing to our
understanding of rates, magnitudes, and trajectories urbanization in
different regions. Extensions of this research include the characteriza-
tion of spatio-temporal patterns of urban land change (Herold et al.,
2003; Deng et al., 2009; Song et al., 2016), which shape hydrology
dynamics (Carlson and Arthur, 2000), climate (Kalnay and Cai, 2003),
ecological studies (Grimm et al., 2008), biodiversity (Seto et al., 2012),
and resource use (Foley et al., 2005).

Urban remote sensing has also focused on understanding the com-
position of urban land within urban areas. The classic V-I-S model, for
example, uses the spectral reflectance of urban land surfaces to differ-
entiate between vegetation, impervious surfaces, and bare soil, char-
acterizing the physical geography within and between cities (Ridd,
1995; Wu and Murray, 2003). Recently, very high resolution (VHR) and
SAR satellite data have been used as inputs into texture analyses to
differentiate between neighborhood structures, and specifically to
identify roof patterns associated with slums and informal housing
(Duque et al., 2015; Wurm et al., 2017). This work has played an im-
portant role in illuminating the land morphology of urban areas, and in
the case of slum-mapping, its associated social dimensions.

All of these previous studies monitor urban land and its built com-
ponents, not the infrastructure services, such as electricity, used by
urban residents. Contributions of remote sensing to understanding en-
ergy infrastructure are fewer, and primarily rely on NTL data.

Two satellite systems have collected NTL data. From 1970 until
2011, night imagery was collected solely by the Defense Meteorological
Satellite Program (DMSP) using the Operational Linescan System (OLS).
DMSP/OLS data has three well-documented disadvantages when it
comes to studying urban areas and urbanization:

1. The spatial resolution of the DMSP/OLS is 2.7 km, which is often too
coarse to characterize inter-urban variability.order

2. The radiometric resolution of DMSP/OLS is constrained to 64 values
(6 bits), resulting in saturated pixel values in urban centers.order

3. Because of the lack of on-board calibration, radiometric quantities
are not consistent across space or across time, rendering a time-
series analysis difficult.order

Despite these short-comings, DMSP/OLS NTL data has been used
successfully to track urbanization dynamics in a similar manner to
previous daytime studies—by identifying the quantity of land sub-
sumed in regional urban growth (Liu et al., 2012; Zhou et al., 2015), as
well as the timing, rate and spatial configuration of growth (Zhang and
Seto, 2011, 2013; Gao et al., 2015; Ma et al., 2015; Pandey et al., 2013).
When not a direct proxy for land area, NTL trends are treated as a
composite measure in these studies, representing an aggregated, ill-
defined mix of population, land, and economic change. To our knowl-
edge, there are only a handful of nighttime remote sensing studies that
have explicitly isolated changes in electricity access (Doll and Pachauri,
2010; Chand et al., 2009; Ramdani and Setiani, 2017), by considering
NTL alongside population trends. However, because of DMSP/OLS's
resolution and saturation effect, within-urban change is not a focus of
these studies.

In 2011, the Visible Infrared Radiometer Suite Day Night Band
(VIIRS-DNB), a new nightlights sensor, was launched into orbit on-
board the satellite Suomi National Polar-orbiting Partnership Satellite
(Suomi-NPP). VIIRS-DNB offers significant improvements to all three of
the limitations that hindered the capability of DMSP/OLS in urban re-
search:

1. VIIRS-DNB data has a 750m spatial resolution, so each pixel is 13
times smaller in area than DMSP-OLS.order

2. VIIRS-DNB also has a radiometric resolution of more than 65,000
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values (16 bits), allowing it to detect variations in night light within
the brightest urban centers, as well as amongst dark rural set-
tlements.order

3. VIIRS has on-board calibration, capturing sensor data records that
enable consistent measurement of radiances over time (Hillger et al.,
2013).order

Along with these innovations in the sensor design, a multi-level
processing algorithm that corrects for atmospheric scattering, fires,
snow-cover reflectance, vegetation-occlusion, terrain-effects, and stray
light has been recently developed, called Black Marble (Román et al.,
2018). In the Black Marble algorithm, the lunar contribution to the
VIIRS signal has also been removed, based on previous techniques for
estimating the surface upward radiance from artificial nighttime light
(NTL) sources (Cao et al., 2013; Walther et al., 2013; Johnson et al.,
2013). The algorithm gap-fills cloud-covered pixels, and provides rig-
orous quality assurance and uncertainty information (Román et al.,
2018). Compared to DMSP/OLS, the VIIRS-DNB archive is data-rich,
since it is captured on a daily basis, and with Black Marble's corrections,
all of the overpass dates can be used, instead of just the moon-free
nights.

This study leverages the corrected Black Marble NTL as an in-
dependent estimator of energy infrastructure—a complement to urban
population and land change. Our study focuses on two regions at dif-
ferent stages of urbanization: India, where rural to urban migration is
rapidly underway, and the US, where urbanization is mature. India and
the US are also good case studies because of the development disparities
within and between the two countries (Human development i, 2018).
The analysis includes all urban areas in India and the US, representing
the entire continuum of tiny agricultural settlements to multi-million
person metropolises.

3. Methods

Urbanization classes in the two countries are defined through a
three-step methodology. First, we measure population, land, and in-
frastructure trends from 2012-2017. Our chosen time period of analysis
is limited to the time period in which VIIRS NTL data is available.. After
measuring the trends, we use an unsupervised quantile clustering
technique (Goswami and Chakrabarti, 2012) to assign geographical
areas with similar combinations of population growth, land growth,
and NTL growth to the same class. Finally, we use high-resolution
Google Imagery to interpret the range of change processes and devel-
opmental trajectories captured in each class.

3.1. Measuring land, and infrastructure trends

3.1.1. Land cover trends
Global earth observation derived datasets have mapped the land

associated with settlements for decades, but recently two new products
have been made at a 10-fold increase in spatial resolution – Global
Urban Footprint (GUF) (Esch et al., 2013), which relies on radar data
from Tandem-X, and Global Human Settlement Layer (GHSL) (Pesaresi
et al., 2013), which relies on optical data from Landsat. Since these
datasets are new, there are few validation studies to assess their ability
to capture settlements along the urban to rural continuum. Preliminary
comparative assessments have found that these high-resolution settle-
ment maps are more complete, precise, and accurate than their lower
resolution counterparts, particularly for peri-urban and rural settle-
ments (Klotz et al., 2016; Chowdhury et al., 2018), though some vali-
dation studies have highlighted omission errors in very sparse rural
areas (Uhl et al., 2018; Mück et al., 2017).

To estimate the change in land cover, we use the Global Human
Settlement Layer Degree of Built-up Area grid (GHSL Beta) (Pesaresi
et al., 2016), because it is the only high resolution settlement map with
historical layers available across multiple years. In this dataset, 38m

binary land cover maps derived from Landsat that indicate the presence
or absence of built up structures have been aggregated to a resolution of
300m. During the aggregation, the estimated percent of built-up cov-
erage (from the enclosed 38m pixels) is assigned to each 300m pixel as
a raster value on a scale from 0-255, with 0 representing no built-up
area and 255 representing total coverage (Pesaresi et al., 2013, 2016).
We reprojected and resampled the GHSL data to 1 km so that it would
match our other datasets, by averaging all pixels within the 1 km grid
cells. GHSL data from 2000 and 2014 were used to evaluate the trend in
built-up area change, and interpolated to match the 2012 to 2017
analysis dates.

3.1.2. Population trends
Two different datasets were used to track population change in the

US and India. For India, we used the India v.2 dataset from WorldPop, a
high resolution (100m) open access population density raster, based on
level 3 administration population estimates in the Indian census
(Stevens et al., 2015), the most disaggregated level available publicly.
WorldPop downscales population data using a random forest model
based on 30 different variables, including both nighttime lights and
land cover (Stevens et al., 2015), introducing some amount of en-
dogeneity. The covariate importance of VIIRS-DNB and GHSL to the
downscaling model, measured as a mean square error (%IncMSE), was
approximately 35% and 22% respectively. This means that in rural
areas in India, where level 3 census data is coarse, population dis-
tributions at the pixel level may be less reliable, reflecting the dis-
tribution of these covariates more than the actual population distribu-
tion. However, WorldPop does not use time series of these covariates as
inputs. That is, for both 2010 and 2015 population estimates, a 2010
VIIRS-DNB composite and 2010 GHSL layer is used for spatial dis-
aggregation. As a result population changes are independent of infra-
structure and land changes, though they may be spatially misaligned.

Population estimates were provided by WorldPop for 2010, 2015,
and 2020, with national totals adjusted to match UN population divi-
sion estimates. We resampled the population rasters to 1 km resolution,
to match the VIIRS-DNB imagery by computing the average of all non-
“no data” contributing pixels. Linear trends of change between each of
the three years (2010, 2015, 2020) were calculated, and 2012 and 2017
population estimates were created from these linear trends.

For the US, we used block level counts of population for 2010
(United States Census Bureau, 2010) and block group-level estimates of
total population for 2014 from the American Community Survey, Table
B01003 (United States Census Bure, 2014), to create population density
rasters. All of the rasters were first created at 100m resolution, with the
population density in each block and block group distributed equally
over the administrative unit area. The rasters were then resampled to
1 km resolution using average resampling. As with India, the linear
trend of change between 2010 and 2014 was calculated for each pixel,
and population estimates for 2012 and 2017 were surmised from this
linear model.

3.1.3. Infrastructure trends
To measure trends in electricity infrastructure development, we use

daily nighttime top of atmosphere radiances over India and the con-
tinental United States from NASA's Suomi-NPP VIIRS-DNB (VNP46A1),
archived at NASA's LAADS DAAC data center (https://ladsweb.modaps.
eosdis.nasa.gov/). These data are then corrected for clouds, atmo-
spheric, terrain, vegetation, snow, lunar, and stray light effects, using
the Black Marble algorithm, described in detail in the algorithm theo-
retical basis document (ATBD) (Román et al., 2018). The corrected NTL
data spans the time period from January 19, 2012 to September 30,
2017 for the continental US (2076 images) and from January 19, 2012
to September 13, 2017 for India (2057 images). The daily NTL data
time-series for each pixel were smoothed using a 28 day rolling average
to remove higher order noise, and spatially averaged on a 3x3 pixel
moving window to address issues related to actual pixel coverage
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within the VIIRS-DNB grid.
We produce a per-pixel time series trend line over the daily data,

using a weighted least-squares linear regression model. Since each
overpass of VIIRS does not provide an equally clear look at the earth,
weighted least-squares linear regression is used because it allows each
data point to have a different amount of influence over the regression
model, depending on the data quality. Pixels with quality flag less than
2 (high quality and good-quality retrievals) are weighed at 100%, while
quality flag 2 (poor quality retrievals) and quality flag 255 (no re-
trievals) are weighted at 20% and 0% respectively. We chose to weigh
the poor quality retrievals at 20%, in order to minimize their influence
on the regression model. Poor quality retrievals cannot be excluded
altogether since some pixels have consecutive weeks without a good
quality view (e.g. in the case of monsoon season in India). In these
cases, the poor quality retrievals are still a better alternative than no
value for these dates.

As a sensitivity check, STL decomposition was also performed on the
time-series to remove any potential seasonal effects in the nightlights
signal (Román and Stokes, 2015). We compared the STL decomposition
trend slopes to the weighted least-squares linear regression trend
slopes, but found that there was little difference in the results. There-
fore, the linear regression was chosen because of its simplicity.

3.2. Quantile classification

To perform the classification, we first mask all of the areas in the US
and India without built-up human settlements using a threshold
GHSL<2. Since the GHSL degree of built-up coverage grid is a measure
of how much of the pixel is covered by buildings, the threshold excludes
areas where buildings make up less than 1% of the pixel coverage. This
thresholding removes areas like farmland, wildland, and bare land.
Pixels with more than 1% of their area covered by buildings are con-
sidered to be “settlement” pixels, inclusive of a broad rural village to
dense metropolis gradient (Balk et al., 2019).

Next, we perform a classification on all the “settlement” pixels to
cluster areas undergoing similar urbanization changes. One of the
challenges of traditional unsupervised classifications in remote sensing
is associating the resulting classes to their meaning. In order to bypass
this use, we choose a quantile classification (Goswami and Chakrabarti,
2012), where the meaning of each class is defined a priori, since it is
tied to the relative magnitude of each input variable. To perform the
classification, we first take the absolute value of each trend slope for
population, land cover, and NTL change, and standardize and normalize
the trend slopes of each variable. The normalized trend slopes of each
variable are then changed into quantiles, and divided into three groups
(to represent low, medium, and high change). Finally, pixels with with
the same combination of population, land, and infrastructure change
terciles are clustered together. For example, a pixel in the lowest tercile
of population change, but the highest of NTL and land cover change
would be in a different class than a pixel with the highest tercile of all
three variables.

This classification yields 27 classes, since each variable has a high
tercile, a medium tercile, and a low change tercile. Since the focus of
this study is urbanization, we further filter the classification results to
only include classes of “high” change for at least one variable–high
population, infrastructure, or land change–during the time period of
our study. This excludes pixels that are static or undergoing little
change at all. Seven classes emerge—three with “high” change for only
one variable, three with “high” change for two variables, and one with
“high” change simultaneously for population, land cover, and NTL.

3.3. Ternary plot

We plot each of the pixels included in the classification on a ternary
diagram to show their distribution amongst the seven urbanization
classes. To find their position on the plot, we re-standardize the quantile

combinations of population, land, and NTL change such that the sum
across the three variables is equal to 100%. For instance, a pixel with an
equally high quantile of change for all three variables would occupy the
center of the plot (33% infrastructure change, 33% land change, and
33% population change). One with only population growth would oc-
cupy the lower left corner.

3.4. Processing chain

The entire processing chain, including the resampling, spatial fil-
tering, time-series smoothing, linear regressions, and quantile classifi-
cation was performed using a combination of open source software li-
braries, including GDAL/OGR (Development Team), Open Foris
Geospatial Toolkit (Department, 2013), PKtools (Kempeneers, 2008),
and Grass GIS (evelopment Team and G, 2012), and was run using Bash
scripting on the Yale Omega Linux Cluster. The graphics were created
with R (R Development Core Team, 2012) using the ggplot2 (Wickham,
2016) and ggtern packages (Hamiltonggtern, 2018).

4. Results

4.1. Typology of urbanization

To interpret the resulting classes, two-date time series Google earth
images of a sample of 10 pixels (5 sample pixels from India and 5 from
the US) within each of the seven urbanization classes are collected,
totaling 140 images. The images are used to assess the assortment and
most prevalent change processes represented by each class.

A typology of urbanization is created based on classification, that
identifies seven distinct classes of urbanization (Fig. 1). They are de-
scribed here, starting with the predominant conceptualization of ur-
banization, where simultaneously urban population increases, buildings
are constructed on previously bare land, and electric infrastructure and
other services are provided and propagated. We then describe de-
partures from this type of simultaneous transition that were identified
by the classification results. These include “independent” transitions,

Fig. 1. Seven urbanization classes and examples of urban changes within each:
(1) The center white triangle represents the common conceptualization of ur-
banization, concurrent change, where population, land cover, and infra-
structure are simultaneously changing.The three corners of the ternary diagram
represent independent transitions: (2) (de)-Electrification, (3) (de)-
Densification, and (4) Land cultivation. Skewed transitions are represented by
the three hexagons: (5) Redevelopment, (6) Non-residential development and
(7) Dark growth.
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where only one dimension (population, land cover, or electricity in-
frastructure) is changing, and “skewed” transitions, where only one
dimension is not changing:

1. Concurrent change occurs when population, land, and electric
infrastructure increase or decrease simultaneously, indicative of a
concurrent demographic, structural, and developmental transition.
Concurrent change is the type of development that is often imagined in
reference to the term “urbanization”. This assumption is the basis for
the use of NTL as a correlate of either population or land cover growth.

Independent transitions
2. (de)-Electrification occurs in regions that have stable land cover

and population, but are under-going high electric infrastructure growth
(or decline). The electrification class is directly related to SDG indicator
7.1.1, which monitors the proportion of population with access to
electricity. From the samples collected, electrification occurred most
commonly in rural and peri-urban areas of India, particularly in those
targeted by government energy access initiatives and transportation
corridor lighting development.

In contrast, the classification identified de-electrification within the
center of urban areas in both the US and India, associated with de-
creases in NTL. This decrease in lighting was likely caused by LED
streetlight installation, since the VIIRS-DNB sensor has no sensitivity
below 400 nm, where LED lights peak. Validation of this hypothesis at a
pixel level was not possible due to a lack of spatially and temporally-
explicit urban lighting plans. However, national level statistics on LED
proliferation are compelling. From 2012 to 2014, LED streetlights
quadrupled in the US, growing from 3% to 13% of all roadway lighting
(Yamada and Chwastyk, 2015). Similarly in India, the LED lighting
market has risen at an annual growth rate of 40% over the past six years
(Bonafide Research and India, 2017). In Indian cities, lamps in 3.5
million streetlights have been replaced with LEDs (Energy Efficiency
Service, 2017).

3. (de)-Densification occurs in areas where population is growing (or
decreasing) rapidly, while the land and infrastructure services are
stable. This class commonly occurred in areas where the built en-
vironment was growing in the vertical dimension, without accom-
panied changes in the street grid or land uses. Densification may also
occur without vertical growth, by increasing the number of residents
per dwelling or building more space-efficient units.

4. Land Cultivation occurs when land cover is changing in isolation.
Many of the areas labeled as land cultivation pixels were sites of inter-
spersed seasonal agriculture within urban areas, mining, or other ex-
cavation industries. Sites of prospective development, where land
clearing, or even the beginning states of construction, had occurred
were also identified by this class.

Skewed transitions
5. Redevelopment includes regions where electricity infrastructure

and population are simultaneously increasing or decreasing, but land is
stable. Redevelopment with population and electric infrastructure
growth, can be indicative of aesthetic upgrading and revitalization ef-
forts. Redevelopment with population and electric infrastructure decline
can indicate property abandonment and urban decay. Once built, urban
buildings do not usually disappear, though they may be remodeled or
reconfigured for other uses. As a result, population and light levels can
decline, but land cover remains constant. The redevelopment class was
most common inside the core of larger cities in the US and India.

6. Non-residential Development occurs when built-up land and elec-
tricity infrastructure are growing, but population numbers are constant
or lag behind. Sampled pixels in this class were instances of urban land
expansion in peri-urban areas, commercial or industrial development,
or public project construction. For example, non-residential development
captured the pattern of growth that characterized American “strip
malls” and transportation corridor development, since these areas are
often devoid of residents.

7. Dark growth is observed when population and land changes occur
in tandem, without growth in electricity infrastructure services. In

Fig. 2. Sample pixel sites of urbanization classes. Ternary diagrams in the top
left corner indicate the type of urbanization in each site (Fig. 1): 1. Balaji En-
clave residential apartment development in Noida, Uttar Pradesh (left) 2012,
(right) 2017; 2. Road Electrification Project in Sethji Ki Kundal district of
Udaipur. (left) 2013 without streetlights, (right) 2017 with streetlights; 3.
Vertical Growth of apartments and redevelopment in Washington DC, (left)
2010 (right) 2017; 4. Land cover change from construction preparation in
Hyderabad, India, (left) 2012, (right) 2017. 5. Land Abandonment in Bright-
moor, Detroit, Michigan, where population decreased by 36% between 2000
and 2010. (left) 2010, (right) 2017; 6. Construction of new parking and public
recreation infrastructure in Oak Park, California (left) 2012 (right) 2017; 7.
Expansion and intensification of Navagaon informal settlement in Mumbai,
India (left) 2006, (right) 2017.
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India, this class was common in smaller towns, in regions where energy
is less available. The class also identified growth in informal settlements
where public lighting infrastructure was absent. In some areas of India,
and most commonly in the US, dark growth occurred in suburban re-
sidential neighborhood development, where streetlights either were not
installed or already existed before the construction of new neighbor-
hoods. Dark growth relates to the measurement of SDG indicator 11.1.1,
the proportion of urban population living in slums, informal settlements
or inadequate housing. As the converse of electrification, dark growth
does not directly measure the UN definition of a slum–areas “lacking
one or more of the following conditions: access to improved water,
access to improved sanitation, sufficient living area, and durability of
housing.” However, electricity is a basic service, and if electricity in-
frastructure development is not keeping pace with population and
settlement growth, investment in other basic services that are part of
the slum definition (e.g. water, sanitation, and durable housing) may
also be lacking.

Sample pixels from each class in the typology highlight the wide
variety of urbanization and de-urbanization processes occurring in
India and the US (Fig. 2). Electrification is observed in smaller villages in
the north of India — e.g. Jharkhand, Uttar Pradesh, Bihar, Madhya
Pradesh, and Haryana — and along newly developed primary and
secondary transportation corridors. Dark growth, the opposite of elec-
trification, was also prevalent in these northern states, indicating they
are active areas for both current and future infrastructure investment.

The classification also identified pockets of dark growth within major
Indian cities, like Kolkata and Mumbai (Fig. 2 F). These within-urban
dark growth pixels corresponded to growing informal settlements and to
large-scale periurban housing development projects, which were under
construction and unoccupied. The misclassification of unoccupied
housing developments as dark growth instead of land cultivation was an
artifact of the low spatial resolution of the Indian population census.
Because the administrative boundaries for publicly-available popula-
tion data in India are coarse, there are errors in how population growth
is downscaled and attributed to pixels, thus causing misclassification.

Dark growth is also apparent on the outskirts of US urban areas. In a
high-income country context, dark growth occurred when suburban
development was unaccompanied by additional lit street infrastructure,
or the streetlight infrastructure was installed before 2012, when the
VIIRS NTL record begins. Large swaths of dark growth suburban de-
velopment are especially prevalent in peri-urban areas of the south-
eastern US, because of the amount of land involved in new suburban
development.

In contrast, the outskirts of major Indian urban areas, which fall
most often in the concurrent change class, reflect India's less mature
stage of urban development. Along with population and land change,
new private developments outside of Indian urban cores have brought
with them their own infrastructure and services. For example, re-
sidential projects in Delhi's satellite city, Noida (Fig. 2 (1)) have been
the impetus for major street infrastructure projects, streetlight in-
stallations, brightly-lit malls, and all of the necessary civic infra-
structure needed to attract international corporations and their em-
ployees. This development paradigm is unlike the US residential
development, which is often built to rely on existing infrastructure and
services.

4.2. Testing the validity of the urbanization typology for tracking SDG target
7.1

One of the proposed indicators for tracking SDG 7.1 (Ensure uni-
versal access to affordable, reliable, and modern energy services by
2030) is a measure of the proportion of the population with access to
reliable electricity (Assembly, 2017). While the World Bank's Sustain-
able Energy for All (SE4All) Database (Foster et al., 2015) and the IEA
World Energy Statistics and Balances (Agency, 2019) both provide
country level data on grid-based electricity supply, local statistics are

rarely available to help identify the in-country distribution of deficits or
to track the progress of targeted electrification initiatives. Furthermore,
these databases do not include residents whose electricity access is
supplied by off-grid and isolated mini-grid systems, which are in-
creasingly common in remote areas both as both transitional and long-
term power solutions (Bhattacharyya and Palit, 2016).

We test whether the results of the classification, and specifically the
“electrification” class, can monitor electrification on a local level. In
India, district level statistics on electrification are available from India's
national electrification surveys. To test the validity of the classification,
we compare the population living in class-derived electrification areas
(corresponding to infrastructure development between 2012-2017)
with these survey-based estimates collected by the government of India.
We focus on rural settlements (the lower end of the urban gradient),
because at the start of our study access to electricity was much lower in
these settlements than in cities (56% of the rural population lacked
electricity access vs 7% of the urban population (as defined by national
statistical offices) in 2011 (Foster et al., 2015)).

We isolate “rural” electrification areas by excluding pixels that are
more than 60% built up (corresponding to a GHSL threshold of 150 out
of 255). The most common threshold for differentiating rural and urban
areas is less inclusive, usually set at 50% built up area (Pesaresi and
Freire, 2016; Balk et al., 2019). However, we chose to set a slightly
higher threshold in order to avoid excluding larger villages and towns
in agricultural regions, which have also been the target of energy in-
frastructure efforts in India.

We average the 2012 and 2017 residential population within rural
electrification pixels for each Indian state to estimate the population that
benefited from infrastructure investments, and compare these estimates
to the number of Indian residents that gained electricity access between
2011 and 2016 from the national surveys. This number is derived by
differencing the electrified population in the 2011 census (Indian
Census Bureau and Sou, 2011) from that in the 2015–2016 National
Family Health Survey (International Institute f, 2016) for each Indian
state (Population2016, state*%Elec2016, state-Population2011, state*%Elec2011,
state).

In performing this calculation, we make two assumptions that may
affect the accuracy of the comparison. First, we assume that the whole
population living in an electrification pixel benefits from electricity de-
velopment, and that light increases in redevelopment or concurrent
change pixels were not caused by electrification, but by structural
modifications associated with population increases. Second, we assume
that a change in the number of electrification pixels equates to a change
in residential electricity access, though electrification of streetlights,
railways, and public areas may not correspond to increased residential
electricity services.

Our results (Fig. 3) show a weak, but positive linear relationship
between census and class-based estimates. When all states are included,
pixel-level electrification estimates explain 29% of the variation in the
census-based electrification estimates (R2= 0.289). Delhi and Bihar are
the two states with the highest deviance from the regression, due to
many misclassified pixels. Delhi is a city state, consisting almost en-
tirely of urban residents (97.5%). The edges of urban centers where
urban infrastructure expansion projects, street light provision, LED-
conversion, or road expansion have been abundant, were often classi-
fied as (de)-electrification pixels. The class-based estimate of Delhi's
electrification labels all of these urban infrastructure transitions as
electrification, and therefore estimates are higher than in surveys
(violation of assumption 2). In contrast, Bihar is the most rural state in
India, with almost 90% of the population living outside of urban areas.
Whereas across India, rural population growth rates have declined be-
tween the last two censuses, Bihar witnessed the largest rural popula-
tion growth rate at 24% (Indian Census Bureau and Sou, 2011). Since
population increases are occurring alongside of infrastructure devel-
opment, newly-electrified pixels are often classified as redevelopment in
Bihar. Therefore, the class-based estimate of electrification is lower
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than in surveys (violation of assumption 1). When both of these ex-
tremes– the most urban and most rural Indian state– are removed from
the regression, the R2 increased to .78.

The classification was particularly successful in detecting the large
populations affected by rural electrification in Uttar Pradesh under the
Deen Dayal Upadhyaya Gram Jyoti Yojana (DDUGJY) program and
West Bengal under the Rajiv Gandhi Grameen Vidyutikaran Yojana
(RGGVY) program, India's two previous flagship electrification
schemes. In 2014, DUGJY subsumed RGGVY, though both programs
have worked toward connecting all villages in India to modern energy

services. The central government reports that 97,813 previously un-
electrified villages in Uttar Pradesh were grid-connected under
DDUGJY (Indian Ministry of Power, 2018), the highest of all Indian
states.

4.3. Urbanization classes across India and the US

The classification highlights the variety of different development
trajectories and urbanization processes, but how often do each of these
urbanization processes occur? Are most “urbanizing” areas in India and

Fig. 3. Regression showing estimates of rural population gaining access to electricity between 2011 and 2017, based on the census and class-based estimates.(top)
Regression including all Indian states (bottom) Regression excluding Delhi and Bihar.
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the US under-going concurrent change, as is most often assumed? How
common is urbanization with infrastructural deficits (dark growth)?

We plot each of the pixels included in the classification on a ternary
diagram (Fig. 4) to show their distribution amongst the urbanization
types. A bivariate kernel density plot (Hamiltonggtern, 2018) is used
with contour lines representing increases in the density of high change
pixels. As shown, the results map the dominant classes of urbanization
in the US and India (Fig. 4).

The epicenter of India's high change pixels–40% infrastructure
change, 28% population change and 32% land change–shows that
India's urbanization is dominated by electric infrastructure transitions.
In contrast, the densest concentration of US change pixels consists of
35% infrastructure, 45% population, and 30% land change, dominated
by population growth and decline. Urbanization in the Indian context
populates the center and right side of the ternary diagram, signaling
major land changes. Whereas, land change in the US context is more
constrained, with few pixels deviating outside of the 15–40% range.

We find that Indian urbanization primarily consists of the concurrent

change class. The construction of large-scale new developments on
previously agricultural or wild land involves simultaneous population,
land, and electricity infrastructural transitions. This type of develop-
ment is well-represented when using population datasets, NTL ra-
diances, or built-up land area as parallel proxies. India's second largest
urbanization classes are redevelopment and non-residential development,
though both have far fewer pixels than concurrent change. The third
largest class, dark growth, is represented as a less dense concentration of
points at the bottom of the plot, with high land change (50%) high
population growth (40%) but low infrastructure development (10%).
The dark growth areas highlight energy availability constraints or a lag
in public infrastructure development. These are important instances to
map, since this is where urbanization is occurring without simultaneous
development gains. Though we discuss the electrification class in the
previous section, in terms of land area impacted, independent transition
classes represent a very small proportion of the urbanization signal in
India.

In contrast, US urbanization is more varied than Indian

Fig. 4. Ternary diagram depicting the contribution of land, infrastructure, and population change to urbanization for each high-change pixel in India and the US (top)
India, (bottom) US: Contour lines and the color gradient indicate different densities of pixels, determined by a 2-dimensional kernel density estimate, based on
bivariate normal distributions. The density at a point is scaled so that the integral of density over all x and y=1. (For interpretation of the references to color in this
figure legend, the reader is referred to the Web version of this article.)
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urbanization, consisting of five classes: commercial development, con-
current change, redevelopment, densification, and dark growth. Because the
US urbanization process is more mature, redevelopment and vertical
growth on top of existing brownfields (densification) is common. For
new greenfield development, we find all three typologies: strip devel-
opment along major road corridors (commercial development), suburban
development in peri-urban areas (dark growth), and concurrent change
areas. As shown in the figure, urbanization in the US is as likely to be
redevelopment as it is concurrent change.

5. Discussion and conclusion

Urbanization is one of the defining trends of the 21st century,
shaping not only population dynamics and terrestrial systems, but also
the development outcomes integral to human well-being. Urbanization
can result in increased access to basic services, as in rural electrifica-
tion, as well as increased inequalities and slum formation. The diverse
development trajectories accompanying urbanization are not easily
differentiated by daytime remote sensing datasets alone. With the im-
plementation of the new UN Sustainable Development Goals, there is an
urgent need to bring together data and develop methods that can ex-
plicitly capture improvements in access to modern energy services and
other basic needs.

This study addresses this aim in three ways. First, the results are a
considerable advancement over the status quo in how we conceptualize
urbanization. It is well known that urbanization processes are varied,
consisting of multiple (sometimes synchronous) transitions: transitions
from dispersed to densely populated settlements, from natural and wild
land to impervious built-up land, and from disconnected to modern and
expansive infrastructure networks. Despite these varied processes,
global and regional assessments have conceptualized urbanization
monolithically, differentiating only between rates of urban population
growth or land change, while leaving the character of change open to
supposition. This study provides a new vocabulary and typology for
discussing the wide variety of urbanization processes occurring across
the globe in the 21st century. In particular, it creates urbanization
classes where the implications for human welfare are explicit.

Second, the results both underscore the need, and offer a new
methodology for how to measure urbanization so that is inclusive of a
wider variety of urban change classes. If all urban change were con-
current change, multi-dimensional characterization would be redundant.
However, our results show that much of the urban change in the US,
and to a lesser degree in India is not concurrent change. In India, 17% of
high change pixels were not concurrent change (where change from all
three dimensions were balanced (all between 20% and 40% in the
ternary diagram) (Fig. 1). In the US, 59% of the high change pixels were
not concurrent change, meaning more than half of the urbanization
signal could be overlooked by tracking urbanization with any singular
variable. Therefore, uni-dimensional proxies greatly under-represent
the quantity of urbanization occurring, particularly in the highest-in-
come areas, where infrastructure and land transitions have already
matured, and in the lowest-income areas, where infrastructural transi-
tions are lagging behind. The method developed here expands the types
of urban change detected. Population, land cover, and NTL are already
collected globally, at high spatial and temporal resolution by satellite
remote sensing and bottom-up demographic surveys. Their collection
characteristics make them suitable input measures for defining urba-
nization classes that could be continuously monitored by national
governments and custodian agencies of the UN Sustainable Goals.

Third, our results and methodology advance our understanding of
how urbanization impacts sustainability, and particularly human de-
velopment. The classes in the typology link urbanization to global
change and sustainability issues of importance. For example, concurrent
change, commercial development, and dark growth are all classes of ur-
banization that involve land cover changes. Urbanization that involves
land changes has the potential to threaten biodiversity (Seto et al.,

2012) or heighten agricultural land loss (d’Amour et al., 2017), espe-
cially when it occurs at the frontier between the urban area and sur-
rounding wild and rural land. In contrast, population-dominant and in-
frastructure-dominant classes have minimal land impacts, but are
associated with other environmental problems–e.g. growing emissions,
light pollution from new electricity infrastructure (Gaston et al., 2012),
or increased air pollution from intensified urban activities (Fenger,
2009).

Similarly, the created urbanization classes identify urban change
processes that are critical to human well-being: electricity availability,
infrastructure replacement and upgrading, and growth without infra-
structure services. We demonstrate that the infrastructure-dominant class
tracks electrification efforts in rural India (Fig. 3) that would otherwise
be unidentifiable through population or land cover change alone.
Likewise, dark growth classes can be differentiated from concurrent
change. These new capabilities in monitoring help development re-
searchers and practitioners, track progress and target resources to the
areas that need them most.

Despite these advancements, there are some limitations of the
methodology employed in this study and challenges that remain before
similar classifications could be used effectively to monitor rural
electrficiation (SDG Goal 7.1) or the expansion of informal settlements
(SDG Goal 11.1). The first is the difficulty of accuracy assessments of
the classification. The types of processes examined (e.g. the installation
of street lights, the vertical growth of buildings, slum development) can
be difficult to ascertain via remotely sensed data, even when images are
available. Comparing the classification results with ground-based sur-
veys of electrification or informal settlement expansion was also diffi-
cult, due to a paucity of ground-collected data available at a high
spatial resolution that matched the time period under investigation.

A second related challenge is the difficulty in interpreting the NTL
trends. The use of VIIRS to study urbanization is complicated by a
newly shifting electric lighting landscape, in both US and Indian cities.
In 2010, LEDs had a less than 1% share of the solid-state lighting
market in both OECD and non-OECD countries (Ashe et al., 2010;
Bardsley et al., 2014). By 2030, OECD countries are expected to have a
50% share of LED luminaires in the commercial and industrial sector,
and a 40% share of LED lamps in the residential sector (Bergesen et al.,
2016; Baumgartner et al., 2012). The DNB sensor that collects Suomi-
NPP's NTL data has no spectral sensitivity below 500 nm, which ex-
cludes a large portion of the typical LED spectral power distribution.
The LED lighting transition in both India and the US poses a challenge
for interpreting NTL time-series signals, especially within urban areas.
Though the sensor sensitivity is a known quantity, no study has yet
measured the sensitivity of trends in NTL to a massive LED transition in
the electric lighting sector.

Finally, for inter-country assessments, the classification results were
consistent and meaningful and revealed new information about devel-
opment that is not currently available. However, a limitation for global-
level analyses is that urbanization classes are not comparable across
different development contexts. For example, the Dark Growth class was
found both in growing informal settlements inside India's most popu-
lation dense cities as well as in suburban US communities. The variety
of processes clumped inside each urbanization class makes careful in-
terpretation necessary before conclusions can be made about the pro-
cesses occurring on the ground. To this point, we do not propose this
typology as a replacement of ground-based surveys of electrification
and informal settlement growth in countries that have the means to
conduct these surveys. Instead, the proposed remote sensing-based
methodology can serve as a complement or substitute to ground-based
surveys when ground-based data are less available.

Despite these limitations, we find that the introduction of the NTL
time-series, alongside daytime land sensors and population censuses,
can help illuminate important aspects about the character of urbani-
zation. The ability to differentiate between urbanization with and
without infrastructure development, in particular, is timely. Along with
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India, currently one of the fastest urbanizing regions of the world is in
Sub-Saharan Africa. Many African urban areas have insufficient infra-
structure, creating a lack of urban mobility and basic services. More
than one billion people in Africa currently lack access to electricity. The
data and methods used here show great potential to be expanded over
these new geographies of change, where other social and economic
development data is sparse. Extensions of this work could offer a new
way to identify priority areas for infrastructure investment, and to
advance urbanization monitoring efforts to include aspects of growth
directly related to human well-being.
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