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ABSTRACT: Dasymetric mapping techniques can be employed to estimate population character-
istics of small areas that do not correspond to census enumeration areas. Land cover has been the
most widely used source of ancillary data in dasymetric mapping. The current research examines
the performance of alternative sources of ancillary data, including imperviousness, road networks,
and nighttime lights. Nationally available datasets were used in the analysis to allow for replicability.
The performance of the techniques used to examine these sources was compared to areal weighting
and traditional land cover techniques. Four states were used in the analysis, representing a range
of different geographic regions: Connecticut, New Mexico, Oregon, and South Carolina. Ancillary
data sources were used to estimate census block group population counts using census tracts as
source zones, and the results were compared to the known block group population counts. Results
indicate that the performance of dasymetric methods varies substantially among study areas, and no
single technique consistently outperforms all others. The three best techniques are imperviousness
with values greater than 75 percent removed, imperviousness with values greater than 60 percent
removed, and land cover. Total imperviousness and roads perform slightly worse, with nighttime
lights performing the worst compared to all other ancillary data types. All techniques performed

better than areal weighting.
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Introduction

emographic information available through

the Census Bureau is aggregated using

census enumeration units, including blocks,
block groups, and tracts. The smallest unit is rep-
resented by blocks. In urban areas this typically
corresponds to about a city block or smaller. The
demographic information available at the level
of blocks 1s limited: population, households, race,
Hispanic origin, gender, and age. More detailed
demographic and socioeconomic information is
available at the level of block groups, which are
the aggregation of a number of blocks into a larger
unit, typically several dozen blocks, with a total
population size of several hundred to several thou-
sand. Block groups are further aggregated into
tracts—a tract typically consists of between one
and five block groups but may contain up to nine
block groups. Delineation of census enumeration

Paul Zandbergen, Associate Professor, University of New
Mexico, Department of Geography, Bandelier West Room 111,
MSCO1 1110, 1 University of New Mexico, Albuguerque, New
Mexico 87131. E-mail: <zandberg@unm.edu>. Drew A.
Ignizio, Department of Geography, University of New Mexico.
E-mail: <drew.ignizio@gmail.com>.

areas 1s partly driven by trying to obtain relatively
consistent population counts within each unit. For
example, population counts for census tracts range
from 1500 to 8000, with an average of about 4000
people. As a result, census units in urban areas
are much smaller compared to rural areas (U.S.
Census Bureau 2000).

The aggregation of census data to these enumera-
tion units represents a challenge when trying to
compare census data to other boundaries. Many
other commonly used boundaries such as neigh-
borhoods and police beats are not delineated with
census boundaries in mind, resulting in a spatial
mismatch between boundaries. This spatial mis-
match is also referred to as “spatial incongruity”
(Voss et al. 1999). Estimating the population (and
its associated demographic characteristics) within
these boundaries can be problematic due to this
spatial incongruity.

This problem is not limited to administrative
units or other socio-economic boundaries but also
applies to natural boundaries. Natural science data
works with geographic units defined by such fea-
tures as hydrology, land use, soil type, and others
which do not correspond to census enumeration
units. The lack of a common set of boundaries 1s
one of the obstacles to the integration of social
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and natural science. The spatial mismatch may
also result from temporal differences. For example,
census data are typically collected every 10 years.
From census to census, enumeration area bound-
aries change as a result of changes in population
densities. Temporal differences in census area
boundaries are a persistent problem (Gregory
2002) which limits reliable analysis of long-term
changes using fine-scale spatial units. Research
in several areas has documented the challenges
of working with mismatched boundaries, includ-
ing environmental justice (Higgs and Langford
2009), flood hazards (Maantay and Maroko 2009;
Patterson and Doyle 2009), air pollution (Maantay
etal. 2008), and time-series demographic analysis
(Gregory and EIl 2006).

Spatially mismatched boundaries between geo-
graphic data sets present a persistent problem in
geography, planning, regional science, landscape
ecology, and other fields. A number of approaches
have been developed to spatially allocate attributes
between sets of spatially mismatched boundaries.
One of these approaches is dasymetric mapping
which is the process of disaggregating spatial data
into finer units of analysis using ancillary data to
help refine locations of population of other phe-
nomena (Wright 1936; Mennis 2003). The purpose
of this paper is to compare a number of different
types of ancillary data for use in dasymetric map-
ping, including imperviousness, road density, and
nighttime lights. The performance of dasymetric
techniques using these types of ancillary data is
compared to that of areal weighting and traditional
land cover-based dasymetric techniques. National
datasets are used to ensure results are replicable
across the entire United States.

Background

Several approaches have been developed to
address the problem of spatial incongruity
between sets of boundaries. These vary in com-
plexity and in how they address the spatial mis-
match. The most basic approaches employ rules
of inclusion or exclusion based on the bound-
aries of the geographic units. For example, in
the case of “centroid containment,” census enu-
meration areas (source areas) are represented by
their centroids. All source area centroids falling
inside a particular polygon (target area) are then
assigned to that polygon. If the source areas are
relatively small compared to the target areas,
this can be a sufficiently robust technique, but
if the source and target areas are approximately

similar in size, this approach will result in very
large errors.

More advanced methods which go beyond simple
inclusion/exclusion rules are commonly referred to
as areal interpolation (Goodchild and Lam 1980).
Areal interpolation describes a variety of methods
which generally employ weights based on the area
of intersection between source and target areas in
order to allocate characteristics from the source
areas to the target areas. The most basic form of
areal interpolation 1s “areal weighting” in which
the population within the source areas is spatially
apportioned into the target areas based on how
much of each source area falls within each target
area (Flowerdrew and Green 1992). This effectively
assumes that the population density is uniform
within the source areas. In a GIS environment,
areal weighting can easily be accomplished with a
polygon overlay operation. This approach works
for source and target areas of any size, but its
performance is very dependent on the assump-
tion of uniform population density. Without any
additional imformation, however, it is the most
logical technique.

Alternative methods have been developed to
improve upon the areal weighting technique. The
first set of methods can be referred to as “surface
fitting.” In this approach, a surface is fitted to the
data in the source areas, and this surface is used
to interpolate values for the target areas. Fitting
a surface to the data typically employs inferential
statistics and a number of different approaches
have been developed and tested (Bracken 1991;
Bracken and Martin 1989; Martin 1996; Tobler
1979).

A second set of methods is referred to as “zonal
methods.” Several approaches that fall under this
category employ ancillary information from the target
areas or from an external set of areas in the areal
interpolation process. For example, Goodchild et
al. (1993) employed a set of external control zones
with an assumed uniform population distribution.
Population is allocated from the source areas to
the control zones using a variety of regression-
based techniques. Then, it is allocated from the
control zones to the target areas based on areal
weighting. In another example, Langford et al.
(1991) used linear regression models to interpolate
population based on land-use zones. Flowerdrew
and Green (1994) adopted an iterative expec-
tation/maximization (E/M) algorithm originally
designed to estimate missing data (Dempster et
al. 1997) tor use n areal interpolation. Finally,
Martin (2003) developed an iterative automatic
zoning algorithm based on Openshaw’s (1977)
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automatic zoning procedures. This method employs
an intermediate layer of boundary processing and
attempts to minimize the mismatch between two
sets of boundaries.

A third set of methods is referred to as “dasymet-
ric mapping.” In this approach, ancillary data are
used to gain information about the distribution
of population within the source areas. Dasymetric
mapping is the process of disaggregating spatial
data into finer units of analysis using ancillary
data to help refine locations of population of other
phenomena (Mennis 2003). The dasymetric map
was conceived as a type of thematic map during the
early to mid nineteenth century. While dasymetric
mapping has been a well established cartographic
technique for many years, in recent years it has
gained interest as an approach to estimate popu-
lations for small areas, and to improve upon the
assumptions made in areal weighting (Eicher and
Brewer 2001). A comprehensive review ol dasymetric
mapping is provided by Mennis (2009).

In its most basic form, dasymetric mapping dis-
tributes population (or another variable) within a
polygon using ancillary data to provide finer units
of analysis. This ancillary data most often consists
of land cover data. The actual mapping procedure
consists of an overlay between population data in
the form of polygons and land cover data. This
yields a set of dasymetric zones, nested within
both the population polygons and the land cover
data. Population is then spatially apportioned from
the population polygons to the dasymetric zones
based on the relationship between land cover and
population density. The resulting dasymetric map
can be used for areal interpolation to a set of target
areas. To accomplish the areal interpolation the
dasvmetric zones are overlaid with the target areas
and population is spatially apportioned based on
areal weighting. This assumes the population density
within each dasymetric zone is uniform, but since
these zones are typically much smaller than the
source areas, the result is a more accurate estimate
of the population in the target areas compared
to the estimate based on areal weighting without
ancillary data.

While dasymetric mapping techniques represent
one approach to address the problem of spatial
incongruity between sets of boundaries, it can also
be emploved for other applications. For example,
in regions of the world where census data are very
coarse, ancillary data can be used to develop more
fine-grained estimates of population distribution.
A good example of this is the LandScan dataset
which provides a worldwide 1-km population grid
in which census counts are apportioned to each

orid cell based on proximity to roads, slope, land
cover, nighttime lights, and other information
(Dobson et al. 2000; Bhaduri et al. 2007).

In creating the dasymetric map, the relationship
between land cover and population density can
take one of several forms. The simplest form 1s the
use of a Boolean style mask which identifies areas
where population density is zero; for example, a
data layer of water bodies. This is referred to as
binary dasymetric mapping (e.g., Langford 2007).
While conceptually simple, binary dasymetric
mapping can result in substantial improvements
in population estimates relative to areal weight-
ing (Langford 2007). When more detailed land
cover data are employed, multiple population
density categories are used instead of a Boolean
mask, although one of these categories is often
still exclusionary (i.e., a population density of
zero). In a typical dasymetric mapping scenario
land cover would be classified into classes of low,
medium and high population density in addition
to a category of zero population. The population
density of each land cover type can be assumed a
priori, but more commonly these values are esti-
mated using the source areas and the land cover
data. Training areas are identified where one of
the land cover classes is dominant (e.g., a single
land cover type accounts for a minimum of 70 or
80 percent of the total surface of a source area).
The population density of a particular land cover
class is then derived from these training areas,
and the values are used in the redistribution of
population from source areas to dasymetric zones.
In effect this means that the population density
estimates for each land cover type are used as
relative weights in the redistribution of population.
This approach ensures that the total number of
people within each source area remains the same,
which is referred to as the pycnophylactic property
of dasymetric maps (Tobler 1979).

Land cover has been the most widely used type of
ancillary data for dasymetric mapping (e.g., Eicher
and Brewer 2001; Holt et al. 2004; Langford 2006;
Mennis 2003; Mennis and Hultgren 2006; Reibel
and Agrawal 2007). In theory, however, any spatial
data type that correlates with population density
could be used. Street networks have received some
attention (Mrozinski and Cromley 1999; Reibel
and Buffalino 2005; Xie 1995) as well as parcel-
based land use information (Maantay et al. 2007;
Maantay et al. 2008). Despite the relatively well
established methods for dasymetric mapping, a
number of other ancillary data types remain unex-
plored. The purpose of this paper is to employ
alternative ancillary data types and determine how
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well they perform compared to more established
methods. Specifically, the following ancillary data
types will be tested: imperviousness, road density,
and nighttime lights.

Imperviousness has been firmly established as a
robust and meaningful measure of urban develop-
ment (e.g., Schueler et al. 2009; Theobald et al.
2009). In recent years it has in fact emerged as
a promising measure of the global human foot-
print (Sutton et al. 2009). Imperviousness corre-
lates strongly with population density and can be
measured relatively easily. It 1s typically derived
from land cover maps or directly from the original
source imagery. One of the potential benefits of
imperviousness is that it provides greater detail
than traditional land cover categories. Since it is
typically recorded as a percentage (of total area) it
also does not require the same type of calibration
that land cover data requires. Road density is also
a well established measure of urban development
and has been used as a source of ancillary data in
dasymetric mapping. Similar to imperviousness,
road density (in km/km?) provides an easily mea-
surable quantity which does not require extensive
calibration. Voss et al. (1999) used both total road
segment length and the count of road network
nodes in dasymetric mapping. Finally, nighttime
lights have received much attention as an alterna-
tive way to characterize population distribution
(e.g., Sutton et al. 2001; Sutton et al. 2003). The
intensity of nighttime lights corresponds closely
to the concentration of urban centers, but it is
also correlated to economic wellbeing since more
affluent areas are likely to produce more nighttime
lights (per person) than poorer areas.

Areal interpolation methods that result in the
least amount of error are preferred. A number of
factors are expected to influence the errors in areal
interpolation. First, the relative size of the source
and target areas will dictate to some extent the
magnitude of errors. For example, it has been well
established that interpolating from small source
areas to large target areas introduces relatively
small amounts of error (Fisher and Langford
1995; Sadahiro 2000). Conversely, interpolat-
ing from large to small source areas will typically
introduce much larger errors. Second, the spatial
organization of source and target areas relative to
each other can influence the amount of error. For
example, relatively modest changes in census unit
boundaries over time may result in small errors in
areal interpolation, but comparing census units
and watersheds is likely to result in large errors.
Simpson (2002) refers to this as the degree of
fit; the greater the similarity between source and

target areas, the lower the error. Third, the quality
of the ancillary data will influence the amount of
error. In the case of land cover, for example, the
resolution and number of land cover categories
are likely determinants of the performance of areal
interpolation. Given the influence of these three
factors, 1t 1s not possible to quantify the “typical”
error introduced by areal interpolation methods.
Studies that have evaluated the performance of
areal interpolation methods, therefore, have com-
pared the results to those for areal weighting, 1.e.,
they should perform better than areal weighting
for a given scenario.

Several other observations are in order with
respect to the performance of areal interpolation
methods. First, methods that preserve the pycno-
phylactic properties of the data are preferred, since
this provides population distributions of greater
internal consistency. Second, it should be recog-
nized that all methods have errors and that their
performance may vary with conditions. No single
best method has emerged from the research so
far, and the best approach for a particular set of
source and target areas is likely to vary with spe-
cific circumstances and the intended uses of the
estimates for the target zones (Gregory 2002).

The current study compares a number of different
types of ancillary data for use in dasymetric map-
ping. Ancillary data types include imperviousness,
road density, and nighttime lights. All methods
using ancillary data are expected to outperform
areal weighting, but the relative strengths of these
various data sources are largely unknown. The
performance of each technique i1s determined by
using tract-level populations to estimate block
group-level populations which can then be com-
pared to the known block group populations.

In addition to comparing multiple techniques
which have not previously been tested, the cur-
rent study also seeks to contribute to the body of
knowledge on dasymetric mapping by employing
datasets which are available at the national level.
Highly detailed information (e.g., parcels) may
result in more accurate population estimates, but
the results may not be replicable across the entire
United States. By using national level datasets the
results should be msightful for any jurisdiction
in the nation.

Methods

Four U.S. states were selected for the analysis:
Connecticut, New Mexico, Oregon, and South
Carolina. These four states represent a range of
different eco-regions and population densities.
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_Stata

Census Tracts

Population Dansit?t#;’l_tmzl

Population Area (km?)
Connecticut 3,405,565 12,885 264.30 816
New Mexico 1,819,046 314,915 5.78 456
Oregon 3,421,399 251,424 13.61 195
South Carolina 4,012,012 80,168 50.04 867

Table 1. Population characteristics of the four study states.

Total population counts for the year 2000 were
obtained from the U.S. Census for these four
states at the tract and block group level. Table
I provides a brief summary of the population
characteristics of the four states.

Following sections outline the sources and pro-
cessing steps for each of the ancillary data sources.
All data were projected in a U.S. Contiguous Albers
Equal Area projection prior to analysis.

Land cover data were obtained from the 2001
National Land Cover Dataset (NLCD). This data
consists of a nationwide 30-m grid. The land cover
data includes 30 different categories for the con-
tinental U.S., including four different urban cat-
egories (developed open space, developed low
intensity, developed medium intensity, and devel-
oped high intensity). Details on the land cover
data are reported in Homer et al. (2007). Figure
A shows an example of the land cover data for
Fugene, Oregon.

Dasymetric mapping using land cover data
emploved the general methods as described by
Mennis (2003). This consisted of reclassifving the
land cover grid into fewer population density cat-
egories. Initially, four different density categories
were employed (based on the four urban catego-
ries), and all other categories were assigned zero
population. Calibration of the land cover model
was accomplished for each state independently,
using a 70-percent threshold for land cover domi-
nance. In other words, only census tracts where
one population density category covered at least
70 percent of the population areas were selected
as calibration areas. In each state this resulted
in at least one category with too few calibration
areas (1.e., fewer than two). In order to achieve a
sufficient number of calibration sites some of the
four original density categories had to be merged
together. All possible combinations were explored
to determine which combination preserved as much
as possible of the original detail in the land cover
information while at the same time providing suf-
ficient calibration areas for each population density
category. In each of the four states the two urban
land cover types with the highest densities (i.e.,
developed medium density and developed high

density) had to be combined in order to accom-
plish this. The final classifications are shown in
Table 2. While the optimal classification turned
out to be identical between the states, the cali-
bration step was carried out separately for each
state. Several alternatives were tried, including
assigning agriculture its own non-zero popula-
tion density, but these scenarios resulted in larger
errors in block group level population estimates
and the results of these scenarios are therefore
not reported. Figure 1B shows an example of the
reclassified land cover data using the final catego-
ries as shown in Table 2.

Original NLCD Land Population Density
Cover Class Category
Developed open space Low
Developed low intensity Medium
Developed medium intensity High
Developed high intensity High
All others Zero

'“I'abln 2. Reclassification of National Land Cover dataset
(NLCD) land cover classes into population density
categories.

Imperviousness data were obtained from the
same 2001 National Land Cover Dataset (NLCD).
This data consists of a nationwide 30-m grid, with
cell values between zero and 100 indicating the
percentage of imperviousness. The imperviousness
information was derived from Landsat imagery.
Details on the methodology are reported in Yang
et al. (2003). Figure 2A shows an example of the
imperviousness data for Eugene, Oregon.

The imperviousness grid was used to estimate
the total amount of impervious area (in km*) for
each tract and block group. To redistribute the
population from tracts to block groups, these total
amounts were used as weight factors. An example
of this is shown in Figure 3. Implicitly this assumes
a linear relationship between percent impervious-
ness and population density.

Four different versions of imperviousness were
used and are illustrated in Figure 2. First, total
imperviousness was used as provided directly by the
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a) NLCD 2001 Land cover

Land cover categories

- open water

developed, open space

| developed, low intensity
developed, medium intensity
- developed, high intensity
| barren land

- deciduous forest

- evergreen forest

mixed forest

shrub/scrub

grassland

pasture/hay

- cultivated crops
woody wetlands

- emergent herbaceous wetland

Population density categories

I | Kilometers
g 9 10 20 30 40

I?igﬁm 1. Original and reclassified land cover data for a sa'mﬁe study area in Eugene, Oregon.

NLCD data (Figure 2A. Second, the imperviousness zero 1mperviousness cells consisted of roads and
grid was modified by running a boundary clean the boundary clean operation removes these linear
operation (Figure 2B). Detailed inspection of the features. Third, cells with an imperviousness value
imperviousness data revealed that many of the non- greater than 75 percent were removed (Figure 2C).
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a) imperviousness - original

b) imperviousness - boundary clean

7

Imperviousness (%)

_

0

Figure 2. Original and modified versions nf_impewiuusness data for a sample stuciv area in Eugene, Uré_g_nn.

Fourth, cells with an imperviousness value greater
than 60 percent were removed (Figure 2D). Cells
with high imperviousness values are expected to
consist of nonresidential areas. This is supported
by other studies that have correlated impervious-
ness and population density. For example, Morton
and Yuan (2009) removed cells greater than 75
percent imperviousness to estimate population
density. The 60-percent threshold was added based

on detailed inspection of the imperviousness data
combined with high resolution orthophotos for
selected urban areas within the four states.

Road networks were obtained from the TIGER
2000 line files. These files consist of polylines at
a scale of 1:100,000 with codes for road types.
Figure 4 provides an example of the TIGER road
data for Eugene, Oregon. Road length (in km)
was determined for each tract and block group.
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Similar to imperviousness, to redistrib-
ute the population from tracts to block
groups, these total lengths were used
as weight factors. This assumes a linear
relationship between road density (in
km/km?) and population density. Two
different versions of road length were
used: total road length, which included
all possible road types; and local roads,
which excluded all interstates, high-
ways, major arterials, and unpaved
roads. The logic behind using only the
local roads is that many road types may
not correspond directly to population
but instead serve only as connections
between populated places.

Data on nighttime lights was obtained
from the Operational Linescan System

(OLS) of the Defense Meteorological
Satellite Program (DMSP). The spe-

cific image employed consisted of Uni
the average value of stable nighttime BG1
light intensity for the year 2000. The BG2
global grid has a resolution of 30 arc _—

seconds, roughly equivalent to about
2.7 km 1n the continental U.S. Figure BG4
5 gives an example of the DMSP data
for Eugene, Oregon. The DMSP night-
time lights data were employed 1n a
manner identical to imperviousness.
The only difference is the fact that the

PopulationCount Imperviousness Population Estimate Error

998 21.3% 773 -225
948 23.8% 861 -87

938 42.5% 1540 602
739 12.4% 450 -289

Mote: imperviousnessin this table represents the amountof impervious
surfacesin each blockgroup as a percentage of the tract

Total number of incorrectly placed people =(225+87+602+289)/2=602

nighttime lights data do not have a
particular unit, i.e., the grid consists
of values ranging from 0 to 63, with 0
indicating no lights and 63 being the
maximum on an otherwise unit-less scale. Since
the intensity values are used as relative weight
factors this has no bearing on the results other
than the fact that a linear relationship between
intensity values and population is assumed.
When comparing the various datasets there is
strong agreement between the land cover and imper-
viousness information because they are derived from
the same Landsat imagery. Imperviousness, however,
provides slightly more detail within each of the four
urban land cover classes. Road density also corre-
sponds fairly closely to land cover and imperviousness,
but there are obviously many roads outside of urban
areas. The nighttime lights data are of much lower
resolution, and the set provides a much more general-
ized image of the distribution of urban development.
Based on the comparison of datasets, the following
nine techniques were identified:
* Areal weighting
* Land cover

Figura 3. Example of the redistribution of population from tract to block
groups based on total imperviousness.

* Total imperviousness

* Imperviousness < 60 percent

* Imperviousness < 75 percent

* Cleaned imperviousness

Total roads

Local roads

Nighttime lights

After each of the dasymetric mapping techniques

was applied to estimate the population count for

block groups within each state, the estimated values

were compared to the known population counts.

An error analysis was carried out to determine

measures of agreement. Tracts with a population

count of less than 100 and tracts consisting of a

single block group were excluded from this analysis

to avoid issues of sample size. For each state, the

following error metrics were determined:

¢ The number of people placed incorrectly.
This is determined by the sum of the absolute
values of the ditference between estimated
and known population counts for each block
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— local roads

———— other roads

ML L ——J  IKilometers
0 25 5 10 15 20

Ll

0

0 5 10

Nighttime lights intensity

Kilometers
20 30 40

Figure 5. Defense Meteorological Satellite Program 2000 nighttime lights intensity for a sample

study area in Eugene, Oregon.

group, divided by two. The logic is that a single
incorrectly placed person results in an error of
2—minus 1 in one block group and plus 1 in
another. Figure 3 includes an example of this
type of error calculation.

® The median of the absolute value of the
percent error for each block group, using the
known population as the base.

® The R-squared value of the correlation between
estimated and known population counts for
each block group.

These error metrics were determined for each

of the nine techniques and for every state.

Subsequently, each state was further divided into

three different categories based on the average

population density
of tracts: less than
250 people per
km? between 250
and 1000 people
per km*, and more
than 1000 people
per km®. The selec-
tion of the density
classes is somewhat
arbitrary but cor-
responds roughly
to density catego-
ries employed by
other research.
For example,
the U.S. Census
Bureau employs
densities of 500
and 1000 people
per square mile
to identify urban
areas. The State
of  Pennsylvania
defines an area as
rural if the popu-
lation density is
below 274 per-
sons per square
mile. Cayo and
Talbot (2003) used
a population den-
sity of 250 people
per km* to sepa-
rate suburban and
rural areas. Error
metrics were deter-
mined for each
density  category
to test the perfor-

mance of the nine techniques relative to popula-

tion density.

Results and Discussion

The performance of each of the nine dasymetric
mapping techniques for each of the four states
is summarized in Table 3. Performance metrics
include the number and percentage of the people
placed incorrectly, the median value of the abso-
lute percentage error, and the R-squared value
of the correlation between estimated and known
block group population counts. The three error
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metrics result in virtually the same ranking of
the nine techniques. For the discussion of the
results in Table 3, the rank (1 through 9) based
on the percentage of people placed incorrectly
will be used.

The first observation is that all techniques indeed
outperform areal weighting—not always by a great
margin, but consistently across all four states. The
performance of areal weighting itself does vary
substantially, from a low error of 16.9 percent for
Connecticut to a high error of 29.3 percent for
New Mexico. The performance of areal weighting
corresponds to the overall population density, with
Connecticut having the highest population density
and New Mexico the lowest. This reflects the fact
that estimating small area populations is more
difficult in areas with lower population densities.
The performance of areal weighting represents
the baseline against which the performance of
dasymetric mapping should be assessed.

The best performing technique, somewhat sur
prisingly, is different for every state. Minor road
density 1s the best technique for Connecticut, land
cover is the best technique for New Mexico, imper
viousness under 60 percent is the best method for
Oregon, and imperviousness under 75 percent
is the best method for South Carolina. The dif
ferences in performance between the top-ranked
methods are relatively small, but the lack of consis
tency in ranking between the four states indicates
that there is no single technique that consistently
outperforms all others.

The overall improvement that can be accomplished
using dasymetric techniques is also noteworthy.
Compared to areal weighting, the overall error in
terms of the number of incorrectly placed people
can be reduced by a factor of approximately two,
based on the best performing methods. For example,
in the case of New Mexico, the error of 511,848
people for areal weighting is reduced to 252,371
using land cover. Error reductions for Oregon
and South Caroline are similar in magnitude, but
Connecticut falls a bit short of this with a reduc-
tion from 559,739 to 351,506. Apparently, since
the baseline error for Connecticut is relatively
small (16.9 percent) there is less to be gained in
relative terms by employing dasymetric mapping
techniques.

The use of land cover performed very well across
the four states, with a rank of 1 for New Mexico,
a rank of 2 for Oregon and South Carolina, and
a rank of 4 for Connecticut. This illustrates the
robustness of land cover as a source of ancillary data.
[mperviousness also performs well, but some varia-
tions perform better than others. The impervious-

ness techniques where cells with the highest values
have been removed (60 and 75 percent) perform
shghtly better than the original total imperviousness.
This supports the logic that these highest values
indeed correspond to non-residential areas and
that removing them improves the performance
of dasymetric mapping. The cleaned version of
imperviousness, however, performs very poorly.
This approach removes linear and other small
features from the imperviousness data and i1s not
robust in terms of estimating the distribution of
population.

The performance of roads is highly variable. For
Connecticut, minor roads and total roads ranked 1
and 2, respectively, but their rank in other states is
much lower, in particular New Mexico and Oregon.
This suggests that the use of roads performs better
in areas with greater population density and that as
a measure of population distribution, this method
is less robust across study areas with varying char-
acteristics. The use of nighttime lights performed
poorly. In both Connecticut and Oregon it was
the lowest ranked technique with the exception
of areal weighting, and in the other two states
the performance was only slightly better. This
suggests that the coarse resolution of the night-
time lights data makes it only moderately useful
for dasymetric mapping. However, the technique
does improve upon areal weighting, presenting
a possible source of ancillary data when higher
resolution data are not available.

In terms of the best performing methods it is a
close three-way tie between land cover, impervi-
ous with values greater than 60 percent removed,
and imperviousness with values greater than 75
percent removed. The latter has a slight edge over
the other two because it consistently ranks in the
top three, but the differences in performance are
relatively small. This confirms the usefulness of
imperviousness as a source of ancillary data for
dasymetric mapping, but the improvements that
can be made over traditional land cover techniques
are fairly modest.

To further compare the performance of the
various techniques, bivanate correlations were
determined between the various methods using
the error in the population estimates at the block
group level. Table 4 summarizes the correlation
coefhicients for South Carolina as an example, with
results for the other states revealing similar pat-
terns. As expected, the correlations between the
various versions of imperviousness are very strong,
as is the correlation between the two versions of
road density. The correlation between land cover
and imperviousness is also quite strong (with the
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Median Abs. % Error

Technique People Placed Incorrectly R-squared
Count Percentage Rank
Connecticut
Areal weighting 559,739 16.9 9 219 0.447
Land cover 394,724 11.9 4 18.8 0.582
Total imperviousness 408,770 12.4 6 19.7 0.561
Imperviousness < 60% 407,589 12:3 5 20.2 0.589
Imperviousness < 75% 374,961 11.3 3 18.8 0.618
Cleaned imperviousness 503,041 15.2 1 22.6 0.409
Total road density 364,320 11.0 2 18.7 0.642
Minor road density 351,506 10.6 1 17.9 0.664
Nighttime lights 525,464 15.9 8 26.7 0.487
New Mexico
Areal weighting 511,848 29.3 9 46.7 0.143
Land cover 252,311 14.5 1 21.1 0.519
Total imperviousness 297,869 171 4 25.2 0.416
Imperviousness < 60% 282,282 16.2 2 21.8 0.411
Imperviousness < 75% 283,816 16.3 3 22.8 0.413
Cleaned imperviousness 306,141 17.5 5 26.3 0.415
Total road density 378,025 21.6 8 31.9 0.254
Minor road density 371,693 21.3 1 29.3 0.255
Nighttime lights 370,561 21.2 6 36.1 0.378
Oregon
Areal weighting 863,315 26.1 9 41.3 0.234
Land cover 452,171 13.6 2 21.2 0.628
Total imperviousness 496,891 15.0 4 23.4 0.572
Imperviousness < 60% 442,384 13.4 1 20.8 0.631
Imperviousness < 75% 478,797 14.5 3 23.1 0.596
Cleaned imperviousness 505,111 15.2 5 23.9 0.591
Total road density 624,702 18.9 | 25.8 0.376
Minor road density 620,544 18.7 6 25.4 0.375
Nighttime lights 660,438 19.9 8 32.1 0.394
South Carolina
Areal weighting 859,254 22.3 9 38.1 0.3768
Land cover 512,542 13.3 2 22.5 0.6785
Total imperviousness 996,205 15.4 6 25.7 0.6089
Imperviousness < 60% 517,606 13.4 3 22.2 0.6832
Imperviousness < 75% 476,633 12.3 1 20.3 0.7224
Cleaned imperviousness 829,252 21.5 8 36.1 0.4491
Total road density 568,710 14.7 5 23.8 0.6069
Minor road density 551,732 14.3 4 22.9 0.6243
Nighttime lights 628,932 ~16.3 1 el 0.5775

Table 3. Performance metrics of dasymetric mapping techniques.

exception of cleaned imperviousness), confirm-
ing the relatively similar overall performance of
these methods. The correlations for road density
are on the low side, especially with impervious-

ness. This indicates that while imperviousness
and road density demonstrate a similar overall
performance for South Carolina, these methods
disagree substantially in terms of the specific block
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Areal weighting 1

Land cover 0.398 1

Total imperviousness 0.128 0.736 1

Imperviousness < 60% 0.167 0.797 0.954 1

Imperviousness < 75% 0202 0812 0873 0.970 1

Cleaned imperviousness 0.004 0408 0.766 0.704 0.616 1

Total road density 0820 0521 0209 0.265 0314 0.024 1

Minor road density 0.791 0460 0.164 0.216 0.266 0.011  0.963 1

Nighttime lights 0679 0543 0364 0402 0419 0132 0574 0530 1

Table 4. Cnrrelatiun_c.neﬁicients between das;metric mapping tehhniques for South Carolina based on block group level

errors in population counts (n = 2,800).

groups where they perform well. The strongest
correlation for road density 1s in comparison with
areal weighting, which suggests that many of the
block groups where road density performs poorly
correspond to block groups where areal weighting
performs poorly too.

The performance of the nine techniques is also
broken down by population density category n
Table 5. In this case only the percentage of people
placed incorrectly is included as a metric together
with the rank. Several patterns emerge from the
results in Table 5. As a general rule, the performance
improves for areas of higher population densities,
although there are some notable exceptions. A good
example of this general pattern is New Mexico
where the error for areal interpolation drops from
40.1 percent for a population density less than 250
people per km?, to 29.0 percent for a population
density between 250 and 1000 people per km?, and
to 13.3 percent for a population density greater
than 1000 people per km?. Most other methods
follow this same general trend, confirming that
small area population estimates are less prone to
error with increasing population densities. One
notable exception to this is the use of impervious-
ness with values greater than 60 percent removed,
for Connecticut, where this method performed
worst in the highest population density category.
This suggests the assumption that cells with very
high population densities represent non-residen-

tial areas may be flawed in areas with very high
average population densities, for example urban
areas with many apartment complexes and very
few unpaved areas. The other notable exception
is the use of nighttime lights which consistently
performs the worst in areas of medium popula-
tion density.

Despite some of these notable exceptions, the
results support the conclusion that dasymetric map-
ping is more difficult in areas with low population
densities. This is related to the fact that popula-
tion distribution in rural areas 1s typically more
heterogeneous compared to urban areas. In areas
with substantial urban and suburban development
(e.g., Connecticut), large areas may be relatively
homogeneous. In areas characterized by very low
population densities (e.g., New Mexico), large areas
with very sparse population may be interrupted
by small areas with very high population concen-
trations. Patterns in the clustering of population
likely play an important role in determining the
accuracy of dasymetric mapping techniques, which
is not fully captured in the stratification of study
areas based on population density alone.

Another pattern that emerges from Table 5 is that
the performance of each method within a state varies
with the population density category. For example,
minor roads are ranked number 1 in Connecticut for
low- and medium-density areas, but ranked number 3
for high-density areas. For South Carolina this trend
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Technique < 250 km? 250 to 1000 km* > 1000 km?

(%) Rank (%) Rank (%) Rank
Connecticut (n= 633) (n=874) (n=1,057)
Areal weighting 18.3 8 18.5 g 17.3 9
Land cover 12.7 4 12.2 5 11.2 2
Total imperviousness 14.1 6 12.3 6 11.5 5
Imperviousness < 60% 12.2 3 10.4 3 14.2 8
Imperviousness < 75% 13.1 5 10.4 3 113 1
Cleaned imperviousness 23.4 g 13.5 1 11.3 3
Total road density 11.3 2 10.2 2 11.6 6
Minor road density 11.2 1 9.5 1 11.3 3
_Nighttime lights 15.2 7 18.0 8 14.4 ]
New Mexico (n=589) (n=323) (n=439)
Areal weighting 40.1 9 29.0 9 13.3 9
Land cover 19.0 1 12.3 3 9.2 3
Total imperviousness 23.6 4 13.3 4 10.1 4
Imperviousness < 60% 23.7 5 11.1 1 8.8 1
Imperviousness < 75% 23.5 .. 11.7 2 8.9 2
Cleaned imperviousness 23.5 2 15.4 6 10.2 9
Total road density 32.0 8 16.0 7 10.4 1
Minor road density 31.9 7 15.1 5 10.2 5
Nighttime lights 24.9 6 25.0 8 12.7 8
Oregon (n=1,049) (n=426) (n=976)
Areal weighting 40.5 9 29.8 9 11.6 9
Land cover 17.8 1 15.0 4 9.4 4
Total imperviousness 19.7 3 16.2 7 10.3 6
Imperviousness < 60% 19.3 2 13.4 1 8.1 1
Imperviousness < 75% 20.1 4 13.6 2 9.8 5
Cleaned imperviousness 20.6 5 15.6 b 10.4 7
Total road density 32.4 7 15.2 5 8.5 3
Minor road density 3.7 8 14.6 3 8.3 2
Nighttime lights 26.1 6 21.0 8 11.4 8
South Carolina (n=1,691) (n=849) (n=258)
Areal weighting 25.3 9 18.4 9 13.3 9
Land cover 13.5 2 13.2 5 11.7 5
Total imperviousness 15.4 4 16.0 6 13.0 6
Imperviousness < 60% 13.9 3 13:1 4 10.7 3
Imperviousness < 75% 13.0 1 11.5 2 10.4 2
Cleaned imperviousness 24.7 8 17.1 7 13.2 7
Total road density 16.8 7 114 3 10.8 4
Minor road density 16.5 6 10.9 1 10.1 1
~ Nighttime lights - 16.3 5 17.1 T 13.2 1

Note: Sample size is reported as the number of block groups employed in the calculation of the percentage.
Table 5. Percentage of people placed incorrectly by population density category.

is somewhat in reverse, with minor roads ranked and ranked number 6 in the low-density areas. The
number 1 in the medium- and high- density areas use of land cover performs best in the high popula-
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tion density in Connecticut but in the other three
states it performs best in the low population density.
These observations suggest that no single method
outperforms all others across different population
densities. The differences in performance between
methods also cannot be explained by differences in
population densities.

While the search for the single best technique
appears to be somewhat elusive, the results in Table
5 can be used to identify the most robust technique.
A robust technique would perform well for different
study areas across a range of different conditions. In
this context, land cover has a lowest rank of 5 and
this occurs three times in Table 5. Imperviousness
with values greater than 60 percent removed has
a lowest rank of 8, but this occurs only once, and
the next lowest rank is 5, and this occurs only once.
Imperviousness with values greater than 75 percent
removed has a lowest rank of 5, and this occurs twice.
This suggests these three methods are very similar in
performance. Another way to look at this compari-
son 1s to calculate the sum of ranks from Table 5;
the results are presented in Table 6. A method that
consistently outperforms all others would have a sum
rank of 12. The results indicate that imperviousness
with values greater than 75 percent removed has a
slight edge, followed by imperviousness with values
greater than 60 percent removed, followed by land
cover. Next is minor roads followed by a tie between
total roads and total imperviousness. Next is cleaned
imperviousness, followed by nighttime lights. While
this sum of ranks approach has limitations and only
takes relative performance into consideration, our
final ranking of techniques generally follows the more
detailed patterns observed in Tables 3 and 5.

Conclusions

The comparison of multiple ancillary data
sources for dasymetric mapping has provided
some meaningful insights into their perfor-
mance. First, the results confirm the robustness
of the existing land cover techniques. While
land cover does not emerge as the single best
technique in each scenario, it consistently ranks
high across different study areas. Imperviousness
is very useful as a source of ancillary data for
dasymetric mapping, and after removal of the
cells with the highest imperviousness values
this method regularly outperforms the land
cover technique. Despite the improvement rep-
resented by adjusted imperviousness data over
land cover, the reduction in the overall error is
relatively modest. The use of total impervious-
ness, however, does not perform as well, and nei-

Technigue Sum of Ranks
Areal weighting 107

Land cover 39

Total imperviousness 61
Imperviousness < 60% 35
Imperviousness < 75% 31
Cleaned imperviousness 72

Total road density 61
Minor road density 43
Nighttime lights 85

Table 6. Sum of rariks based on performance metrics by
state and population density.

ther does the cleaned version of imperviousness
which removes linear and small features. The
use of road density (minor roads in particular)
performs quite well for some areas, but its per-
formance overall 1s inconsistent across differ-
ent study areas. Nighttime lights consistently
perform poorly relative to the other methods,
although the use of this data does present some
improvement over areal weighting.

The current study has a number of limitations.
First, only four states were used in the analysis.
While this represents a large number of census
tracts across many different geographic regions,
the sample 1s not completely representative of
the entire U.S. A related limitation is that the
analysis was conducted at the level of states. While
convenient for making comparisons with other
studies, an analysis of study areas based on phys-
iographic or other characteristics may provide
different insights. Second, the land cover and
imperviousness data are derived from the same
Landsat imagery and are highly correlated as a
result. This partially explains the relatively high
agreement in the performance of the land cover
and imperviousness techniques. The performance
of these techniques may differ if different data
sources were employed. Third, the performance of
the dasymetric techniques was determined using
block groups as the target zones. Block groups are
relatively large in areas of low population densities,
and the performance of the various techniques for
population estimates for smaller areas is not known.
Fourth, a linear relationship was assumed between
the ancillary data (imperviousness, road density, and
nighttime hights) and population density, which may
not hold true across a wide range of population densi-
ties. Despite these limitations, the current study rep-
resents one of the more comprehensive comparisons
of dasymetric mapping techniques to date.
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One of the strengths of the current study 1s
that nationally available datasets were employed,
which allows for greater replicability. Only the
nighttime lights dataset is available outside the
U.S. and in fact, this dataset has global coverage
and has been available annually since 1992. So
while nighttime lights is the lowest performing
technique, it presents opportunities for temporal
dasymetric mapping at a global scale.

The results also provide some insights into the
nature of the persistent problem of small-area
population estimates. As expected, the error in these
estimates is greatest in areas of lowest population
density. In terms of the magnitude of these errors,
in the lowest density areas the error introduced by
areal interpolation is approximately 40 percent
(based on the number of people placed incorrectly)
for New Mexico and Oregon and somewhat less
for Connecticut and South Carolina. 'The best
performing methods are able to reduce this error
to about half, which still represents a substantial
amount of error. This suggests that for rural areas
in particular more detailed ancillary is needed to
further improve the robustness of dasymetric map-
ping. This data could consist of parcels, address
points, or more detailed land cover data, but such
data are not available in a consistent format for
the entire U.S. In higher- density urban areas
the error of population estimates 1s reduced to
approximately 10 percent, and this is fairly con-
sistent between the techniques considered and
across different study areas. A state-wide error of
about 10 percent may thus represent the limit of
what is achievable for the national level datasets
currently available.

Future research on dasymetric mapping should
consider using even larger study areas (e.g., all
U.S. States) to test for robustness across a wider
range of conditions. Additional efforts should also
be focused on comparing datasets from different
sources and/or different resolutions to examine
the degree to which more detailed ancillary data
could lead to further reductions in error. The more
widespread availability of parcel and address point
data are a promising development in this regard.
A final area of interest is the development of dasy-
metric mapping approaches which rely on muluple
ancillary data sources which may improve upon the
performance of single data source techniques.
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