CST 310 / SER 417: Population, Space & Environment

Spatial Approaches in Population Studies: Analytical Methods and Representation Techniques

Basic Concepts and Measures in Demography

Silvana Amaral
Antonio Miguel V. Monteiro

{Silvana.amaral@inpe.br, Miguel.monteiro@inpe.br}

Demography

1) Etymology – word first used 1855 (Belgian Achille Guillard)

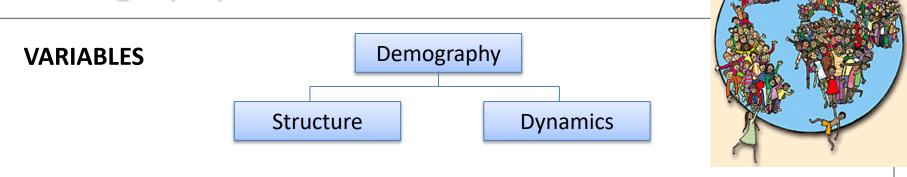
From dictionary:

Word origin of 'demography'

< Gr dēmos, the people (see democracy) + -graphy (*Graphein* = to write) noun

the statistical science dealing with the distribution, density, vital statistics, etc. of human populations

Webster's New World College Dictionary, 4th Edition. Copyright © 2010


2) Formal Demography

Demography is a *Science* with focus on:

Study of <u>human</u> populations and their <u>temporal</u> evolution in relation to their <u>size</u>, <u>spatial distribution</u>, <u>composition</u> and general <u>characteristics</u>.

Demography

STRUCTURE – describe the population status (number & structure) – relating to a geographical area and a specific time → *Population Statistical Analysis*

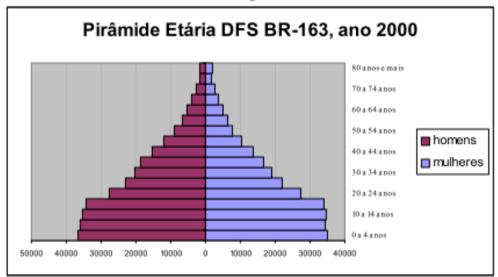
- Size
- Distribution
- Structure or composition
 (age, sex, education level, income, households/family, urbanization, ethnicity,...)

DYNAMICS - dynamic demographic variables for a given geographic space and time:

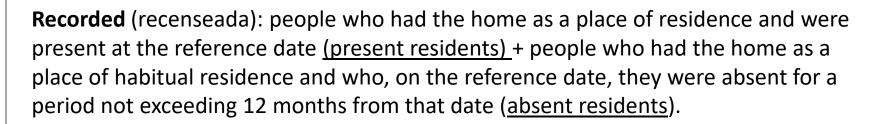
- Vital Statistics: births (natality), fertility, deaths (mortality), reproduction, marital status (marriage, divorce)
- Migration : Emigration, Commuters, Immigration

Set of Human being with a certain <u>characteristic</u>.

• Inhabitants of the same country or region;


Set of Human beings with a certain characteristic.

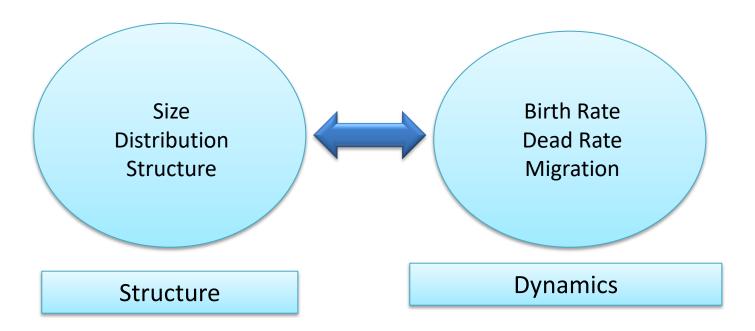
Group of people in a given age group;


Figura 2. Gráfico da pirâmide etária do Distrito Florestal da BR-163, no ano 2000. Fonte: FIBGE, Censo Demográfico 2000.

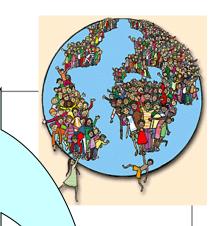
Set of Human beings with a certain characteristic.

Inhabitants ?? - Military? Diplomats? Students? People on vacation???

IBGE - Censo 2010: Population Recorded x Resident


Resident: the residents of the place of residence at the date of reference, whether they were present or absent. People living in the home who were absent were censused since your absence has not been more than 12 months on that date, for the following reasons: travel, admission in educational establishment or lodgings in another residence, detention without final sentence declared, temporary admission in hospital or similar establishment and boarding the service (shipping).

Demography



Interrelationships between static analysis and demographic dynamics demographic variables

- Population Characteristics Size and Structure
 - ✓ How many people/local / time ?
 - ✓ How many youth/children? Adults? Elderly?
 - ✓ How many male / female ?
 - ✓ How many are economically active?
- Factors that affect population
 - ✓ How many are born?
 - ✓ Die?
 - ✓ Migrate?

- ➤ How many women of reproductive age?
- ➤ How many married?
- Ratio of effective contraceptive?

Concepts & MEASURES

AGE

the age of the individuals is important to various demographic phenomena

The **age** of an individual can be defined as the number of days, months and years after your birth;

Or the **number of full years**:

- the age group of 20 to 24 years is formed for all individuals aged between 20 and 24 years
- → on reference date of a census survey individuals born in the same year may have different ages in terms of full years.

Calendar year = 1 January to 31 December.

Which population include in the denominator for calculating rates?

Concepts & MEASURES

AGE

→ the denominator should contain the number of people-year, which corresponds to the sum of the time spent (in years) for each component of the population!

Concept of **people-year**: take the population at a given time of the year.

But at what time?

- at the **beginning** of the year not include people who are born during the year.
- at the end of the year not include people who died during the year and, include people who were born at different times during the year and who were not exposed all the time to the risk of die.

Solution: the total of people-year population in the **middle of the year**, assuming there is uniformity in the event of births and deaths during the year.

For demographic measures & indicators, one need to identify:

- a) Which population subgroup or type of event being analyzed;
- b) What is the geographical area
- c) Which the instant of time/period considered

Stock statistics - measures refer to a moment of time, for an specific date (until)

Flow measures,- it refer to a calendar-year (Jan-Dec the same year), but can be obtained for any interval of 12 months, or varied .

1) FREQUENCY - absolute measurement

Total number of persons in the population or sub-group in a specific moment of time, or

total n of occurrences of the event during the period of time considered:

- useful as numerator of population-based measures or guiding public resource allocation
- does not measure the intensity of stock and flow statistics

Ex: N of live births \rightarrow n vaccines calculation

Without distinguishing RURAL from URBAN births

Are there more men or women? Did the Mortality rate increase?

OBS: Do not use frequency when population have different sizes!

Relative measurement for Stock statistics

2) RATIO: relationship between values that belong to different populations.

EX: the relationship between the total of MEN and WOMEN in total a population, usually called the SEX RATIO.

Ex: Brazil Sex ratio (SR)

2011 Men = 94.7 million

Women = 100.5 million

$$SR = \underbrace{P^m}_{P^f} \times 100$$

$$SR = 94.2 (2011)$$

	1991	1996	1999	2000	2010	2013	2014	2018*
BRASIL	97.5	97.3	96.8	96.9	96	94.5	93.9	97
RJ	RJ smaller MAN pop				91.2		88.4	
AM	only state man pop stable				101.3			

2014:

More man: MT, PA,RO

AP = 100!!!

^{*}https://www.states101.com/gender-ratios/global/brazil

Relative measurement for Stock statistics

3) PROPORTION:

- relationship between values that come from the same population,
- the numerator is part of the denominator.

For example: the proportion of men in a population,

→ the ratio between the number of men and the total population.

2010 Census:

190,173,694 people; 93,390,532 Man

Proportion = 0.49

Proportion and Percentage – relationship between the part and the whole – pay attention to the issues which refer to relative and absolute data

Relative measurement for Stock statistics

4) RATE:

Represent the demographic event magnitude in a specific population or part of it, considering an specific **time** period.

For example: Mortality Rate

Rate of one event at a time = $\frac{n \cdot period}{n}$ pop at risk of having the event

- In general * 1000 to facilitate interpretation
- Others, like of Population Growth Rate.

RATE – intensity of variation per time unit

Useful for comparisons. It must consider:

- availability of a convenient denominator;
- availability of data that enable the comparability between different periods.

4) RATE:

Ex: Vital Rates: to general, not related to intensity

- Birth (natality) and Death Rate (mortality)
- event and population belong to the same universe

General Rate (T)

$$T_1 = A_i / P_i$$
 where:

A_i: vital <u>events</u> vitais – in a certain area and time interval . ex: Natality

P_i: <u>population over wich the events happened</u> - not necessarily all members are evenly exposed to the risk

ex: Total Population

4) RATE:

Ex: more restricted Rates:

event and population belong to the same universe

General Rate (T)

$$T_2 = A_i / (B_i + C_i)$$

where:

A_i: vital <u>events</u> – in a certain area and time interval . ex: Mortality

B_i + C_i: population over wich the events happened - ex: population of an specific age interval

Generic Demographic rates

RATE = N event /people-year exposed to the event risk

Period Demographic Rates:

RATE = N events between t_0 and t / people-year exposed to the event risk betweeen t_0 and t

Gross Rate, General, Specifics (age, sex),

4) RATE:

Some measures are called RATE, but by defintion they are not.

Ex:

(a) Rate of Population Growth

$$\frac{P^{t} - P^{t_0}}{P^{t_0}} \times 100 \text{ ou } \frac{P^{t} - P^{t_0}}{P^{\frac{t+t_0}{2}}} \times 100$$

(b) Urbanization Rate

$$\frac{P^{urbana}}{P} \times 100$$

(c) Natality Gross Rate

$$\frac{N}{P}$$
 × 1000

WHY?

4) RATE:

Some measures are called RATE, but by defintion they are not.

Ex:

(a) Rate of Population Growth

$$\frac{P^{t} - P^{t_0}}{P^{t_0}} \times 100 \text{ ou } \frac{P^{t} - P^{t_0}}{P^{\frac{t+t_0}{2}}} \times 100$$

(b) Urbanization Rate

$$\frac{P^{urbana}}{P} \times 100$$

(c) Natality Gross Rate

$$\frac{N}{P}$$
 × 1000

- (a) & (b) the numerator is not the number of occurrences of an event,
- (c) the denominator includes people who are not at risk, such as newborn children and elderly pop

5) Probability - includes risk estimates

Probability of an event in a given period

N of events during the period

Population in risk of the event in the begining of the period

- Generally *1000 better reading and interpretation
- Also a measure of Risk

Demographic VARIABLES

Size and **composition** are considered as **static** aspects of a population.

Demography also deals with the dynamic aspects of populations, that is, the changes and interrelationships between basic demographic variables - **fecundity, mortality and migration**.

VARIABLES

- Population Size
- Mortality
- Natality
- Fecundity
- Distribution by sex, age, situation
- Geographic Distribution

Giving:

- The population of a given geographic area, at any given time.
- The initial population in the distant past, there was no entry and exit of people from the area.
- A closed population → without migratory movements.

What is the size of the current population?

What is the size of the current population?

The trajectory between the initial population and the current population can be explained by:

births and deaths + migratory movements, that occurred in the period

It can be represented by the Basic Equation of the Population Movement:

$$P_n = P_o + N_t - O_t + I_t - E_t$$

```
P_n = population in a time n;

P_o = initial population, t=o;

N_t = births in period t (t = n - o);

O_t = deaths in period t (t = n - o).

I_t = Immigrants in period t (t = n - o);

E_t = Migrants in period t (t = n - o).
```


What is the size of the current population?

(CLOSED Population)>> Evolution from the initial population and the current population is explained by the **deaths** and **births** that occurred in the period. **Without migratory movements**

Population size at any time during this period can be reproduced by:

$$P_n = P_o + N_t - O_t$$

 P_n = population in a time n;

P_o = initial population, t=o;

 N_t = births in the periodo t (t = n - o);

 O_t = deaths in the periodo t (t = n - o).

Basic Equation – Specific terms:

$$P_n = P_o + N_t - O_t$$

Vegetative Growth: N - O

Migration balance: I - E
 (Net migration Rate)

• Population Growth: $P_n - P_o$

• Population Growth Rate: $(P_n - P_0) / P_0 \times 100$

Population growing with geometric progression...

$$P_n = P_o (1+r)^t$$

r = Growth rate by time period;

t = period, in time unit, between 0 and n

How to calculate r?

$$P_{n} = P_{0}(1+r)^{t} \qquad (1+r) = anti \log \left[\frac{1}{t} \log \frac{P_{n}}{P_{0}}\right]$$

$$\frac{P_{n}}{P_{0}} = (1+r)^{t} \qquad r = anti \log \left[\frac{1}{t} \log \frac{P_{n}}{P_{0}}\right] - 1$$

$$\log \frac{P_{n}}{P_{0}} = t \log(1+r) \qquad \text{or}(\log 10 \text{base})$$

$$\frac{1}{t} \log \frac{P_{n}}{P_{0}} = \log(1+r) \qquad r = 10^{\left[\frac{1}{t} \log \frac{P_{n}}{P_{0}}\right]} - 1$$

Population growing with geometric progression

To calculate the size of the population in the future ... or to calculate the time required to reach a given population volume, from a given initial population and a growth rate....

Consider the Brazilian population:

in 2000: 169,799,170 residents, and

in 2010: 190,755,799.

(without considering migrations)

Calculate:

- Annual growth rate;
- Intercensal value for 2007;
- If this growth rate is maintained,
 how long would the population double?

$$P_n = P_0 (1+r)^t$$

$$\frac{P_n}{P_0} = (1+r)^t$$

$$\log \frac{P_n}{P_0} = t \log(1+r)$$

$$t = \frac{\log \frac{P_n}{P_0}}{\log(1+r)}$$

SIZE: IBGE Projection estimates – BR & UF

Population Projection (2013) - Demographic component Method

It incorporates information on observed *trends in mortality, fecundity and migration* at the national and regional levels

Demography's fundamental **population component estimating equation**: (Equação compensadora ou equação de equilíbrio populacional):

```
P_{(t+n)} = P_{(t)} + B_{(t,t+n)} - D_{(t,t+n)} + I_{(t,t+n)} - E_{(t,t+n)}

P_{(t+n)} = \text{population in year t + n;}

P_{(t)} = \text{population in year t;}

P_{(t,t+n)} = \text{births occurring between t and t + n;}

P_{(t,t+n)} = \text{deaths occurring between t and t + n;}

P_{(t,t+n)} = \text{deaths occurring between t and t + n;}

P_{(t,t+n)} = \text{deaths occurring between t and t + n;}

P_{(t,t+n)} = \text{deaths occurring between t and t + n;}

P_{(t,t+n)} = \text{deaths occurring between t and t + n;}

P_{(t,t+n)} = \text{deaths occurring between t and t + n;}

P_{(t,t+n)} = \text{deaths occurring between t and t + n;}

P_{(t,t+n)} = \text{deaths occurring between t and t + n;}

P_{(t,t+n)} = \text{deaths occurring between t and t + n;}

P_{(t,t+n)} = \text{deaths occurring between t and t + n;}

P_{(t,t+n)} = \text{deaths occurring between t and t + n;}

P_{(t,t+n)} = \text{deaths occurring between t and t + n;}

P_{(t,t+n)} = \text{deaths occurring between t and t + n;}

P_{(t,t+n)} = \text{deaths occurring between t and t + n;}

P_{(t,t+n)} = \text{deaths occurring between t and t + n;}

P_{(t,t+n)} = \text{deaths occurring between t and t + n;}

P_{(t,t+n)} = \text{deaths occurring between t and t + n;}

P_{(t,t+n)} = \text{deaths occurring between t and t + n;}
```

SIZE: Projections

Demographic Component Method

In a given year **t**,

the population of men and women in the age x (with x = 1,2,3,, 89) is P_{χ}^{I} and

the proportion of people of a specific age who survives a year is $\,S_{_{\mathcal{X}}}^{\,t}$

The population at age x + 1 in year t + 1 is given by:

$$P_{x+1}^{t+1} = P_x^t * S_x^t + M_x^t$$

Where: M_x^t represents the migratory component.

ex. For the age group of 90 years or over (P_{90+}) :

$$P_{90+} = P_{89+} * S_{89+} + M_{89+}$$

SIZE: IBGE Projection estimates – BR & UF

Population Projection (2013) **Demographic Component Method – MCD**

Componentes demográficas, parâmetros utilizados e construção de hipóteses: cálculo e projeção (...)

https://ww2.ibge.gov.br/home/estatistica/populacao/projecao_da_populacao/2013/default.shtm

SIZE: IBGE Projection estimates – BR & UF

https://www.ibge.gov.br/apps/populacao/projecao/notatecnica.html

Projeções e estimativas da população do Brasil e das Unidades da Federação

Popclock Projeção 2013

(1° de julho de 2000 a 01 de julho de 2020)

METODOLOGIA DE CÁLCULO

- O Popclock calculado a partir da nova Projeção de População do Brasil 2013 apresenta a população residente do Brasil, ajustada a cada segundo, e estimada da seguinte forma:
 - Foram utilizadas as populações projetadas para 1º de julho, cobrindo os anos de 2000 a 2020, extraídas da Projeção de População do Brasil 2013, elaborada pelo Método das Componentes Demográficas (MCD) para cada uma das 27 unidades da federação, com as seguintes características:
 - População de partida Estrutura ajustada por sexo e grupos quinquenais de idade para o Censo Demográfico 2000;
 - Mortalidade oriunda da Projeção da população do Brasil 2013 por sexo e idade para o período 2000 2060, utilizando as tábuas construídas para 2000 e 2010;
 - Fecundidade oriunda da Projeção da população do Brasil 2013 por sexo e idade para o período 2000 2060, utilizando as taxas específicas de fecundidade construídas para 2000 e 2010; e
 - Migração internacional oriunda da Projeção da população do Brasil 2013 por sexo e idade para o período 2000 2060.

Para detalhes adicionais, ver em:

www.ibge.gov.br/home/estatistica/populacao/projecao_da_populacao/2013/default.shtm

SIZE: IBGE Municipal Projection estimates

Population Estimates – MUNICIPALITIES - July 1, 2017:

Madeira & Simões (1972) Methodology: "the trend of population growth of the municipality, between two consecutive demographic census, is given in relation to the growth trend of a hierarchically superior geographical area (greater area)."

- Basis of projection for each Federation Unit –UF (larger area)
- UF Population value (2017) → demographical component method

http://biblioteca.ibge.gov.br/visualizacao/livros/liv100923.pdf

SIZE: IBGE Projection estimates – BR & UF

Population Estimates – MUNICIPALITIES - July 1, 2017:

Demographical component - Population estimates UF (2013) \rightarrow P (t)

Larger Area (UF) \rightarrow P(t) = pop estimated at t, subdivided in smaller areas iPi (t); i = 1, 2, 3, ..., n $P(t) = \sum_{i=1}^{n} P_i(t)$

$$P_i(t) = a_i P(t) + b_i$$

a_i = proportion of pop increase from smaller area (i) /larger area
 b_i = linear coefficient for adjustment
 t₀ & t₁ = Demographic Censuses 2000 and 2010

$$P_i(t_0) = a_i P(t_0) + b_i$$

 $P_i(t_1) = a_i P(t_1) + b_i$

$$a_i = P_i(t_1) - P_i(t_0) / P(t_1) - P(t_0)$$

 $b_i = P_i(t_0) - a_i P(t_0)$

http://biblioteca.ibge.gov.br/visualizacao/livros/liv100923.pdf

https://biblioteca.ibge.gov.br/visualizacao/livros/liv101662.pdf

SIZE: IBGE Projection estimates – BR & UF

No caso das estimativas de população referentes ao ano de 2019, deve-se considerar nas expressões anteriores:

Pi: População do município i;

P: População da Unidade da Federação;

t0: 1º de julho de 2000;

t1: 1º de julho de 2010;

t: 1º de julho de 2019

$$P_i(t_0) = a_i P(t_0) + b_i$$

 $P_i(t_1) = a_i P(t_1) + b_i$

$$a_i = P_i(t_1) - P_i(t_0) / P(t_1) - P(t_0)$$

$$b_i = P_i (t_0) - a_i P (t_0)$$

As populações municipais censitárias obtidas nos Censos Demográficos 2000 e 2010, passaram por uma harmonização para torna-las comparáveis, através dos seguintes procedimentos:

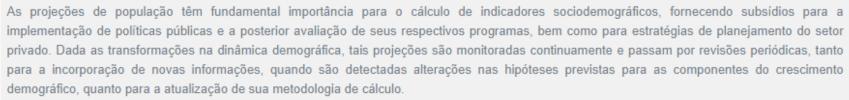
- A população municipal recenseada em 2000 foi atualizada considerando a Divisão Político-administrativa (PDA) Brasileira vigente no Censo Demográfico em 2010;
- As populações municipais recenseadas em 2000 e 2010, com data de referência em 1º de agosto desses anos, foram deslocadas para 1º de julho;
- As populações municipais recenseadas em 2000 e 2010 foram ajustadas pelo mesmo fator de ajuste que as populações das Unidades da Federação receberam na Projeção da População, Revisão 2018.

http://biblioteca.ibge.gov.br/visualizacao/livros/liv100923.pdf

https://biblioteca.ibge.gov.br/visualizacao/livros/liv101662.pdf

SIZE: IBGE Projection estimates

Título: Projeções da população : Brasil e unidades da federação : revisão 2018


Local: Rio de Janeiro

Editor: IBGE Ano: 2018

Descrição física: 56 p.

Notas:

Inclui bibliografia.

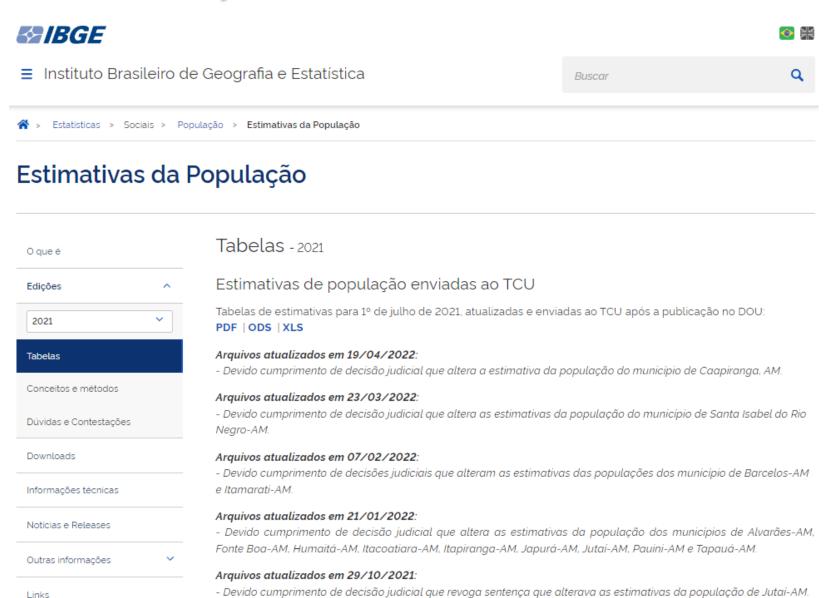
Com o lançamento desta publicação, o IBGE apresenta a metodologia empregada nas Projeções da População do Brasil e das Unidades da Federação - Revisão 2018, cujos resultados se distinguem dos apresentados nas Projeções 2013 em relação aos seguintes aspectos: alteração da população de partida, adotando-se 2010 como ano inicial; revisão dos parâmetros utilizados na projeção até então vigente para a fecundidade em virtude da constatação da mudança de comportamento dessa componente; além de ajustes no cálculo da migração interna e revisão dos parâmetros e hipóteses futuras, no caso da migração internacional. A componente mortalidade, cabe ressaltar, permaneceu sem alterações em relação às Projeções 2013.

As projeções da população do Brasil e das Unidades da Federação fornecem informações até o ano de 2060, considerando um horizonte temporal de 50 anos após o último Censo Demográfico realizado.

A metodologia ora divulgada está organizada em quatro capítulos: o primeiro descreve o Método das Componentes Demográficas, utilizado para projetar e retroprojetar as populações do Brasil e das Unidades da Federação; o segundo apresenta a população de partida da projeção e a retroprojeção da população do Brasil e das Unidades da Federação para o período 2010-2000; o terceiro discorre sobre a análise da componente fecundidade no período de 2000 a 2016 e a definição dos parâmetros e hipóteses futuras para o nível e o padrão etário da fecundidade para as Unidades da Federação; e o último capítulo, por fim, trata da revisão das migrações interna e internacional, bem como dos parâmetros e hipóteses adotados.

https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&id=2101597

Assuntos:


Brasil; Fecundidade; Migração; População; Previsão demográfica

Entidade Secundária: IBGE. Coordenação de População e Indicadores Sociais

Série Secundária: Coleção Ibgeana; Relatórios metodológicos (IBGE), ISSN 0101-2843

SIZE: IBGE Projection estimates

SIZE: IBGE Projectic

■ Instituto Brasileiro de Geografia e E

Estimativas da População

Tabelas -

Estimativas

Tabelas de estir PDF | ODS | XL

Arquivos atuali.

- Devido cumpri

Arquivos atuali.

- Devido cumpri. Negro-AM.

Arquivos atuali.

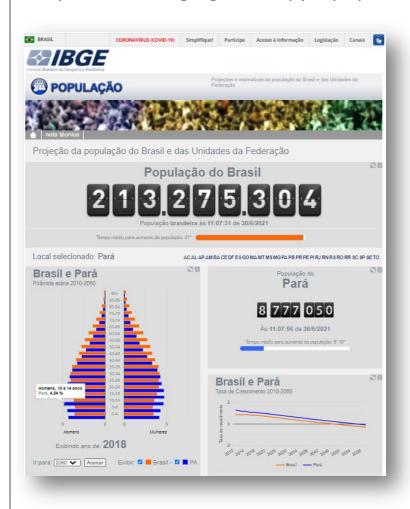
Devido cumpri.
 e Itamarati-AM.

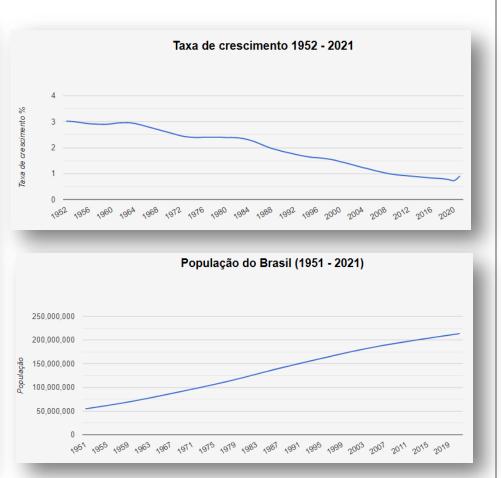
Arquivos atuali.

Devido cumpr
 Fonte Boa-AM, I

Arquivos atuali.

- Devido cumpri


ESTIMATIVAS DA POPULAÇÃO RESIDENTE NO BRASIL E UNIDADES DA FEDERAÇÃO COM DATA DE REFERÊNCIA EM 1º DE JULHO DE 2021


BRASIL E UNIDADES DA FEDERAÇÃO	
Brasil	213.317.639
Região Norte	18.906.962
Rondônia	1.815.278
Acre	906.876
Amazonas	4.269.995
Roraima	652.713
Pará	8.777.124
Amapá	877.613
Tocantins	1.607.363
Região Nordeste	57.667.842
Maranhão	7.153.262
Piauí	3.289.290 ⁽¹⁾
Ceará	9.240.580 ⁽¹⁾
Rio Grande do Norte	3.560.903
Paraíba	4.059.905
Pernambuco	9.674.793 ⁽²⁾
Alagoas	3.365.351 ⁽²⁾
Sergipe	2.338.474 ⁽³⁾
Bahia	14.985.284 ⁽³⁾
Região Sudeste	89.632.912
Minas Gerais	21.411.923
Espírito Santo	4.108.508
Rio de Janeiro	17.463.349
São Paulo	46.649.132
Região Sul	30.402.587
Paraná	11.597.484
Santa Catarina	7.338.473
Rio Grande do Sul	11.466.630
Região Centro-Oeste	16.707.336
Mato Grosso do Sul	2.839.188
Mato Grosso	3.567.234
Goiás	7.206.589 ⁽⁴⁾
Distrito Federal	3.094.325 ⁽⁴⁾

Population - Projection estimates

https://www.ibge.gov.br/apps/populacao/projecao/index.

http://countrymeters.info/pt/Brazil

References

- MADEIRA, J. L.; SIMÕES, C. C. da S. Estimativas preliminares da população urbana e rural segundo as unidades da federação, de 1960/1980 por uma nova metodologia. Revista Brasileira de Estatística, Rio de Janeiro: IBGE, v. 33, n. 129, p. 3-11, jan./mar. 1972.
- Bueno, M.C.D; D'Antona, A.O. Data integration to determine vulnerability to climate change. **Statistical Journal of the IAOS 32.** 2016. p. 489–496 489. (**DOI:** 10.3233/SJI-160990)
- Sherbinin A.; Carr, D.; Cassels, S.; Jiang, L. Population and Environment. Annu. Rev. Environ. Resour. 2007. v.32, p. 345 373
 (DOI: 10.1146/annurev.energy.32.041306.100243)

SIZE: IBGE Municipal Projection estimates

Population Projection (2013) **Demographic Component Method**

Componentes demográficas, parâmetros utilizados e construção de hipóteses: cálculo e projeção (...)

Tamanho

• Results:

- Annual Growth Rate (r = 0.0117, ou 1,17 %a.a.)
- Valor intercensitário para 2007
 - $P_{2007} = P_{2000} (1 + r)^{t} \rightarrow 184.210.802$
 - 183 987 291 recenseados
- Se mantida esta taxa de crescimento,
 em quanto tempo a população duplicaria

$$T_2 = 60$$
 anos

$$P_n = P_0(1+r)^t$$

$$\frac{P_n}{P_0} = (1+r)^t$$

$$\log \frac{P_n}{P_0} = t \log(1+r)$$

$$t = \frac{\log \frac{P_n}{P_0}}{\log(1+r)}$$

Introdução

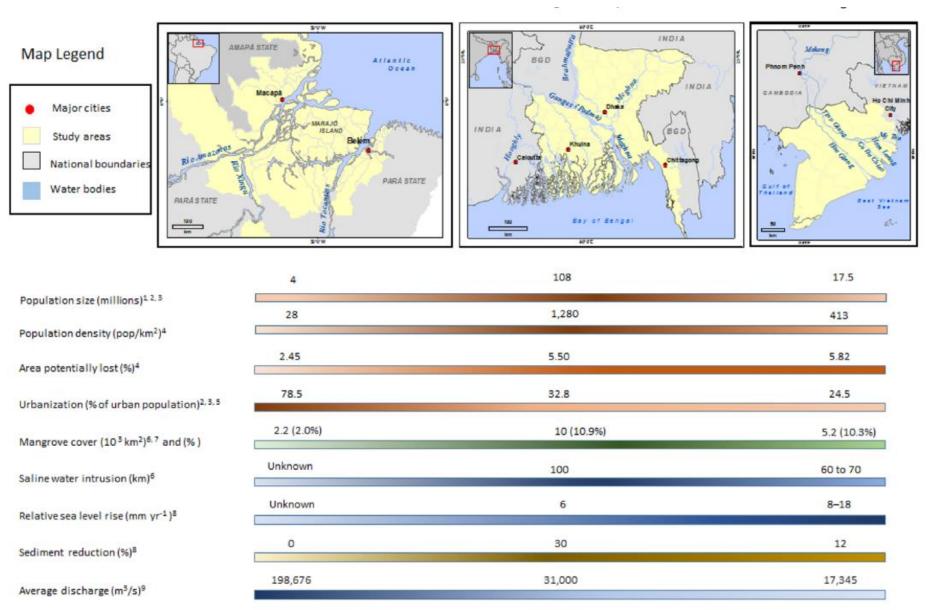
Population dynamics, delta vulnerability and environmental change: comparison of the Mekong, Ganges-Brahmaputra and Amazon delta regions

- Além de Serviços ecossistêmicos saúde, renda e sustentabilidade agrícola e de recursos naturais
- Bem estar tem q considerar contexto demográfico estrutura (sexo e idade), fertilidade, mortalidade e migração
- Mudanças ambiental globais aumento nível do mar, inundação, intrusões salinas, etc
- Dinamica populacional em 3 deltas
- Teoria de transição demográfica e links de P-E
- Qualidade do ambiente biofísico e perigos (hazard) influencia componentes de mudança demográfica

Área Estudo

Population dynamics, delta vulnerability and environment change: comparison of the Mekong, Ganges-Brahmaput and Amazon delta regions

Sylvia Szabo 1 · Eduardo Brondizio 2 · Fabrice G. Renaud 3 · Scott Hetrick 2 · Robert J. Nicholls 4 · Zoe Matthews 1 · Zachary Tessler 5 · Alejandro Tejedor 6 · Zita Sebesvari 3 · Efi Foufoula-Georgiou 6 · Sandra da Costa 7 · John A. Dearing 8


- Ganges-Brahmaputra delta in Bangladesh (GBD),
- Mekong delta in Vietnam
- Amazon delta in Brazil.

the dynamics of population change in delta regions

- in developing/transition countries.
- Spatial extent: by the area downstream of the first distributary as mapped by the Shuttle Radar Topography
- Mission.

Área Estudo

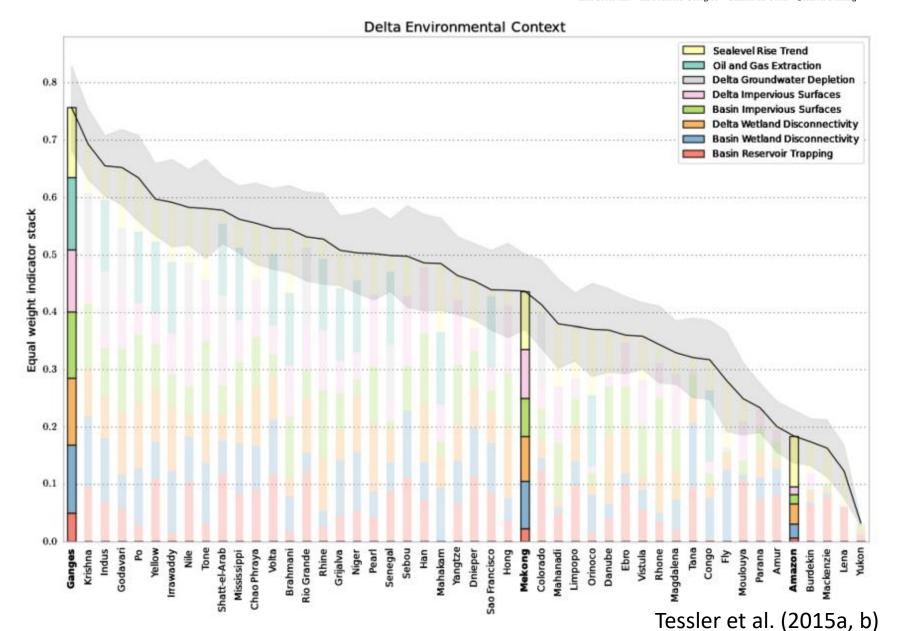
Population dynamics, delta vulnerability and environmental change: comparison of the Mekong, Ganges-Brahmaputra and Amazon delta regions

Dados

Sylvia Szabo¹ · Eduardo Brondizio² · Fabrice G. Renaud³ · Scott Hetrick² · Robert J. Nicholls⁴ · Zoe Matthews¹ · Zachary Tessler⁵ · Alejandro Tejedor⁶ · Zita Sebesvari³ · Efi Foufoula-Georgiou⁶ · Sandra da Costa⁷ · John A. Dearing⁸

- secondary macro and micro level data sources to overview and analyze the three deltas – surveys e census
- Dado agregado municipal and census sector levels : 1991,
 2000 and 2010
- sea level rise (RSLR) rates -> risco de inundação
- Índices: 8 drivers humanos associados ao aumento relativo do nível do mar

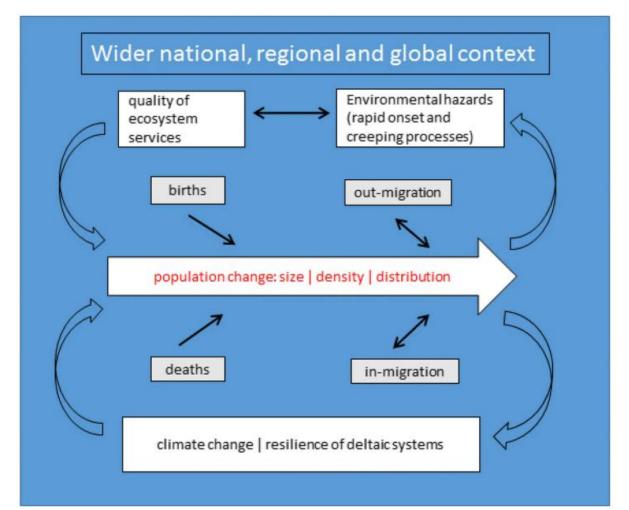
From the coastal delta domain: hydrocarbon extraction, groundwater extraction, impervious surface area, and wetland disconnectivity.


From the upstream contributing watershed: impervious surface area, wetland disconnectivity and sediment trapping in artificial reservoirs.

AND From Ocean: estimates of sea level rise trends

>> indicators derived from global-scale remote-sensing and numerical modeling.

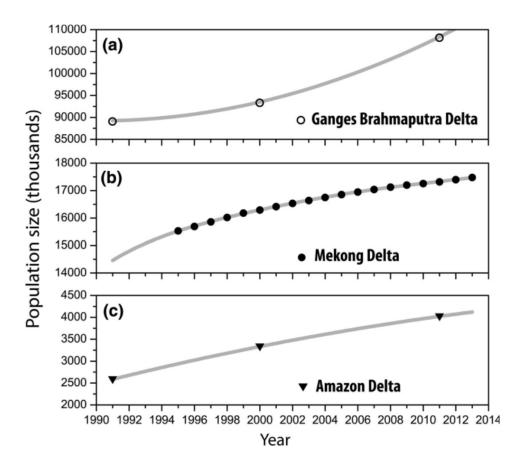
Dados


Population dynamics, delta vulnerability and environmental change: comparison of the Mekong, Ganges-Brahmaputra and Amazon delta regions

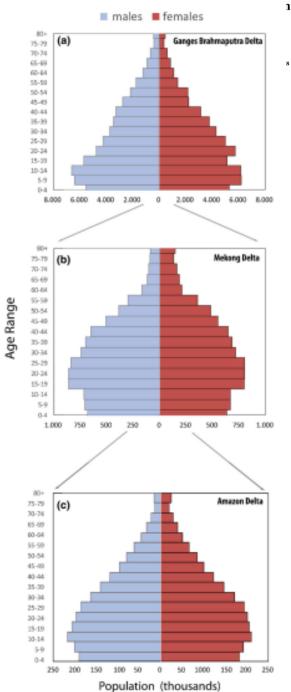
Feedbacks Din Pop x Mudanças ambientais

Population dynamics, delta vulnerability and environmental change: comparison of the Mekong, Ganges-Brahmaputra and Amazon delta regions

- Framework
- Rápido (+) cresc pop, depois (-) fertilidade e (+) emigração



Feedbacks Din Pop x Mudanças ambientais


Population dynamics, delta vulnerability and environmental change: comparison of the Mekong, Ganges-Brahmaputra and Amazon delta regions

- Componentes de mudanças demográficas podem ser afetados pela qualidade do ambiente natural, perigos naturais e processos de fluência ("creeping") o como intrusões salinas e contaminação da água e do solo por arsênio
- Perda pop por migração (colapso pop);
- mortalidade alterada por perigos naturas e eventos climáticos;
- salinidade altera qualidade da água e reflete na segurança alimentar e saúde.
- Qualidade ambiental pode tb alterar fertilidade (não disse como)

População - Crescimento e estrutura

Population dynamics, delta vulnerability and environmental imaputra

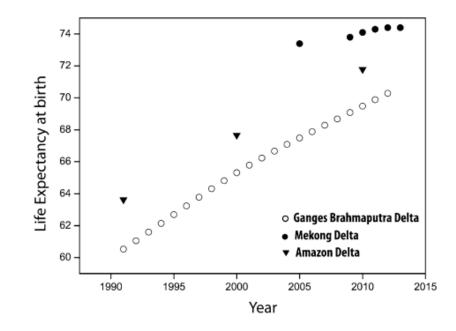
Componentes de mudanças da População

Population dynamics, delta vulnerability and environmental change: comparison of the Mekong, Ganges-Brahmaputra and Amazon delta regions

Sylvia Szabo¹ · Eduardo Brondizio² · Fabrice G. Renaud³ · Scott Hetrick² · Robert J. Nicholls⁴ · Zoe Matthews¹ · Zachary Tessler⁵ · Alejandro Tejedor⁶ · Zita Sebesvari³ · Efi Foufoula-Georgiou⁶ · Sandra da Costa⁷ · John A. Dearing⁸

Mortalidade

Mekong


- Inundações em
- Contamincao da água

Bangladesh

- Ciclones
- Doenças pós-desastres
- Stress e depressão

Amazonas

- Inundações
- Problemas de saúde (rápida urbanização e infraestrutura pobre)
- Malária
- Migração

Fig. 6 Recent trends in life expectancy at birth in the Mekong, Ganges–Brahmaputra and Amazon delta regions Data sources: World Development Indicators (WDI), IBGE and GSO, Vietnam. For GBD national data were used to approximate trends

Componentes de mudanças da População

Population dynamics, delta vulnerability and environmental change: comparison of the Mekong, Ganges-Brahmaputra and Amazon delta regions

Sylvia Szabo¹ · Eduardo Brondizio² · Fabrice G. Renaud³ · Scott Hetrick² · Robert J. Nicholls⁴ · Zoe Matthews¹ · Zachary Tessler⁵ · Alejandro Tejedor⁶ · Zita Sebesvari³ · Efi Foufoula-Georgiou⁶ · Sandra da Costa⁷ · John A. Dearing⁸

Migração

Chave para mudanças pop nos 3 deltas

- Vulnerabilidade ambiental
- Emigração (saída) dos deltas e imigração para as megacidades dos deltas devem manter o desigual desenvolvimento espacial, transformações biofísicas e vulnerabilidade ambiental

Population dynamics, delta vulnerability and environmental change: comparison of the Mekong, Ganges-Brahmaputra and Amazon delta regions

Sylvia Szabo¹ · Eduardo Brondizio² · Fabrice G. Renaud³ · Scott Hetrick² · Robert J. Nicholls⁴ · Zoe Matthews¹ · Zachary Tessler⁵ · Alejandro Tejedor⁶ · Zita Sebesvari³ · Efi Foufoula-Georgiou⁶ · Sandra da Costa⁷ · John A. Dearing⁸

Mortalidade

 Difícil examinar o qto da mortalidade é afetada por fatores ambientais

Efeitos negativos:

- Impactos diretos perigos naturais
- Qualidade do ambiente– água contaminada;aumento detemperatura...

Mekong

- Inundaçoes em
- Contamincao da água

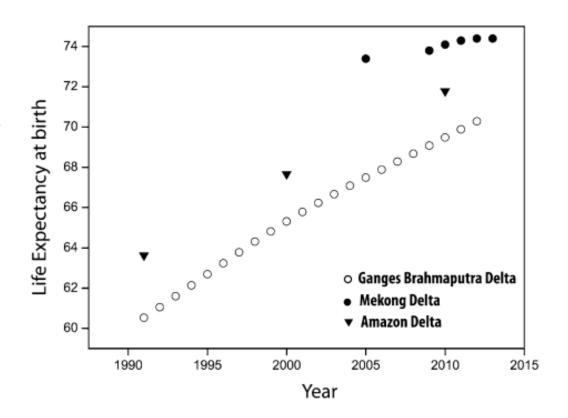


Fig. 6 Recent trends in life expectancy at birth in the Mekong, Ganges-Brahmaputra and Amazon delta regions Data sources: World Development Indicators (WDI), IBGE and GSO, Vietnam. For GBD national data were used to approximate trends