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An Evaluation of Small Area Population

Estimation Techniques Using Open Access

Ancillary Data

Mitchel Langford
GIS Research Unit, Faculty of Advanced Technology, University of Glamorgan, Pontypridd, Wales,
U.K.

National census data represent the “gold standard” for authoritatively portraying a coun-
try’s residential population distribution, but their aggregated counts for fixed administra-
tive areas present problems for many geographic information system (GIS) analyses.
Intelligent areal interpolation algorithms assist by transferring data from one zonal system
to another using ancillary data to improve accuracy. All areal interpolation methods make
assumptions and generate errors, and performance varies with both specific location and
the data inputs used. This study adds to our understanding of the relative merits of
alternative methods by comparing dasymetric, street network, and surface-based models
interpolating across two spatial resolutions. It examines the importance of the ancillary
data source used to drive the process, particularly the efficacy of open access products.
Results from an empirical study show that interpolation accuracy is influenced by the
choice of ancillary data input as well as the methodological approach adopted. The
strongest overall performance is delivered by dasymetric mapping combined with open
access data identifying the locations of buildings. Open access data sets offer considerable
potential for widening the use of intelligent population interpolation tools, especially if
plug-in tools to execute these algorithms can be made available for commonly used GIS
software packages.

Introduction

Small area estimates of population counts and other demographic variables are essential for the
effective integration and analysis of disparately sourced data sets in geographic information
system (GIS)-based modeling. The demography expressed via a national census typically rep-
resents the “gold standard” in terms of accurately and authoritatively portraying the magnitude,
characteristics, and spatial distribution of a country’s residential population. However, to adhere
to statutory obligations regarding confidentiality and nondisclosure requirements, and to help
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constrain potential data volumes, individual census records typically are not released. Instead,
aggregated counts are reported for a specified set of fixed areas. This poststratification can be
problematic for GIS analysts attempting to undertake spatial modeling because population counts
often are required for alternative and incongruent areal units to compute an incidence ratio or to
enable the integration of geographic information derived from disparate sources. This situation
arises frequently in GIS analyses because the boundaries of natural phenomena (e.g., watersheds,
land cover parcels), those of socioeconomic data sets constructed using alternative discrete
geographies (e.g., postal delivery zones, police beat areas), or analytical zones created directly by
a GIS (through operations such as spatial buffering or the computation of network distance travel
time catchments) typically overlap census zones in complex ways.

Enabling the transfer of attribute data from one zonal system to another requires some form
of areal interpolation (Flowerdew and Green 1994). In this context, census units with a known
population count (Fig. 1a) are termed source units, whereas those requiring an estimated count
(Fig. 1b) are termed target units (Goodchild, Anselin, and Deichmann 1993). Only if source units
nest completely and without overlap inside target units is areal interpolation unnecessary, because
simple summation on the basis of inclusion suffices. More typically, target units partially overlap
multiple source units, occupy a subspace within a source unit, or consist of a mixture of source
units lying completely within a target unit while others partially intersect it. As the proportion of
partially intersecting source units increases or as the size of a target unit lying completely within

Figure 1. Simple areal interpolation. Aggregated data are available for source zone (a) but
required for target zones (b). Areal weighting distributes population uniformly across source zone
(c), while a centroid places all population at a representative point (d). Either distribution model
may be used to provide estimates for target zones.
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a source unit diminishes, the interpolation task becomes progressively more demanding and
prone to estimation error (Sadahiro 2000a).

A wide variety of algorithms have been developed to perform areal interpolation (e.g., Lam
1983; Flowerdew and Green 1989; Harvey 2000; Cai et al. 2006; Lo 2008). The simplest of these
assign source population counts to a representative point location, then estimate target counts by
summing all point counts that fall inside their boundary or utilize only the respective geometries
of the intersecting areal units (Goodchild and Lam 1980). Over the last two decades, the
increasing sophistication of GIS software and growing availability of digital spatial data sets have
led to the development of many “intelligent” areal interpolation algorithms (e.g., Flowerdew and
Green 1992; Fisher and Langford 1995; Xie 1995). These algorithms seek to provide more
accurate target zone estimates by utilizing additional information residing within a GIS database
to provide guidance about the probable internal distribution of source zone population. Ulti-
mately, every areal interpolation algorithm is based upon underlying assumptions regarding the
likely distribution of population within source units. Consequently, the accuracy of provided
estimates is always a reflection of the validity of these assumptions and of the appropriateness of
the ancillary data sets employed.

To test interpolation performance and to compare alternative areal interpolation algorithms,
estimates must be generated for a set of target units whose true values are also known. This
necessity has led to the widespread adoption of a testing framework in which researchers build
a population distribution model using one level in the hierarchy of census spatial units (e.g., block
groups in the United States or census wards in the United Kingdom) and examine its performance
by interpolating to a lower level within the same hierarchy (e.g., blocks in the United States or
output areas in the United Kingdom). Table 1 illustrates the popularity of this approach within
the current literature. This general strategy renders several implications: first, our understanding
of the relative performance of competing areal interpolation algorithms is largely based on
models constructed using census data that are not the most spatially detailed because this
resolution is reserved for testing; second, although constructing and using models based on the
finest level of census data is possible, and we might reasonably assume that these are the most
accurate data, we seldom are able to evaluate formally their performance at the finest spatial
resolution; and third, whatever level of census hierarchy is used to construct a population
distribution model, we cannot be sure of its performance when estimating counts for target units
considerably smaller than those of the finest census zone division.

The purpose of this article is threefold. First, it aims to contribute to the growing set of
studies comparing performance among alternative intelligent areal interpolation methods (e.g.,
Hawley and Moellering 2005; Brinegar and Popick 2010; Tapp 2010; Zandbergen and Ignizio
2010). Despite such testing, Zandbergen and Ignizio (2010) acknowledge that all methods have
assumptions, flaws, and errors that their performance may vary with location and data conditions,
and that no single “best method” has yet been established. This study includes recent additions
to the methodology literature among the subset of techniques that are formally evaluated and
compared. Second, by utilizing known population counts for U.K. unit postcodes (UPCs), this
article explores the accuracy of the tested techniques in providing small area estimates, where
small areas are defined as geographic target units demonstrably smaller than those of the finest
census division. Finally, and perhaps most significantly, this article focuses attention on the
importance of the ancillary data sources used to drive intelligent interpolation processes. This
factor often is critical in determining interpolation performance, yet it often has been overlooked
in discussions concerning the relative merits and underlying assumptions of competing
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methodologies. In particular, research summarized in this article scrutinizes the efficacy of
high-quality open access (i.e., “no cost”) data sets for use as ancillary inputs to intelligent areal
interpolation models. I am unaware of any published examination to date of the effectiveness of
several of the specific open access data sources that are addressed here.

Theoretical background and previous methods

If census counts and their corresponding zones are the only information available to a GIS
analyst, choices for areal interpolation are limited. In this situation, areal weighting may be used
(Goodchild and Lam 1980; Lam 1983), which makes the assumption that source zone population
is evenly spatially distributed within the zone boundary (Fig. 1c). Intersection zones are created
by the overlay of source and target zones, and each receives a fraction of the source zone count
based upon its area size relative to the overlapping source zone area. Intersection zones and their
interpolated counts are aggregated to form the target zone estimates. This process can be
expressed algebraically as

P̂
A

A
Pt

ts

s
s= ⋅∑ (1)

where P̂t is the estimated population of target zone t, Ps is the known population of source zone
s, As is the area of source zone s, and Ats is the area of intersection between target zone t and
source zone s.

Alternatively, a source zone centroid may be available (Fig. 1d)—either a computed geo-
metric centroid or, preferably, a population-weighted centroid typically provided by the data
supplier and deemed to represent the center of gravity of the contained population. Then, the
population can be allocated on the basis of the inclusion of such points within a target zone’s
boundary. Fig. 1b and 1d indicate that neither target zone in this example would receive any
population count using this method. The allocation of counts to target zones based on this
all-or-nothing rule is prone to considerable error unless source zones are small relative to target
zones (Sadahiro 2000b). Likewise, estimates based on simple areal weighting may contain
significant error because the assumption of uniform population distribution within a source zone
is seldom an accurate reflection of reality.

Increasingly, census counts and source and target zone boundaries are not the only infor-
mation available when conducting areal interpolation using a GIS. In recognition of this change
in data availability, numerous intelligent areal interpolation algorithms have been developed over
the last two decades. They aim to improve interpolation accuracy by utilizing additional infor-
mation residing in a GIS to provide guidance about the internal distribution of source zone
population. Fig. 2a illustrates a typical scenario where a range of data sets is available in the
GIS—in this example, polygons depicting building locations, lines portraying a road network,
and points identifying bus stops. These data sets (as well as any number of possible alternatives)
have the potential to inform where population might reasonably be expected to be located within
source zone boundaries. The following sections describe in greater detail some specific intelli-
gent areal interpolation methodologies that utilize this general concept.

Interpolation by dasymetric mapping

Dasymetric mapping can be defined as a technique in which attribute data collected within an
arbitrary areal unit is more accurately distributed within that unit by the overlay of additional
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geographic boundaries derived from ancillary data sources. These boundaries help to exclude,
restrict, or confine the attribute in question in order to generate internal subdivisions that possess
increased homogeneity and that better represent the actual underlying geographic distribution.
For example, population counts in census zones may be more accurately distributed by the
overlay of water bodies, vacant land, and other land use parcels within which people are not
expected to live. Dasymetric mapping was first developed in the early 20th century as a carto-
graphic technique aimed at addressing some of the issues associated with choropleth mapping
(Wright 1936). Fisher and Langford (1995) demonstrate how dasymetric mapping principles also
can be used to enhance areal interpolation algorithms. This insight has led to a rejuvenated

Figure 2. Schematic example of intelligent areal interpolation. Population aggregated for source
zone (a) are required for target zones (b). Ancillary data residing in a GIS (c) can be used to model
the internal distribution of source zone population. For example, the spatial distribution of
buildings (d), of roads (e), or bus stops (f) can be used to yield intelligent estimates of source zone
population distribution, shown in (g), (h), and (i), respectively.
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interest in dasymetric mapping; in 2008, Petrov (2008) reported that over 60% of all indexed
journal articles explicitly using the term have been published post-2004.

The definition of dasymetric mapping allows a number of methodological variants to be
identified. This article restricts itself to the simplest form whereby source zones are subdivided
into populated and unpopulated subzones (the binary dasymetric method). The rationale behind
this approach is that people live in houses, or more generally in residential areas, and if their
location within source zone boundaries can be identified, then the population count can be evenly
distributed only within this subspace. Fig. 2d and 2g illustrate this idea; the population of the
source zone is distributed only within the areas identified as housing. This redistribution can be
expressed algebraically as

P̂
A

A
Pt

tsp

sp
s= ⋅∑ (2)

where Atsp is the area of intersection between target zone t and source zone s having land cover
identified as populated, and Asp is the area of source zone s having land cover identified as
populated.

Although the binary variant has been the most widely used to date, multiclass dasymetric
mapping also is possible using category weightings derived through empirical sampling
(Mennis 2003) or statistical regression (Langford 2006) approaches. In addition, recently
sophisticated dasymetric-based methods have been proposed using, for example, cadastral-
based data inputs (Maantay, Maroko, and Herrmann 2007) or other assorted data such as
topography, land use zoning, and transportation layers progressively applied in a multilayer,
multiclass dasymetric model (Su et al. 2010). However, the implementation of such solutions
imposes greater demands in terms of ancillary data requirements and overall computational
complexity, and actual improvements in performance over simple binary dasymetric interpo-
lation often have been shown to be relatively modest (e.g., Cromley, Hanink, and Bentley
2012). For this reason and to retain a focus on the influence of ancillary data inputs rather than
the complexities of competing dasymetric methodologies, such models are not addressed in
this article.

Most studies to date have employed land cover derived from classified satellite imagery as
the ancillary data input. In the early 1990s, when the dasymetric technique was first proposed, the
availability of suitable vector data sets in the public domain was at best uncommon or, as in the
United Kingdom, largely nonexistent. Satellite imagery does have some inherent advantages such
as its universal coverage, but it also demands an understanding of multispectral signatures and
image classification techniques that may be outside many GIS analysts’ skill sets. Reibel and
Bufalino (2005) note that perhaps for this reason the use of this method has been largely restricted
to computational experiments conducted by academics. To address this issue, other researchers
have sought to find alternative ancillary data sources. For example, Reibel and Agrawal (2007)
use preclassified national land cover data, whereas Moon and Farmer (2001) employ manually
digitized map data, and Langford (2007) experiments with information derived from raster pixel
maps. A recent development in the United Kingdom has been the opening up of access to
high-quality national mapping agency vector data sets for cost-free and unrestricted public use as
part of the Making Public Data Public initiative. This development offers a new opportunity to
implement binary dasymetric interpolation in the United Kingdom using an accessible, freely
available, and highly consistent ancillary data resource. I believe that the usefulness of this new
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resource for areal interpolation is tested for the first time in the experimental study summarized
here.

Interpolation by street weighting

The street-weighting method was first proposed by Xie (1995) and utilizes vector street network
data. Several variants of the methodology exist, the simplest of which is the network length
version, which takes source zone population and uniformly distributes it along all road segments
lying within its boundaries. Next, these linear features are intersected with a target zone and an
estimated count derived by summing the population contained along each component vector
within the target zone’s boundary. Fig. 2e and 2h illustrate this idea, which can be expressed
algebraically as

P̂
L

L
Pt

ts

s
s= ⋅∑ (3)

where Lts is the length of each street vector in the intersection zone between source zone s and
target zones t, and Ls is the total length of street vectors found in source zone s. The only
significant difference between dasymetric interpolation and street weighting is in the dimensions
of the ancillary data set used. In the former, the extent of an area object within the intersection
zone drives the process; in the latter, the length of a linear object accomplishes it.

The rationale behind this approach is as follows: in modern society, people tend to live in
close proximity to transport links and specifically to roads. The use of a vector data set avoids
some of the problems previously noted with respect to satellite imagery, but other potential
problems do exist. For example, not all roads have residential housing alongside them, and even
when they do, the density of occupancy may not be uniform along all roads within each source
zone. Despite these concerns, Hawley and Moellering (2005) suggest that this technique per-
forms better than the binary dasymetric method, although other studies dispute this viewpoint and
report the opposite finding (Tapp 2010; Zandbergen and Ignizio 2010). All such outlooks are
based on empirical studies conducted exclusively within the United States, and a tendency exists
to judge the relative merits of these alternative methodologies without considering the influence
that the ancillary data set might have in determining their respective performances.

In the United States, vector road network data have been publicly available for a considerable
time via TIGER line files (U.S. Census Bureau 1993); but such open access provision often has
not been mirrored elsewhere, including in the United Kingdom. Once again, the recent U.K.
policy change related to open access to national mapping agency vector data sets has transformed
this situation. Road network data derived from Ordnance Survey’s (OS’s) VectorMap® District
(Ordnance Survey, Southampton, Hampshire, U.K.) products are tested for use in street-weighted
interpolation in the experiments summarized in this article. I believe that this is the first study to
do so. An open access alternative also now exists in the form of volunteered geographic infor-
mation. The OpenStreetMap geographic database (OpenStreetMap 2012) is freely downloadable,
too, although its testing is not summarized here.

Interpolation by surface volume integration

As its name implies, surface-based interpolation requires a statistical surface to be fitted to source
zone data. The volume beneath this surface represents the population count, and once such a
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surface has been constructed, the volume can be measured for any desired target zone boundary.
An early example of this methodology is Tobler’s pycnophylactic interpolation (Tobler 1979),
which, like areal weighting, requires no ancillary data. It redistributes source zone population
internally such that total volume is preserved while sharp transitions in value across adjacent zone
boundaries are eliminated. In the United Kingdom, Bracken and Martin (1989) use a distance-
weighted kernel estimator to create a discrete surface by distributing counts initially placed at
population-weighted centroids into proximal cells residing in an overlaid grid. The same meth-
odology was adopted by Harris and Longley (2000), although they replaced the single centroid
for each source zone with multiple initial population points based on address code records.

Zhang and Qiu (2011) propose an addition to the methodological literature about surface-
based interpolation. This technique exploits a set of ancillary points that are believed to provide
a reasonable proxy for centers of population density; their original article employs schools to
demonstrate the approach. A surface based on a linear distance decay function around these points
is constructed. Within the confines of each source zone, the volume beneath the surface is scaled
to represent the known population count (i.e., the pycnophylactic property), while its slope is
adjusted such that the surface touches zero at the maximal zonal distance from a control point.
Another possibility is to invert the decay profile and to utilize points associated with an absence
of population (e.g., the location of waste disposal plants). The model is described algebraically as
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where D̂si is the estimated population density assigned to cell i in source zone s, as is a constant
of proportionality for source zone s, Wsi is a weighting for cell i in source zone s, λsi is the distance
from cell i in source zone s to the nearest control point, λsmax is the maximum value of λsi in source
zone s, and q is a distance decay weighting factor. Zhang and Qiu (2011) report good results when
comparing estimates from equation (4) with both dasymetric and street-weighting methods in an
empirical case study based in Texas in the United States. The chosen study area, Collin County,
located in the Dallas/Forth Worth metroplex, was characterized by particularly rapid urban
growth between 2000 and 2007, experiencing a population increase of almost 50%. This surface
model is included in the experimental study summarized here to test further the generality of
Zhang and Qiu’s findings.

Data and methodology

A study area was defined consisting of the unitary authority boundary of the city of Cardiff in
South Wales, United Kingdom. This is a predominantly urban region containing a total popula-
tion in 2001 of 305,353. The U.K. 2001 Census is published with a variety of geographical
resolutions, the finest of which is the output area (OA). With a target size of 125 households, or
approximately 300 people, this unit is roughly comparable to a U.S. census block. OAs are
aggregated to form lower super output areas (LSOAs), creating the next division in the U.K.
census hierarchy. With a target population of 1,500 people, these zones roughly compare to a U.S.
block group. The study area contains 203 LSOAs with an average population of 1,504 and 991
OAs with an average population of 308. These two nested levels of the U.K. census hierarchy
support evaluation of the performance of areal interpolation models using the framework dis-
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cussed previously, that is, constructing a model using LSOA data and then testing its performance
by comparing estimated OA values with their known census counts.

The boundaries of the OAs used in the 2001 Census were generated automatically via a
process described in detail by Martin (2002). In essence, this procedure consisted of an initial
tessellation of individual postal address points to create Thiessen polygons, which were subse-
quently aggregated to achieve a target population count and finally clipped to follow a variety of
road, railway, river, and administrative boundary layers to yield the final OA polygons. The same
postal address points also are aggregated into UPCs, which are the finest hierarchical unit in a
discrete geographic referencing system designed to aid postal delivery. Each UPC typically
identifies a set of about 15 houses, and the U.K. Office for National Statistics (ONS) has released
a population count for each UPC derived from 2001 Census returns. OS, the U.K. national
mapping agency, provides a product called Code-Point® (Ordnance Survey) with polygons, in
which the boundary extent of every UPC is mapped. These boundaries are constructed in a
similar fashion to those for OAs, with the basic requirement that they surround all address points
sharing the same postcode. A postcode can relate to a single building, whereas tower blocks and
similar buildings can be assigned multiple postcodes (although Cardiff has relatively few high-
rise buildings compared to a typical U.S. city). Such instances are represented in the Code-Point
data set as small square polygons identified as “vertical streets.” Such cases were excluded from
the set of postcode target zones employed in this study because it is unreasonable to expect any
of the interpolation models tested to predict population counts for individual buildings. This
action resulted in a subset of 5,525 UPC polygons in the Cardiff study area with a reported mean
population of 53 persons. The exclusion of these very-high-density population points has some
implications in terms of the results presented later because the reported performance of all tested
models deteriorates somewhat when these high-density points are included.

UPC polygons are considerably smaller than OAs (an average area of 16,000 m2 compared
to approximately 140,000 m2) and thus provide an opportunity to evaluate areal interpolation
performance for target zones significantly smaller than the United Kingdom’s finest census
division. Population distribution models constructed with OA-level census data can be used to
estimate UPC population and compared to the ONS-supplied counts. Ensuring that the UPC
boundaries used in the study were closely dated to the census enumeration date was essential
because they are subject to update and modification on a three-month cycle.

Using the preceding data sets, areal interpolation was applied across two spatial resolutions
in this study, from LSOA to OA and from OA to UPC. A variety of alternative methods and
ancillary data sources were used to perform the interpolations.

In the first experiment, areal weighting was included because it defines the lowest common
denominator in terms of methodological sophistication and acts as a useful benchmark against
which other techniques may be measured. Intelligent methods are anticipated to outperform this
technique. Nevertheless, it remains a useful reference point for assessing the degree of improve-
ment achieved, particularly in relation to the additional data requirements and operational
complexities of intelligent methodologies.

Estimates based on binary dasymetric interpolation were generated using two alternative
ancillary data sets. First, a binary mask depicting the location of residential land cover was
created from a classified Landsat ETM+ image dated July 24, 1999 (Fig. 3c illustrates a subset
of these data). Many previous studies used classified satellite imagery to provide intelligence
about the probable population placement within source zone boundaries. The open availability of
imagery from sites such as the Earth Science Data Interface (Global Land Cover Facility 2011)
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ensures this option remains attractive, but issues are associated with this choice. In addition to the
need for specialized skills, further potential limitations are imposed by the relatively coarse 30-m
spatial resolution of Landsat imagery. Also, some degree of error is inherent in any multispectral
classification, and the precise outcome of the classification process varies somewhat from one
analyst to another because it is based on unique decisions regard training site selection and the
generation of spectral signatures. Finally, in the particular study summarized here, the image
predates the census data by two years, raising another potential source of error. The problem of
ancillary information being temporally noncoterminous with census data is not uncommon in
intelligent areal interpolation, and it affected, to varying degrees, all the data sets used in the
study’s interpolation experiments.

Figure 3. Ancillary data used in the intelligent areal interpolation models: (a) primary school
and bus stop points within the study area; (b) location of the detail maps; (c) residential land cover
from satellite imagery; (d) building polygons from OS VectorMap District; (e) street vectors from
OS VectorMap District; (f) bus stops and primary schools.
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Binary dasymetric interpolation also was conducted using an open access vector map
product, OS VectorMap® District (Ordnance Survey 2011a). This is one of several mapping and
geographic information products recently made freely available as part of a U.K. government
initiative. The government’s aim is to deliver greater access to geographic information in the
United Kingdom with the intention of creating new economic and social value. VectorMap®

District data are described by OS as “a brand new mid-scale vector dataset specifically designed
to display information on the web” (Ordnance Survey 2011b). The term District in the name
relates to its scale, nominally reported as 1:25,000, and differentiates it from the more detailed
(and not open access) VectorMap® Local product. The data set includes a number of layers, such
as railway tracks and stations, woodland parcels, and surface water, and is available in both vector
and raster formats. It has been downloadable via an unrestricted web-based interface since May
2010.

To deploy this resource in the study, the buildings’ polygon layer was utilized for dasymetric
mapping (Fig. 3d illustrates a subset of the data). Unfortunately, no attribute field is available to
differentiate building type or usage, such as residential versus commercial or industrial; this is
perhaps the biggest potential source of error with this ancillary input. Although an analyst with
local knowledge may be able to resolve this shortcoming to some extent and then exclude those
polygons that are not residential, any such manipulation is always subjective and not easily
repeatable, and hence this action was not undertaken in this study. In comparison to the dasy-
metric mask derived from satellite imagery, general patterns of residential distribution correspond
well here, although local knowledge reveals that some buildings associated with commercial and
industrial activity are included in this data set but not in the classified ETM+ data. However, OS
VectorMap District provides a much cleaner and more precise spatial definition of the building
outlines, which may be advantageous when interpolating to small UPC target zones. The exact
time stamp of this data set is uncertain, but it is regularly updated by the OS and thus can be
assumed to be much more current than the 2001 census data. Areal interpolation using VectorMap
District was undertaken in both vector and raster modes, with the latter using a raster grid cell
resolution of 5 m.

Interpolation via street weighting also employed VectorMap District data, using the arcs
contained within the roads layer (Fig. 3e illustrates a subset of these data). Here, a classification
field is available to differentiate road type so some roads (e.g., those labeled as motorway, the
equivalent of U.S. freeways) could be excluded because they are unlikely to be directly associated
with residential addresses. However, this action was not undertaken in the study so that the source
could be evaluated “as presented” in an unmodified state. As noted, the data are more current than
the 2001 census data, creating a potential source of error. The original algorithm by Xie (1995)
is described in terms of vector processing. Essentially, the same actions may be performed via
raster processing without conceptual difference, although some distortion might be introduced
due to pixilation effects. The use of a fine-grained 5-m raster grid resolution will limit such
problems. Interpolation using both vector and raster modes in the experiments allow differences
to be identified and discussed. In raster mode, each source zone population count is uniformly
distributed across all designated road cells within its boundary, with these values being summed
across target zones to generate population estimates. The “width” of rasterized roads was
undifferentiated in the study; both motorways and residential roads, for example, were effectively
represented by a single 5-m cell through which the corresponding vector line passes.

As discussed earlier, OA and UPC boundaries have a similar providence in that both are
partly derived from an initial tessellation of postal address points subsequently amalgamated and
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then potentially clipped to various other geographic features, including roads. As a consequence,
the boundaries of both zone sets often, but not always, follow road center lines (although
compared to a U.S. census block, an OA is still likely to contain many more internal road
vectors). This alignment can give rise to a specific source of error for street-weighted interpola-
tion: the likelihood that all population allocated to a street vector becomes assigned to just one or
the other adjacent target polygon when it might be better shared between them, especially
because people logically reside in houses offset from the roads. One solution is to apply a spatial
buffer to the street network and then to allocate population to these area features (Cromley and
McLafferty 2002). Although presented as a modification of street weighting, this action essen-
tially converts the method into a dasymetric approach as described by equation (2). Results for
this variant methodology, calculated in vector mode using a 15-m buffer, are included in the
following discussion.

The model described by Zhang and Qiu (2011) is adopted here to test a surface-based
interpolation algorithm that requires a point data set to provide a proxy for concentrations of
population. Retaining a focus on open access data, the study utilizes two alternatives: the sites of
primary schools, which are widely available via local government websites, and the location
of bus stops, which may be downloaded from the U.K. National Public Transport Access Node
database (Department for Transport 2012). Zhang and Qiu suggest that schools are an appropriate
choice because they typically are located close to population centers to minimize travel distance
for students and to act as community centers. Bus stops also are closely associated with popu-
lation distribution because they are used predominantly by pedestrians. Their placement often is
designed to ensure access to public transport within a 400-m walking distance (O’Sullivan and
Morrall 1996; Murray 2001), described by Atash (1994) as the distance an average American will
walk rather than drive. A total of 112 schools and 1,618 bus stops are located within the Cardiff
study area (Fig. 3a and 3f).

To demonstrate the modeling process, a selected LSOA source zone is displayed along with
its internal OA boundaries in Fig. 4a. An indication of the nature of the population densities
arising from the various models is shown by distributing the LSOA population using raster cells.
Both areal weighting and the surface model distribute population throughout the LSOA and
subsequently yield the lowest cell densities. However, areal weighting distributes population
uniformly (Fig. 4b), whereas the surface model assigns higher densities to cells lying closest to
a control point (i.e., a school or bus stop), with progressively lower values recorded as proximity
diminishes (Fig. 4c). The dasymetric model assigns a uniform density to the subset of cells that
are deemed to be occupied and zero to all others. The spatially more precise OS VectorMap
District data generate higher populated densities (Fig. 4e) than the classified ETM+ data
(Fig. 4d). Street weighting distributes population uniformly along the road network. Presented in
raster mode, the designated road cells occupy the least space inside the LSOA boundary and
generate notably higher density values than any other method (Fig. 4f).

Results and discussion

Performance measures for the various experiments undertaken are summarized in Table 2 for
interpolation from LSOA to OA and in Table 3 for interpolation from OA to UPC. Accuracy is
measured using the root mean squared error (RMSE) metric described by Fisher and Langford
(1995) and used in many succeeding articles (e.g., Eicher and Brewer 2001; Hawley and
Moellering 2005; Reibel and Bufalino 2005; Tapp 2010; Zandbergen and Ignizio 2010). RMSE
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allows a direct comparison between alternative methods applied to a common set of source and
target units, and thus affords a useful indication of the magnitude of errors encountered within
each table. RMSE is influenced by the absolute size of estimated values, making it less useful for
comparing between different sets of source and target units, particularly where resolution change
is involved (e.g., UPC counts are inherently smaller than OA counts, resulting in lower RMSE
values from this factor alone). The coefficient of variance (CoV), computed as the RMSE score
divided by the average known target zone population, provides a relative error metric that is better
suited for cross-resolution comparisons.

Considering first the LSOA to OA results in order of increasing accuracy, as expected, areal
weighting performs least well, with an RMSE score of 225 and a CoV of 0.731, setting a
benchmark against which the intelligent methods may be judged. Interpolation using the surface
model returns only modest levels of improvement. With primary schools used as the ancillary
data input, an RMSE value of 220 is achieved, although this improves to 217 when the schools
data set is replaced with the bus stops data set. The street-weighting algorithm results rank fourth,

Figure 4. Population distribution modeling in action: (a) a selected LSOA zone and its internal
OA boundaries; (b) areal weighting assigns a single low density of 0.013 to every cell; (c) the
surface model assigns varying densities, 0–0.022, among all cells, and binary dasymetric models
assign a single density but to populated cells only, (d) 0.084 for classified ETM+ data and (e)
0.130 for OS VectorMap District data; (f) street weighting assigns a high density of 0.410 to cells
defining the road network.

Mitchel Langford Small Area Population Estimation Techniques

337



with the result generated by raster-mode processing showing a marginal improvement over that
generated by a vector-mode implementation; both display a considerable gain in accuracy
compared to the surface models. A clue as to the most likely explanation for the benefits of raster
processing can be seen in the modified algorithm, which employs buffered roads and returns a
better RMSE value (170). First, this outcome offers strong evidence that the issue of roads
coinciding with zone boundaries is a factor in the results and further suggests that one of the

Table 2 Interpolation Results from LSOA to OA Zones

Interpolation method RMSE CoV

Areal weighting using zone boundaries only 225.2 0.731
Population density surface using primary schools 220.4 0.715
Population density surface using bus stops 217.5 0.706
Street weighting using OS VectorMap District roads

(vector-mode processing)
180.9 0.587

Street weighting using OS VectorMap District roads
(raster-mode processing)

178.6 0.580

Street weighting using OS VectorMap District roads with
15-m buffer (vector-mode processing)

170.5 0.553

Binary dasymetric using OS VectorMap District buildings
(vector-mode processing)

152.9 0.496

Binary dasymetric using OS VectorMap District buildings
(raster-mode processing)

152.9 0.496

Binary dasymetric using classified land cover from
Landsat ETM+

144.9 0.471

Note: Mean population of target units is 308.

Table 3 Interpolation Results from OA to UPC Zones

Interpolation method RMSE CoV

Street weighting using OS VectorMap District roads (vector-mode
processing)

39.3 0.745

Street weighting using OS VectorMap District roads (raster-mode
processing)

35.5 0.674

Population density surface using primary schools 35.4 0.672
Population density surface using bus stops 33.8 0.642
Areal weighting using zonal boundaries only 30.3 0.575
Street weighting using OS VectorMap District roads with 15-m buffer

(vector-mode processing)
30.3 0.574

Binary dasymetric using classified land cover from Landsat ETM+ 23.8 0.451
Binary dasymetric using OS VectorMap District buildings

(vector-mode processing)
21.6 0.410

Binary dasymetric using OS VectorMap District buildings
(raster-mode processing)

21.6 0.410

Note: Mean population of target units is 53.
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effects of raster-mode processing is for discrete raster cells to act somewhat like a small spatial
buffer, helping to ameliorate the road alignment problem to some extent. However, the binary
dasymetric methods provide the best estimates among the solutions tested at this resolution of
interpolation. Using OS VectorMap District as the ancillary data source yields an RMSE score of
153, with no difference whatsoever between raster- and vector-mode implementations. Despite
the visual appeal of the VectorMap masks, which appear to offer greater spatial precision in the
depiction of building locations compared to the classified ETM+ data set, the latter produces the
lowest recorded RMSE value (145). This success can be attributed to the ability of multispectral
satellite imagery to discriminate, to a degree, among the probable uses of a built-up area. Within
this study area, the housing stock reflects very different roof construction methods and materials
from those typically associated with, for example, factories, commercial buildings situated on
industrial parks, and shopping centers. Although problems may arise with classification error and
a relatively coarse spatial resolution, they appear to be more than compensated for by an ability
to differentiate between residential and nonresidential buildings.

At this resolution of interpolation, all intelligent methods provide an improvement over areal
weighting, with the best showing a considerable gain in accuracy. Nevertheless, their effective-
ness varies substantially across the specific methodologies tested, and even within a given
methodology, the choice of ancillary data makes a notable difference.

The OA to UPC results presented in Table 3 have RMSE values that are universally lower,
which is expected because target size population is less. CoV values, which are appropriate for
making cross-resolution comparisons, show a broadly similar range between the best- and
worst-performing models as those for the LSOA to OA results. This finding implies that popu-
lation distribution models constructed using the finest U.K. census division data are able to
interpolate down to target units as small as UPCs with a potentially useful degree of precision,
although given the range of outcomes reported here, a careful consideration of the methodology
is important. However, very-high-density high-rise housing blocks have been excluded from this
study, implying that interpolation performance could deteriorate if these high-density blocks
were included.

The most striking feature in Table 3 is that areal weighting is no longer the worst performer.
The street-weighting algorithms using unbuffered roads yield RMSE values of 39 and 35 for
vector- and raster-mode processing, respectively, compared to a score of 30 for simple areal
weighting. The interpolations based on the construction of a surface model also return weak
results, with both underperforming the simpler areal weighting. Street weighting using buffered
roads matches the areal-weighting performance but is still a disappointing outcome given the
extra data and processing involved in its implementation. Despite the overall lower performance
of these models, they show patterns that are similar to the LSOA to OA results. Specifically, a
raster-mode implementation of street weighting outperforms the vector-mode implementation,
both of which are improved by using buffered road features. Furthermore, the use of bus stops as
ancillary data in the surface model again provides a modest improvement over the model
constructed using primary school locations.

These poor results are unexpected, and in the case of street weighting, the issue of zone
boundaries coinciding with road center lines may partly explain the outcome. Because UPCs are
specifically constructed around residential address points they often may have buildings con-
tained within them but possibly very few internal road segments, which potentially amplifies the
problem. Perhaps the conceptual model begins to fail at this scale of implementation as well.
People do not actually reside on the street center lines but rather in buildings that are offset from
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such features. Furthermore, population is not uniformly distributed along street segments; if
building features are directly modeled to contain people (as in the dasymetric approach), we
might more accurately capture the situation where some sections of a street vector have residen-
tial housing lying adjacent to them, whereas other sections do not.

The poor performance of the surface models at both resolutions of interpolation also
demands some consideration. These results contradict the success reported by Zhang and Qiu
(2011), who describe a model deploying school locations as control points in Collin County,
Texas, as prevailing over several dasymetric methods and achieving comparable accuracy with a
street-weighting approach. This outcome raises the important question of why this method
appears to work well in Collin County but not in the city of Cardiff. Ultimately, the answer must
lie either in the choice of ancillary data sets used or in the underlying assumptions of this method:
that a carefully selected point data set can represent the focus of population clusters in space, and
that a mathematical distance decay model is effective in describing the pattern of density
distribution around such points. In the Texas study, schools were selected as control points
because they are reasonable predictors of household locations (i.e., they are positioned to
minimize student travel distances). Presumably, the rapid rate of urban development and the
specific nature of planning practices in Collin County lead to a situation where residential
population shows a strong propensity to be concentrated around schools, with a clear distance
decay effect. Apparently, this is not the case in Cardiff, and one can only speculate as to possible
reasons: for example, in a mature city such as Cardiff, the locations of schools may have been
established many decades ago, whereas subsequent urban regeneration, new housing develop-
ments, and the migration of population from the inner city to suburban locations might lead to a
situation where the same spatial association is no longer well preserved. In this study, a model
based on school locations actually performs marginally less well than one using bus stops as the
ancillary input. Not all bus stops are associated with the collection of passengers from their
homes; some are associated with important destinations such as shopping centers and places of
employment. Nevertheless, the majority of bus stops are located with the aim of transporting
people between home and work. Furthermore, bus stops are a much more dynamic feature than
school sites and can be readily introduced or discontinued in response to changing residential
patterns. Finally, 1,618 bus stops act as ancillary information inputs into the surface model,
compared to only 112 school sites. Together, these factors may help to explain why bus stops
prove to be a superior choice of ancillary data in this study.

The inherent information content of the ancillary data sets also could help explain why the
dasymetric models produce the best overall outcomes across both resolutions of interpolation.
Over 21,800 building polygons are in the OS VectorMap District data set, and 1.68 million pixels
are classified as residential in the ETM+ image, all of which contribute to the spatial allocation
of population. The information content of the ancillary data used in the surface models seems
quite modest in comparison, and this potential shortfall must be made up for by a reliance on the
validity of the distance decay model of density distribution around the control points.

Once again, no difference exists in the scores between raster- and vector-mode implemen-
tations of binary dasymetric mapping using the OS VectorMap District data; both returned an
RMSE value of 22. At this resolution, the map-based ancillary source proves marginally supe-
rior to the classified ETM+ input, which returns an RMSE value of 24. When working with
target zones as small as these inner-city U.K. postcodes, the need for spatial precision in the
population distribution model begins to outweigh any advantages the ETM+ data may hold in
terms of their ability to discriminate among residential and nonresidential land cover. The

Geographical Analysis

340



satellite image used here is broadly concurrent with the census enumeration data, while the OS
VectorMap District considerably postdates it. If this discrepancy could be eliminated at a future
date (e.g., by using the U.K. 2011 Census statistics), a still greater margin of superiority might
manifest itself.

Conclusions

This article shows that the performance of intelligent areal interpolation can be significantly
influenced by the qualities of the specific ancillary data used to drive a population distribution
model and that the choice of ancillary data and of methodology requires careful consideration.
The underlying rationale and theoretical assumptions on which any particular technique is based
must be carefully considered because models that perform well in one environment may prove to
be much less successful in another. A surface-based model using school locations as control
points performed well in a previous empirical study based in Texas but produces relatively poor
results in Cardiff despite the use of similar information. The street-weighting algorithm also has
been shown to perform well in previous studies (e.g., Hawley and Moellering 2005), yet in this
study, it was unable to match the strength of binary dasymetric interpolation using OS VectorMap
District data despite the use of information from essentially the same ancillary resource. Land
cover information derived from Landsat ETM+ imagery appears to remain a strong contender for
driving intelligent interpolation models, although the broadly comparable performance of open
access map data depicting building polygons now makes this a preferred option, at least in the
U.K. context, given its simpler demands in terms of data preparation and its ability to be applied
in either vector- or raster-modes of operation. Frequent discussion occurs concerning the relative
merits, differences in theoretical principles, and validity of underlying assumptions among
competing intelligent interpolation techniques; but even though methodology remains important,
the significance of ancillary data inputs for the ultimate performance of intelligent areal inter-
polation methods should not be overlooked.

Once again, paraphrasing Zandbergen and Ignizio’s assertion (2010), all areal interpolation
methods have their errors, and their performance will inevitably vary with specific conditions. It
might be added that performance also can vary according to the choices made in terms of
ancillary data. Results presented here relate only to one specific study conducted in a predomi-
nantly urban environment. Although this geographical context includes natural green spaces such
as parks and school grounds, and exhibits the typical patterns of residential and commercial/
industrial zoning seen in most European cities, sparsely populated rural areas generally offer a
more challenging environment (Tapp 2010) in which the relative merits of specific intelligent
areal interpolation techniques may change substantially. Results summarized in this article also
relate only to interpolation across resolution and not to interpolation between alternative geog-
raphies at the same resolution. Interpolation performance between incongruent spatial units of
broadly similar size remains an important issue, and such testing could form the basis of further
research.

This article contributes to a growing literature about comparative testing of alternative areal
interpolation algorithms for population estimation. This activity remains necessary because
conflicting results appear, and no one methodology has yet proven itself to outperform all others
universally. Thus, only by increasing the evidence base through replications using as wide a range
of geographical environments and circumstances as possible can researchers better understand
the conditions under which any particular methodology might be expected to perform.
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The increasing availability of open access data sets offers considerable potential for widen-
ing the adoption of intelligent population interpolation tools. In addition to the inherent attrac-
tiveness of a no-cost option, many such data sets are available as points, lines, and polygons
stored in vector format, eliminating the need for multispectral image-processing skills associated
with the use of satellite imagery or for familiarity with raster GIS-processing techniques. Perhaps
the most convincing argument for encouraging the widespread use of open access data sets in
population interpolation tasks is the accuracy achieved in the experiments conducted here.
Dasymetric mapping with building polygons obtained from an open access product yields
consistently good results across different resolutions and performs particularly well when esti-
mating counts for highly challenging small area urban estimates.

Wider adoption of intelligent areal interpolation could be further encouraged if methodolo-
gies such as those addressed in this article are implementable through the use of simple plug-in
tools for the most commonly used GIS software packages. Although the computations and
algorithmic steps needed to implement dasymetric mapping, street weighting, or surface-based
interpolations are not particularly complex, they still discourage ready usage in many circum-
stances. As geographical data and GIS capabilities continue to migrate from specialist software
and skilled professionals to the public domain and the nonexpert user via web-based interfaces,
the ability to use these techniques through simple point-and-click and wizard-style interfaces is
increasingly necessary to prevent them from becoming confined to the experimental research
domain. A final advantage of such easy accessibility would undoubtedly be the generation of
comparative results from a diverse range of case studies, which in turn would provide a much
broader base of evidence to support any claims of methodological or ancillary data source
superiority.
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