
Remote Sensing of Environment 190 (2017) 366–382

Contents lists available at ScienceDirect

Remote Sensing of Environment

j ourna l homepage: www.e lsev ie r .com/ locate / rse
A global analysis of factors controlling VIIRS nighttime light levels from
densely populated areas
Noam Levin a,b,⁎, Qingling Zhang c,d

a Department of Geography, The Hebrew University of Jerusalem, Israel
b School of Geography, Planning and Environmental Management, Center of Excellence for Environmental Decisions, The University of Queensland, Australia
c Center for Geo-spatial Information, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
d Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
⁎ Corresponding author.
E-mail address: noamlevin@mscc.huji.ac.il (N. Levin).

http://dx.doi.org/10.1016/j.rse.2017.01.006
0034-4257/© 2017 Elsevier Inc. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 13 August 2015
Received in revised form 19 December 2016
Accepted 8 January 2017
Available online 14 January 2017
Remote sensing of nighttime lights has been shown as a good surrogate for estimating population and eco-
nomic activity at national and sub-national scales, using DMSP satellites. However, few studies have exam-
ined the factors explaining differences in nighttime brightness of cities at a global scale. In this study, we
derived quantitative estimates of nighttime lights with the new VIIRS sensor onboard the Suomi NPP satel-
lite in January 2014 and in July 2014, with two variables: mean brightness and percent lit area. We per-
formed a global analysis of all densely populated areas (n = 4153, mostly corresponding to metropolitan
areas), which we defined using high spatial resolution Landscan population data. National GDP per capita
was better in explaining nighttime brightness levels (0.60 b Rs b 0.70) than GDP density at a spatial resolu-
tion of 0.25° (0.25 b Rs b 0.43), or than a city-level measure of GDP per capita (in proportion to each city's
fraction of the national population; 0.49 b Rs b 0.62). We found that in addition to GDP per capita, the
nighttime brightness of densely populated areas was positively correlated with MODIS derived percent
urban area (0.46 b Rs b 0.60), the density of the road network (0.51 b Rs b 0.67), and with latitude
(0.31 b Rs b 0.42) at p b 0.001. NDVI values (representing vegetation cover) were found to be negatively cor-
related with cities' brightness in winter time (−0.48 b Rs b −0.22), whereas snow cover (enhancing arti-
ficial light reflectance) was found to be positively correlated with cities' brightness in winter time
(0.17 b Rs b 0.35). Overall, the generalized linear model we built was able to explain N45% of the variability
in cities' nighttime brightness, when both physical and socio-economic variables were included. Within the
generalized linear model, the percent of national GDP derived from income (rents) from natural gas and oil,
was also found as one of the statistically significant variables. Our findings show that cities' nighttime
brightness can change with the seasons as a function of vegetation and snow cover, two variables affecting
surface albedo. Explaining cities' nighttime brightness is therefore affected not only by country level factors
(such as GDP), but also by the built environment and by climatic factors.

© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

Artificial nighttime lights present one of humanity's unique foot-
prints that can be seen from space (Croft, 1978). Resulting light pol-
lution has been shown to negatively impact the community of
astronomers and our ability to observe the night sky (Cinzano et
al., 2001). However, the negative effects that light pollution has on
ecological systems and on our health, through changes in circadian
exposure to light and changes in the wavelengths we are exposed
to, might have more important and far-reaching consequences
(Longcore and Rich, 2004; Falchi et al., 2011; Gaston et al., 2013).
Light pollution and artificial lighting has been shown to vary greatly
in space and in time, as a function of population and economic activ-
ity. However, most studies examining the factors explaining global
spatial variability in lit areas were conducted at national and provin-
cial levels using the DMSP/OLS sensor (e.g., Elvidge et al., 1997; Chen
and Nordhaus, 2011; Wu et al., 2013; Keola et al., 2015). While offer-
ing the only globally available time series of nighttime lights imagery
from 1992 onwards (Bennie et al., 2014a), DMSP imagery has various
drawbacks as it is not calibrated, its spatial resolution is coarse, it
contains overglow beyond urban boundaries and it is saturated in
urban areas (Small et al., 2005; Doll, 2008). Temporal changes in cit-
ies' lights and the spatial characteristics of cities' nighttime bright-
ness have been examined in several countries using DMSP data

http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2017.01.006&domain=pdf
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(e.g., Lo, 2002; Ma et al., 2012; Zhang and Seto, 2013). Most of the
studies which used DMSP data for urban studies have used annual
datasets, whereas daily and monthly datasets were used to identify
more dynamic and time varying features, such as forest fires, wars
and fishing vessels (Huang et al., 2014). New studies using DMSP
datasets for quantifying urban patterns are continuously being pub-
lished (e.g., Ma et al., 2015; Weidmann and Schutte, 2016), however,
annual products of DMSP night lights data are no longer being pro-
duced, the last one available being that of 2013.

Recently, new studies have attempted using finer spatial resolu-
tion (≤1 m) nighttime imagery to examine the factors explaining
Fig. 1. The distribution of the 4153 urban areas analyzed in this study, presentingmean VIIRS ra
two months are given in absolute values (c) and as percentages (d).
spatial patterns of nighttime lights within cities (Kuechly et al.,
2012; Hale et al., 2013; Levin et al., 2014; Katz and Levin, 2016). As-
tronaut photography taken from the International Space Station pre-
sents an additional source of information about spatial patterns of
cities at nighttime (de Miguel et al., 2014, de Miguel, 2015). Levin
and Duke (2012) have used ISS imagery showing that not all towns
and cities are equally lit, and that economic, infrastructure and de-
mographic factors can explain differences in brightness levels of lo-
calities in Israel and the West Bank. Kyba et al. (2014) have used
VIIRS DNB data to study the relationship between population size
and the sum of lights from cities and communities in the USA and
diance values in January 2014 (a) and in July 2014 (b). Changes in brightness between the
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Fig. 1 (continued).
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Germany, finding differences in light emission between cities of
these two countries, and several recent studies have used VIIRS
data to examine the nighttime brightness of cities in China (Ma et
al., 2014a, 2014b; Shi et al., 2014a, 2014b) and in the USA (Chen et
al., 2015). In addition, Elvidge et al. (2016) have used VIIRS data to
detect and measure radiant emissions from gas flares globally,
forming one of the major industrial sources of light pollution,
Fig. 2. VIIRS radiance values in January 2014 (first and third row) and Landscan population de
ordered by their brightness from the top-left (Chicago) to the bottom-right (Moscow). The g
data (see Methods).
which can even be detected night-time images of Landsat 8 in the
visible bands (Levin and Phinn, 2016).

Urban areas are of high importance as most of the world's popu-
lation resides in cities, with 78% of global carbon emissions attribut-
ed to cities (Grimm et al., 2008). In this paper our aim was to use the
new monthly global cloud-free mosaics from the VIIRS sensor on-
board the Suomi-NPP (launched in 2011), to examine the factors
nsity (per square kilometer; second and fourth row) in 2012 in six selected urban areas,
rey lines delineate the urban areas as defined based on the global Landscan population
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explaining spatial variability in nighttime lights at the city level,
comparing densely populated areas (mostly urban areas) globally.
We hypothesized that urban form and urban density (and other fac-
tors including percent urban area, NDVI, snow cover etc.) will also af-
fect brightness levels, and not just socio-economic factors such as
national GDP and population size. In addition, we aimed to examine
the difference between using lit areas (i.e., areas above a certain
threshold of nighttime lights brightness, as usually done in studies
using DMSP data) and using calibrated brightness levels in radiance
values, on the resulting factors explaining inter-city variability in
nighttime lights.
2. Methods

The Visible/Infrared Imager/Radiometer Suite (VIIRS) was launched
in October 28, 2011, collecting high quality nighttime images at a spatial
resolution of 750 m in the Day/Night Bands (DNB), between 500 and
900 nm (Miller et al., 2012, 2013). Recent studies have shown the im-
proved quality of VIIRS nighttime lights images over those acquired by
the DMSP/OLS sensor (Elvidge et al., 2013; Li et al., 2013;Miller et al.,
2013; Shi et al., 2014a, 2014b). There are nowmonthly cloud-free global
calibrated mosaics that were compiled from nighttime lights VIIRS im-
ages (Baugh et al., 2013), which can be downloaded from the NOAA's
National Geoscience Data Center (http://ngdc.noaa.gov/eog/). We
have downloaded Version 1 of the composites of January 2014
(representing northern hemisphere winter when snow cover is high)
and July 2014 (representing northern hemisphere summer), to quantify
the nighttime light brightness of urban and densely populated areas
globally.

To define the densely populated areas to be analyzed, we used the
global Landscan (Bhaduri et al., 2002) population layer (of 2012;
http://web.ornl.gov/sci/landscan/). Landscan is a derived product
based on a variety of different inputs (including roads, land cover
and other remote sensing products) used to spatially disaggregate
census data (Bhaduri et al., 2002). Instead of defining the cities to
be analyzed using official municipal boundaries (which often include
unbuilt areas, and split metropolitan areas into small units; Forstall
et al., 2009) we defined densely populated areas (to which we refer
as “cities” throughout the paper) as comprised of adjacent grid
cells with N1500 people/km2 each (the threshold used in China to
define urban areas; Chan and Hu, 2003), with a minimum total area
of 10 km2 within a single country. For comparison, Angel et al.
(2011) mapped 3646 metropolitan areas globally with populations
in excess of 100,000 people, finding that their median density was
7600 people/km2. The steps for generating this spatial layer of cities
were the following: (1) we calculated population density within
each grid cell of the Landscan population dataset, by dividing the
population count of each cell by the area of each 30 arc-seconds
cell; (2) we used the post-classification sieve function within Envi
5.2 (© 2014 Exelis) to keep only groups of 25 (or more) adjacent
grid cells each with N1500 people/km2 (considering 4 neighboring
cells); (3) the resulting binary image was converted to a polygon
layer which was intersected with countries' boundaries; (4) finally,
only those polygons (representing densely populated areas) whose
area within a single country was N10 km2, were then used for all
analyses (n = 4153). Using this approach, our analysis units often
correspond to metropolitan areas.

For each of the resulting polygons, we calculated various statistics
(minimum, maximum, mean, standard deviation, sum) using the
Zonal Statistics tool within ArcGIS 10.2 (ESRI, Redlands, CA) for three
groups of variables:
Fig. 3. VIIRS radiance values in January 2014 (first and third row) and Landscan population (pe
their brightness from the top-left (Hong Kong) to the bottom-right (Jakarta). The grey lines
Methods). VIIRS radiance values for Jakarta are from July 2014, due to low cloud-free coverage
1) Anthropogenic variables at the city level: area, population, popula-
tion density, percent urban area, density of road network, and GDP
density at grid cell resolution of 0.25 degrees (projected to 2014,
based on Gaffin et al., 2004). We used percent urban areas based
on the 2013 MODIS Land Cover Type Product (MCD12Q1; Strahler
et al., 1999) because it was found as a highly accurate global map
of urban areas in an accuracy assessment performed by Potere et
al. (2009). For assessing the density of road network within each
city, we used shapefiles of OpenStreetMap (Haklay, 2010) obtained
from Geofabrik (http://www.geofabrik.de/). The roads within
OpenStreetMap are classified as Major roads (Motorway/freeway;
Important roads, typically divided; Primary roads, typically national;
Secondary roads, typically regional; Tertiary roads, typically local)
and Minor roads (Smaller local roads; Roads in residential areas;
Streets where pedestrians have priority over cars; Pedestrian only
streets) (Ramm, 2015). We converted the layers of major roads
and minor roads from polylines to points (using all vertices), and
then counted the number of vertices in each of these layers within
each 0.00083 × 0.00083 degree grid cell (as in Levin et al., 2015).
In addition we classified the VIIRS nighttime light images into radi-
ance classes, calculating the percent lit area of each city above the
following light levels: 2, 5, 10, 25, 50, 100 and 250 nW/(cm2 ∗ sr).
We identified active gas flare sources within cities using the global
mapping of gas flares provided by Elvidge et al. (2016), available
for download here: http://www.mdpi.com/1996-1073/9/1/14/s1
(accessed on December 7th, 2016). Out of a total of 7464 gas flare
point sources, only 97 gas flare sources were found within the
boundaries of 75 densely populated areas included in our study. To
examine the possible impact of gas flares on our results, we exam-
ined the statistical correlations with and without cities where gas
flare sources were located.

2) Physical variables at the city level: VIIRS nighttime lights bright-
ness, the 2014 NDVI values (Rouse et al., 1973) based on the Ver-
sion 6 of the MODIS/Terra Vegetation Indices Monthly L3 0.05Deg
CMG (MOD13C2) collection (Didan, 2015) as vegetation cover
can absorb and block nighttime lights, and snow cover based on
the 2014 MOD10CM product of MODIS as snow cover can en-
hance surface reflectance. Whereas spring-time snow cover in
the northern hemisphere has decreased between 1971 and
2014, winter-time snow cover in the northern hemisphere
showed only weak trends (Hernández-Henríquez et al., 2015).
For each of the cities, we calculated its mean snow cover and
mean NDVI values in January and July 2014. We also calculated
for each city the number of cloud-free coverages, or observations,
that went in to constructing the average VIIRS radiance image,
because cloud cover can impede observations of nighttime
brightness.

3) Anthropogenic variables at the country level, based on the assumption
that street lighting standards and types are related to a country's na-
tional income and energy sources. Street design standards are deeply
embedded in design and engineering practices, as well as in legal and
financial structures (Southworth and Ben-Joseph, 1995), and thus we
assumed that street lighting standards will be mostly directed by na-
tional guidelines andnorms. The variableswe examined at the nation-
al level were GDP per capita and the percent of GDP derived from
income (rents) from natural gas and oil. The variables of ‘GDP per
capita’ and ‘Percent of GDP derived from natural gas and oil rents’
were only available at the country scale, and were thus assigned to
each city based on its country. The motivation for examining the per-
cent of GDP derived from income (rents) fromnatural gas and oil, was
that major oil exporting countries are known as non-efficient in their
r square kilometer, second and fourth row) in 2012 in six selected urban areas, ordered by
delineate the urban areas as defined based on the global Landscan population data (see
in January 2014.
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Fig. 4. Changes in VIIRS brightness values between January 2014 and July 2014, as a function of: (a) changes in NDVI values; (b) changes in snow cover values; (c) changes in cloud-free
coverage. The largest 200 cities are colored by their respective continent.
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Table 1
Spearman rank correlation coefficients between explanatory variables andmean VIIRS radiance values (in January and July 2014), at different spatial scales (individual cities, average for
citieswithin countries). The variables of ‘GDPper capita’ and ‘Percent of GDP derived fromnatural gas and oil rents’were only available at the country scale, andwere thus assigned to each
city based on its country.

City level, n = 4153 City level, n = 200 largest Country level, n = 170

Mean VIIRS Jan
2014

Mean VIIRS July
2014

Mean VIIRS Jan
2014

Mean VIIRS July
2014

Mean VIIRS Jan
2014

Mean VIIRS July
2014

GDP per capita 0.637⁎⁎⁎ 0.657⁎⁎⁎ 0.604⁎⁎⁎ 0.627⁎⁎⁎ 0.694⁎⁎⁎ 0.697⁎⁎⁎

GDP density 0.264⁎⁎⁎ 0.291⁎⁎⁎ 0.433⁎⁎⁎ 0.433⁎⁎⁎ 0.395⁎⁎⁎ 0.362⁎⁎⁎

GDP per capita % of city's share of national
population⁎

0.532⁎⁎⁎ 0.619⁎⁎⁎ 0.494⁎⁎⁎ 0.577⁎⁎⁎ 0.581⁎⁎⁎ 0.618⁎⁎⁎

Percent of GDP derived from natural gas and oil
rents

0.039⁎ −0.069⁎⁎⁎ −0.062 −0.129 0.309⁎⁎⁎ 0.278⁎⁎⁎

Area km2 0.083⁎⁎⁎ 0.118⁎⁎⁎ −0.029 −0.046 0.071 0.099
Population density 0.046⁎⁎ 0.057⁎⁎⁎ −0.073 −0.100 −0.178⁎ −0.175⁎

% urban area 0.576⁎⁎⁎ 0.596⁎⁎⁎ 0.582⁎⁎⁎ 0.555⁎⁎⁎ 0.461⁎⁎⁎ 0.498⁎⁎⁎

Major roads 0.583⁎⁎⁎ 0.667⁎⁎⁎ 0.586⁎⁎⁎ 0.619⁎⁎⁎ 0.513⁎⁎⁎ 0.581⁎⁎⁎

Mean NDVI −0.405⁎⁎⁎ −0.237⁎⁎⁎ −0.485⁎⁎⁎ −0.260⁎⁎⁎ −0.220⁎⁎ −0.142
Mean snow 0.334⁎⁎⁎ 0.032⁎ 0.348⁎⁎⁎ −0.034 0.175⁎ 0.028
Latitude (abs) 0.386⁎⁎⁎ 0.309⁎⁎⁎ 0.351⁎⁎⁎ 0.313⁎⁎⁎ 0.416⁎⁎⁎ 0.386⁎⁎⁎

Number of VIIRS cloud-free coverages 0.230⁎⁎⁎ 0.461⁎⁎⁎ 0.194⁎⁎ 0.507⁎⁎⁎ 0.367⁎⁎⁎ 0.444⁎⁎⁎

⁎⁎⁎ p b 0.001.
⁎⁎ p b 0.01.
⁎ p b 0.05.
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energy use (Doukas et al., 2006;Mehrara, 2007), andwehypothesized
that artificial night-lights emissions will also reflect the high energy
consumption of some of those countries. Recognizing however that
GDP varies within a country, in addition to using gridded GDP density
at a spatial resolution of 0.25° (by Gaffin et al., 2004, as described
above), we used for some of the analyses GDP per capita as of 2014
at the city level, available for the world's 300 largest metropolitan
economies (Parilla et al., 2015; https://www.brookings.edu/research/
global-metro-monitor/, accessed August 18th, 2016). As city-level
GDP from the Brookings Institute was available for only 300 cities,
we could not use it in the analysis of all cities. We have also assigned
each city with its country-level GDP per capita value in proportion to
each city's fraction of the national population, as an additional mea-
sure of GDP per capita at the city level.
We examined the correlations between the explanatory variables of

population, percent urban area, road density, NDVI, snow over, GDP per
capita, GDP density as of 2014 (GDP/unit land area; calculated by inter-
polating the 1990 and 2025 GDP density values at 0.25° grid cell reso-
lution from Gaffin et al., 2004), percent of GDP derived from income
(rents) from natural gas and oil (average between 2010 and 2013,
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Fig. 5.Mean VIIRS radiance values in January 2014 in the 200
available from the World Bank, http://data.worldbank.org/indicator/,
accessed on 21/7/2015) and number of cloud free coverages from
which the monthly mosaics of VIIRS brightness were constructed,
with the predicted variables of nighttime light brightness, and lit area,
at two spatial scales: the city scale (n = 4153, and n = 200 for the
largest urban areas globally) and the country scale after averaging the
various variables of all cities within each country (n = 170). At the
country level we examined the statistical relationships averaging the
major cities in each country, and not referring to the entire area of a
country. While previous studies trying to explain nighttime lights
often focused on total lit area (as in Elvidge et al., 1997) or on the
sum of lights (as in Kyba et al., 2014), we aimed to explain the percent
lit area within a city and the mean radiance light levels within cities –
variables which will be less biased by a city's total population. We used
XLSTAT version 2014.6.01 (Copyright Addinsoft 1995–2014) to calcu-
late Spearman's rank correlation coefficients.

Following the univariate statistical analysis, we ran general linear
models (GLM) for explaining cities' brightness. Because seasons in the
northern and in the southern hemispheres are reversed, we first
reorganized data by seasons (winter and summer) instead of months
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(January and July). To do that we switched all data acquired in winter
with data acquired in summer in the southern hemisphere. We then
standardized all data using the Gaussian standardization method. We
built GLMmodels (using the GLM function in Matlab) including all vari-
ables (full models), including social-economic variables only (socio-eco-
nomic models), and including physical variables only (physical models).
After examining distributions of the VIIRS data, we decided to choose a
normal type for all the GLM models. To examine the performances of
all the models, we listed all parameters of the models and generated
scatterplots with the observed VIIRS data (Y axis) and the predicted
values (X axis). GLMmodelswere run for all cities, for the largest 200 cit-
ies, as well as at the country level.

3. Results

3.1. City level

Altogether, we identified 4153 populated areas globally, mostly
corresponding to cities and metropolitan areas (Fig. 1; see Supple-
mentary KML file for the polygons of all cities). Their median area
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was 29.3 km2 (with a maximum of 3927 km2, for Jakarta, Indonesia),
their median population being 172,000 (with a maximum of 30.4
million people for Tokyo, Japan), the median population density
being 5476 people/km2 (with a maximum of 39,605 people/km2 for
Hong Kong), and the median brightness of these cities was 19 and
16.5 nW/(cm2 ∗ sr) in January and July 2014, respectively (Figs. 2,
3, S1). The overall population included within these 4153 populated
areas was 2.018 billion, 30% of the world's population. Whereas in
some of the metropolitan areas (as defined in this study) such as Ja-
karta, there were areas which were quite dark, in some of the metro-
politan areas (e.g., Ryadh and Moscow), very bright areas extended
beyond the populated areas (Figs. 2, 3).

Using at least two cloud free coverages within a monthly mosaic as a
threshold (representing a higher signal to noise ratio), 3955 (95%) and
3871 (93%) of all cities (in January and July 2014, respectively), and 188
(94%) and192 (96%) of the largest 200 cities (in January and July 2014, re-
spectively), were above this threshold.We examined all univariate corre-
lations only for those cities above this threshold, and found (as shown in
the Supplementary tables) that the univariate correlations between the
explanatory variables and with VIIRS night-time brightness levels were
0.4 0.5 0.6 0.7 0.8
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not affected by low cloud free coverage. Using only citieswith no gas flare
sources, 4078 (98%) of all cities, and 181 (91%) of the largest 200 cities,
were found to have no artificial lights from gas flares. We examined all
univariate correlations only for those cities with no gas flare sources,
and found (as shown in the Supplementary tables) that the univariate
correlations between the explanatory variables and with VIIRS night-
time brightness levels were not affected by gas flare sources.

Globally, a consistent spatial pattern was observed with high-
latitude northern hemisphere cities being observed as brighter on
the January 2014 image than on the July 2014 image (Fig. 1c, d).
Changes in VIIRS brightness values between January and July
2014, were significantly correlated with changes in NDVI values
(Rs = −0.405, p b 0.001), changes in snow cover (Rs = 0.358,
p b 0.001) and with changes in cloud-free coverage (Rs = 0.315,
p b 0.001) (Fig. 4).

We found statistically significant correlations formost of the variables
analyzed for the VIIRS nighttime lights variables of both January and July
2014. However the variables of area, population density and percent of
GDP derived from natural gas and oil rents were the least strongly corre-
lated variables when each variable was examined separately (Table 1).
Nighttime light brightness of citieswas positively correlatedwith national
GDP per capita (0.60 b Rs b 0.66; but less so with GDP density:
0.26 b Rs b 0.43), percent urban area (0.55 b Rs b 0.60; Figs. 5, S2), road
density (0.58 b Rs b 0.67) and snow cover (Fig. 6; R2 = 0.55), and nega-
tively (albeit weakly) correlated with NDVI values (Figs. 6, S4; Table 1).
Examining the correspondence of GDP per capita data and VIIRS night-
time brightness for the 285 cities for which there was GDP per capita
data at the city level (from the Brookings Institution; Parilla et al., 2015),
GDP per capita at the city level was correlated with VIIRS night-time
brightness (Rs = 0.339 and 0.220, p b 0.001, for January and July, re-
spectively), but it was not significantly a better predictor of VIIRS
night-time brightness, than GDP per capita at the national level
(Rs = 0.307 and 0.203, p b 0.001, for January and July, respectively
Table S3) for those 285 cities. In addition, the correlation coefficient be-
tween the city-level measure of GDP per capita (in proportion to each
city's fraction of the national population) with night-time brightness,
was lower than the correlation coefficient between the simple national
GDP per capita with night-time brightness (see tables S1, S2). National
GDP per capita was highly correlated with GDP density (Rs = 0.645,
p b 0.001) andwith the city-levelmeasure of GDP per capita (in propor-
tion to each city's fraction of the national population; Rs = 0.644,
p b 0.001). We therefore preferred to keep using national GDP per
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Fig. 7.Mean VIIRS radiance values in January 2014 in the 200 largest ur
capita assigned to each city in our following multivariate analyses, to
avoid collinearity.

VIIRS brightness values were highly correlated between January
2014 and July 2014, the main outliers presenting higher brightness
values in January being cities located in northern latitudes with high
snow cover (Figs. 1c,d, 7). Correlations between the explanatory vari-
ables and the nighttime light variables (of mean radiance values and
of lit area) did not differ much, however the highest correspondence be-
tween mean VIIRS radiance values and percent lit area was obtained for
lit areas above 10–100 nW/(cm2 ∗ sr) (Fig. 8; Table S1, S2, S4), and the
relationship between lit area and mean brightness levels was found to
be non-linear (Fig. 9). In the GLM analysis (run separately for all cities,
or just for the largest 200 cities), both physical and socio-economic var-
iables were found as statistically significant (Fig. 10). At the city level,
the adjusted Rsquared value of a GLM model was mostly higher when
only physical variables were included, than when only socio-economic
variables were included (Fig. 11). However, in all cases, the explanatory
power of the model increased when both socio-economic variables and
physical variables were combined in a full GLM model (adjusted R2

values increasing from between 0.29–0.43 to 0.46–0.63 in the full
GLM; Figs. 10, 11, S4). Amongst the physical variables, NDVI and
major roads were statistically significant in all models in both seasons,
whereas cloud-free coverage was more important for the model in
the summer season (Fig. 10), and snow cover was only statistically sig-
nificant in the winter season (Fig. 10; note that the GLM coefficients of
snow cover were higher than the GLM coefficients of latitude in the
winter season). Amongst the socio-economic variables, both national
GDP per capita and the percent of GDP derived from natural gas and
oil rents were positively contributing to the explanation of cities'
night-time brightness (Fig. 10).

3.2. Country level

In this section we report the results obtained at the country level, i.e.
after averaging all cities within each country. Overall, the three leading
countries in number of densely populated areas included in our analysis
were China (514), India (437) and the USA (306). At the country level
(inwhichwe analyzed themajor cities in each country, and not the entire
area of a country), the brightest cities in July 2014 were all found in the
Middle East, whereas in January 2014 some countries located in higher
latitudes were also amongst the ones with the brightest cities (Fig. 12;
brightness data was not available in July for cities in Iceland, Finland
150 200 250

4, nanoWatts/(cm2*sr) 

ban areas, as a function of mean VIIRS radiance values in July 2014.
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andNorwaydue to longdays). At the country level, statistically significant
correlations were found for VIIRS nighttime lights for all variables ana-
lyzed in both seasons (January and July 2014), except for four variables
in which the correlations were weak or non-significant: area, population
density, NDVI and snow (Table 1). Nighttime light brightness of citieswas
positively correlatedwithGDPper capita (Fig. 13), percent of GDPderived
from natural gas and oil rents (Fig. 14), percent urban area (Fig. 15) and
road density (Fig. 16, Table 1). At the country level, snow cover and
NDVI were only weakly correlated with VIIRS night-time brightness in
January, and were not correlated with VIIRS night-time brightness in
July (Table 1). VIIRS brightness values were highly correlated between
January 2014 and July 2014, the main outliers presenting higher bright-
ness values in January being countries located in northern latitudes with
high snow cover in winter-time such as Canada, Estonia and the Russian
Federation (Fig. 12). In the GLM analysis, both physical and socio-eco-
nomic variables were found as statistically significant (Fig. 10). At the
country level, the adjusted R2 value of a GLM model was higher when
only socio-economic variables were included, than when only physical
variables were included (Fig. 11). However, in all cases, the explanatory
power of the model increased when both socio-economic variables and
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Fig. 8. Spearman rank correlation coefficients between various variables and the percent lit ar
radiance units of nano-Watts/(cm2 ∗ sr), for the 200 largest urban areas (a) and for countries
calculated the percent lit area, is shown on the x-axis.
physical variables were combined in a full GLM (adjusted R2 values in-
creasing from between 0.24–0.37 to 0.49–0.54 in the full GLM; Figs. 10,
11, S4). Amongst the physical variables, NDVI, cloud-free coverage and
major roads were statistically significant in all models in both seasons,
whereas snow coverwas not found as statistically significant at the coun-
try level (Fig. 10). Amongst the socio-economic variables, both national
GDP per capita and the percent of GDP derived from natural gas and oil
rents were positively contributing to the explanation of cities' night-
time brightness at the country level (Fig. 10).

4. Discussion

Overall, our global mapping identified 4154 densely populated areas,
13.9% more than the 3646 metropolitan urban areas identified by Angel
et al. (2011) who used MODIS derived urban land cover and population
data. Previous global studies which analyzed differences in nighttime
light brightness at the country or state level often focused on four
main variables: population size, urban area, GDP and electric power con-
sumption (e.g., Elvidge et al., 1997, 1999; Small et al., 2005; Ma et al.,
2012, 2014a). Here we found that population density was not a
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Fig. 9.Mean VIIRS radiance values in July 2014 in the 200 largest urban areas, as a function
of the percent lit area N25 nW/(cm2 ∗ sr).
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statistically significant variable for explaining cities' night-time bright-
ness when comparing cities between countries globally; this lack of cor-
relation may be explained by our focus on highly densely populated
areas (excluding sparsely populated areas from the analysis), by addi-
tional socio-economic factors which are unrelated to population density
(e.g., GDP per capita), by physical factors influencing surface albedo
(such as snow cover and NDVI), and by the great variability in lighting
standards between countries (e.g., lighting levels, distance between
street lights, whether there are regulations to reduce light pollution by
using full cut-off lamps, etc.), the type of street lighting used (lamp
type, which can be identified using hyperspectral imagery; Elvidge et
al., 2010), etc. It is worthy of noting that slums with very high popula-
tion density in many developing country cities are often poorly lit
(Jones, 2000). While there are various attempts to map GDP spatially
at regional and city levels (Gaffin et al., 2004; Parilla et al., 2015), we
found that city level GDP estimates were not better in explaining night-
time brightness of cities, than national GDP per capita values. This
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finding may indicate the importance of national lighting standards in
explaining cities' nighttime brightness and the percolation of govern-
mental revenue to municipal budgets which are also responsible for
street lighting.

We found that there are additional socio-economic factors beyond
population size and GDP which explain cities' brightness levels. We
have found that cities located in countries where a large percent of the
GDP is derived from natural gas and oil rents, tend to be highly lit – this
is especially evident in the countries surrounding the Persian Gulf,
where oil revenues have led to rapid urban development (Zhang et al.,
2015), and where energy consumption and carbon dioxide emissions
per capita are high (Reiche, 2010). Indeed, in major oil exporting coun-
tries, government policies often drive domestic energy prices under free
market level, leading to high levels of domestic energy consumption,
and to higher growth rates in energy use per capita than the growth
rate of GDP per capita (Mehrara, 2007). Recent studies using finer spatial
resolution sources of nighttime lights have incorporated additional ex-
planatory variables which were found to be statistically significant in
explaining differences between localities in nighttime light brightness
(e.g., house vacancy rates; Chen et al., 2015), with one of themost consis-
tent variables being the density of the road network (Levin and Duke,
2012; Kuechly et al., 2012; Hale et al., 2013; Levin et al., 2014), a variable
whichwas also shown to be statistically significant in our results.Where-
as in previous studies official road data sets were used to estimate road
density and correlate it with light emission, we used OpenStreetMap
data, which has also been recently used to map roadless areas globally
(Ibisch et al., 2016). Although the spatial coverage of OpenStreetMap
data varies between countries and cities, withmost contributors originat-
ing from the developed countries (Neis and Zielstra, 2014), our findings
indicate that road density as derived OpenStreetMap succeeded in con-
tributing to the explanation of spatial variability in light emission from
densely populated areas.

Few studies have explicitly incorporated variables related to surface
reflectance to explain nighttime brightness (but see Kim, 2012; Katz
and Levin, 2016), and none as far aswe knowhave done this at the global
scale.We found that NDVI (representing vegetation cover) was negative-
ly correlated with nighttime brightness, whereas snow cover was
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positively correlated with nighttime brightness. Higher NDVI values in
urban areas may indicate greater foliage cover, which can partly or fully
block upward light emission (Bennie et al., 2014b), or large vegetated
areas (e.g., grassy areas) whose low reflectance will decrease the reflec-
tance of artificial lights towards the sky. This effect of vegetation cover
on a city's night-time brightness as observed from space was recently re-
ported using an EROS-B night-time image of Jerusalem (Katz and Levin,
2016). Cities in the countries surrounding the Persian Gulf often show
low NDVI values (they are mainly located in an arid region), which
might be one of the factors further enhancing the observed nighttime
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Fig. 12.Mean VIIRS radiance values in January 2014 at the country level (i.e. averaging all cities
the urban areas of each country).
brightness of these cities. In contrast with vegetation, snow cover leads
to increased land surface reflectance in the visible and near-infrared
ranges, increasing the upwards reflectance of downward lights (as dem-
onstrated in Fig. 17) and thus enhancing the radiancemeasured by space-
borne sensors (Román and Stokes, 2015). Indeed, snow cover has been
reported to increase surface albedo by as much as 350% (Robinson and
Kukla, 1985). While the increase in night-time brightness in January
(with respect to July) of northern high latitude cities can be explained
by snow cover in winter time (Fig. 6b; seeWu et al., 2013), some low lat-
itude areas (especially India) presented some increase (in percentages
80 100 120 140 160
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more than in absolute values) in night-time brightness from July to Janu-
ary. This may be related to more consistent cloud coverage during the
summer months (monsoon season) in India (Wilson and Jetz, 2016),
hampering night-time observations of cities' brightness. This assumption
is partly supported in our GLM analysis, where the number of cloud-free
observations used to construct themonthlymosaics of theVIIRS,was pos-
itively correlatedwith cities' night-time brightness (Figs. 10, 11). Latitudi-
nal differences in cities' night-time brightness may be explained not only
by greater snowcover in high latitudes and persistent cloud cover in trop-
ical latitudes, but also by seasonal changes in lighting strategy due to lon-
ger nights in high latitudes (Gaston et al., 2012; Wu et al., 2013).

Most studies on nighttime light brightness used lit area and not radi-
ance calibrated values of brightness, because previous sources of remotely
sensed images of nighttime lights (DMSP, astronaut photographs from
the ISS, SAC-C images) were mostly not calibrated (but see Doll et al.,
2006, where calibrated radiances from DMSP were used to map regional
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Fig. 14. Mean VIIRS radiance values in January 2014 at the country level (i.e. averaging all c
economic activity from night-time imagery). The DNB band of the VIIRS
onboard the Suomi NPP satellite presents a breakthrough in our ability
tomap theworld at night (Miller et al., 2013), and is thefirstmission pro-
viding monthly average radiance composite images (available for
downloading from http://ngdc.noaa.gov/eog/viirs/download_monthly.
html, accessed on 22/7/2015). Cities' mean brightness levelswere not lin-
early correlatedwith percent lit area, however both variables were found
to behighly correlatedwith the explanatory variables examinedhere. Dif-
ferences between using these two variables (percent lit area, mean
brightness levels)weremostly notedwhen setting high threshold values;
whenthresholdsofbrightness levelsweresethigh(above100nW/(cm2 ∗-
sr)), correlations between all explanatory variables and percent lit area
decreased, except for the physical variables of snow cover and NDVI.

Our finding that multiple factors can affect nighttime light bright-
ness at the city level confirms the findings of other studies at the
country level (Wu et al., 2013; Ma et al., 2012). Given the fact that
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some studies have looked into predicting GDP with nighttime lights
(Chen and Nordhaus, 2011; Elvidge et al., 1997; Shi et al., 2014a;
Sutton et al., 2007), our findings suggest that caution must be
taken when interpreting monthly nighttime lights as a proxy for
economic activity, because there are additional factors which drive
the emissions night lights besides economic activity. Indeed,
Bickenbach et al. (2013) concluded that night lights data may be
poor proxies for regional GDP. Due to the phenological cycle of veg-
etation and seasonal changes in snow cover, variations which are
not related to the emission of nighttime lights can be introduced
into nighttime light time series. Such variations must be first identi-
fied and decoupled from nighttime light time series before they can
be used to track real seasonal changes in nighttime lights, which
have been used to track human activities, such as holiday celebra-
tions (Zhang et al., 2015; Román and Stokes, 2015) or seasonal
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Fig. 16.MeanVIIRS radiance values in July 2014 at the country level (i.e. averaging all citieswith
areas of each country).
population gathering around cities in Africa (Bharti et al., 2011).
Given the availability of a monthly cloud-free night-time lights prod-
uct from VIIRS, we call for further studies to examine the effects of
seasonal changes on nighttime lights intensity observed from
space, using time series approaches which have been developed in
recent years for analyzing vegetation (e.g., Verbesselt et al., 2010).
Seasonal changes in observed night-light may be due to changes in
surface reflectivity (e.g., snow and vegetation cover) or due to sea-
sonal changes in human activity, and separating these factors is a
challenge for the remote sensing community.

5. Conclusions

Nighttime light remote sensing is still in its infancy stage and is basi-
cally qualitative, compared with daytime optical remote sensing and
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Fig. 17. Motsa Valley, on the western outskirts of Jerusalem, Israel. Snow covered at day-
time (20/2/2015, 2:50 pm, exposure time of 1/125 s) and at night-time (21/2/2015,
2:57 am, exposure time of 1/4 s). The night-time photo demonstrates light-pollution
under snow-cover conditions, due to increased surface reflectance. Notice that during
the summer season (10/7/2008, 7:00 pm and 3:00 am), the valley is very dark at night-
time, with no observed surface reflectance, due to low albedo of vegetation cover. Note
that in addition to differences in snow cover, the winter photos show considerable
downward atmospheric scattering of light from clouds which amplify light pollution
(Kyba et al., 2011), while the summer photos show clear skies with negligible
downward atmospheric scattering. All photos were taken by NL, using a Kodak
Easyshare ZD710 (in 2008) and a Canon PowerShot SX40 HS (in 2015). It should be
noted that snowfall is a rare event in Jerusalem, with two days of snow a year on
average (Bitan and Ben-Rubi, 1978).
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microwave remote sensing. There is still a lack of understanding of the
mechanisms behind nighttime light remote sensing, due to the lack of
studies at the ground level and the relative lack of understanding of night-
time light transfer from lighting sources through the air to the sensor. To
advance nighttime light remote sensing, there is an urgent need for stud-
ies on factors that can influence nighttime light variation.With its dynam-
ic radiometric range and advanced onboard calibration facilities, VIIRS
takes continuous and consistent measurements of nighttime lights with
significantly improved data quality, making the call for newer generation
algorithms more urgent. Our current analysis is a direct response to that
call.

We have shown that cities' night-light brightness is a function not
only of fixed variables at both the country scale (e.g., GDP) and the
city scale (e.g., density of the road network), but also of factors that
have seasonal patterns, such as vegetation and snow cover. Ourfindings
demonstrate some of the new insights which are now becoming possi-
ble thanks to the availability of global monthly radiance calibrated
night-light mosaics from the VIIRS. Our findings suggest that in order
to understand spatial and temporal variation in nighttime light intensi-
ty measured from space it is critical to first identify and separate varia-
tions caused by phenological cycles of vegetation and snow cover, as
well as by moon lighting. This is especially important for applications
to track human activities over time with nighttime light time series
data. The next step is to quantitatively model factors that can influence
nighttime light intensity in order to extract true light signals on the
ground from nighttime light remote sensing imagery.
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