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“Does the model produce the correct quantity of area in eachAbstract
category?” and “Does the model place the specific categories inNew generalized statistical methods to measure agreement
the correct locations?” This paper presents methods to answerbetween two maps at multiple-resolutions, where each cell in
those two questions in a manner that corresponds to the intu-each map has a multinomial distribution among any number
ition of visual inspection and that is useful to scientists whoof categories, are presented. This methodology quantifies
need to improve models.agreement between any two categorical maps, where either map

Figure 1 illustrates the distinction between agreement dueuses fuzzy or crisp classification. The method measures the
to quantity versus agreement due to location. Figure 1 showsagreement at various resolutions by aggregating neighboring
two raster maps, each of which has 16 cells. Assume that thecells into an increasingly coarse grid. At each resolution, the
first map is from a simulation model and the second map is themethod partitions the overall agreement into correct due to

chance, correct due to quantity, correct due to location, error reference map used for validation. There are two categories, say
due to location, and error due to quantity. In addition, the deforested versus surviving forest. Each cell shows the propor-
method computes six statistics that are useful to interpret the tion of membership in the deforested category. At the fine reso-
differences between maps, and shows how these statistics lution, each of the cells belongs entirely to one of the two
change with resolution. This technique is particularly useful categories, hence the proportion membership in the deforested
for characterizing land-cover change and for validating land- category is either 0 or 1. Figure 1 also shows this same pair of
cover change models. For illustration, this paper applies these maps at a coarser resolution whereby four adjacent cells from
theoretical concepts to the validation of a land-use change the fine resolution map are aggregated, hence each coarse cell
model for Costa Rica. can have partial membership simultaneously in the deforested

category and the surviving forest category. Figure 1 shows the
Introduction proportion of membership in the deforested category for each

coarse cell.The Need for Useful Indicators of Goodness-of-Fit
At the finest resolution, the proportion of cells classifiedThis journal’s special issue concerning Characterizing and

correctly in Figure 1 is 12/16. The overall error is 4/16 and hasModeling Landscape Dynamics is an indication of the tremen-
two components: error due to quantity and error due to loca-dous growth in the general field of landscape modeling. Our
tion. The proportion of the deforested category in the simu-field abounds with variations on Markov Chain models, Cellular
lated map is 10/16 and in the reality map is 12/16, so there is anAutomata models, agent-based models, multi-nomial logistic
error in quantity of 2/16. The error of location is attributable toregression models, etc. In fact, we are now producing models
the fact that it is possible to swap the locations of a pair of cellsfaster than we can validate them.
in the simulated map in order to improve its agreement with theAfter a scientist runs a land-change model, usually the first
reality map. Specifically, in the simulated map, if we were toquestion is “How well did the model perform?” To address this

question, usually the first approach is to perform a visual exam- swap the location of the cell in row 3 column 1 with the cell in
ination between the output map that the model produces and a row 3 column 2, then the agreement between the simulated
reference map that has been reserved for validation. After a map and the reality map would improve from 12/16 to 14/16.
visual comparison, the scientist may choose to compute statis- After this swap, it would be impossible to perform additional
tical measures of goodness-of-fit. The most useful indication of swaps to improve agreement, because all of the remaining error
goodness-of-fit would inform the scientist on how to improve would be due to quantity. Therefore, the error due to location is
the model. For example, if the model can control explicitly for 2/16 at the finest resolution. At the coarse resolution, it is
patch size, then it would be useful to compare the average patch impossible to perform any swaps among the locations of four
size between the model’s output map and the validation map. If coarse cells in the simulated map in order to improve agree-
the model cannot control for patch size, then such a compari- ment with the reality map; therefore, at the coarse resolution,
son would not be directly useful. all of the error is due to quantity, which remains at 2/16.

The Problem of Categorical Map Comparison
In the case where the model’s output map and the reference
map show a categorical variable, the most basic questions are
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methods generate windows at various resolutions, then plot the
agreement within the window as a function of window size.
Kok et al. (2001) compare maps of landscape change, in which
there is an increase or decrease of each land type in each grid
cell. They measure at various resolutions the extent to which
the quantities of change in the cells of one map correlate with
the quantities of change in the corresponding cells in another
map. Turner et al. (1989) and Costanza (1989) offer additional
methods of categorical map comparison at multiple resolu-
tions, including methods to integrate measures at several reso-
lutions into one overall measurement of agreement. Turner and
Costanza apply their methods to crisp classification schemes.

Fuzzy classification gives the potential to be more descrip-
tive than does crisp classification because fuzzy classification
can show more information than crisp classification (Heuvel-
ink and Burrough, 1993; Foody, 1999). Some researchers have
developed methods to quantify agreement using fuzzy classifi-
cation in order to improve estimates of quantity of land types
(Woodcock and Gopal, 2000). Hay (1988) and Jupp (1989) use
the confusion matrix to improve accuracy of quantity, but these
methods do not incorporate proximity, nor do they analyze theFigure 1. This shows an example of a map from a simulation
accuracy of location separate from the accuracy of quantity.model versus a reference map used for validation. The value

A few researchers separate explicitly the accuracy of loca-in each grid cell is the proportion of membership in a cate-
tion from the accuracy of quantity. Monserud and Leemansgory. When four adjacent cells of the fine resolution maps
(1992) use kappa to measure accuracy of location, and otherare averaged, the result is a coarse resolution cell that can
methods to measure accuracy of quantity. Pontius (2000) showsshow a partial membership in the category.
how to separate the agreement due to quantity versus location
for comparison of categorical maps; however, that method
works for only a single resolution and only crisp classification.

As mentioned above, we could compare two categoricalWith this example in mind, let us examine the general case
of comparison of two raster maps. Each cell in each map is clas- maps according to a variety of criteria, including average patch

size, perimeter-to-area ratio, contagion, patch shape, etc. Theresified as one of J categories. The most common (non-spatial) sta-
tistics are functions of a contingency table or confusion matrix, are a variety of metrics for each of these characteristics of pat-

tern structure. Ritters et al. (1995) describe and perform factorwhere the columns of the table have categories of one map and
the rows are categories of the other map. Each entry in the table analysis on 26 such metrics. However, before a researcher

examines these details of pattern structure, there are usuallyis the proportion (or number of cells) of the study area that falls
into the combination of categories in each map. The contin- two more fundamental initial questions: How well do the maps

agree in terms of the quantity in each category? How well do thegency table yields familiar statistics, such as Chi-square, phi,
tau, and kappa. GIS professionals use additional statistics, such maps agree in terms of the general location of each category?

This paper presents statistical methods that answer theseas user’s accuracy and producer’s accuracy (Congalton, 1991;
Congalton and Green, 1999). However, the basis for all these fundamental questions with an approach that analyzes maps at

multiple resolutions, works for both crisp and fuzzy classifica-statistics is cell-by-cell agreement between the two maps,
because the confusion matrix contains information about only tion, and partitions the agreement according to correct due to

chance, correct due to quantity, correct due to location, errorcell-by-cell agreement, where each cell is crisp classified. The
confusion matrix fails to distinguish between a near miss and a due to location, and error due to quantity. This paper describes,

illustrates, and gives equations for all of these statistics and sev-far miss. In other words, the confusion matrix records zero
agreement when a cell is not classified correctly, even when eral derivative statistics that modelers will find helpful in

model development.the correct category is found in the neighboring cell, or even
when the correct category is found nowhere near the cell. Also,
the standard confusion matrix is not designed to account for Methods
partial success when the cell has partial membership in a cate-
gory. Furthermore, the analysis of the confusion matrix usually Data Format

In order to illustrate the usefulness of the proposed methods totreats the marginal totals as fixed; therefore, it confounds accu-
racy due to quantity and accuracy due to location (Pontius, dynamic landscape modeling, this paper illustrates the meth-

ods with data from Costa Rica, for which there are two catego-2000). For purposes of categorical map comparison, it would
be better (1) to give some partial agreement for a near miss and ries of interest, deforestation and surviving forest. Figure 2

shows a raster map of real deforestation from 1940 to 1983less agreement for a far miss, (2) to be able to apply the compar-
ison method to maps in which the cells are fuzzy classified, and (Sader and Joyce, 1988). For this example, we consider Figure

2 to be reality, which means it is our reference map of high accu-(3) to separate agreement due to quantity from agreement due
to location. This paper gives a method to accomplish all three racy. Of the cells that were forest in 1940, 70 percent became

deforested between 1940 and 1983. Cells that are non-forest inof these goals with one approach, whereas other approaches
accomplish only one or two of these goals. Therefore, this paper 1940 are not part of this analysis because they are not candi-

dates for new deforestation between 1940 and 1983.answers the numerous calls for research into this type of accu-
racy assessment (Wang, 1990; Gopal and Woodcock, 1994; Figure 3 shows a raster map of predicted deforestation sim-

ulated by a land-use change model similar to GEOMOD2 (Pon-Edwards and Lowell, 1996; Lambin et al., 1999).
tius et al., 2001). GEOMOD2 is similar to many other land-use
change models in which the user specifies the overall quantityPrevious Approaches

Others have derived measures of multiple resolution goodness- of change and GEOMOD2 specifies the location of change based
on a variety of biophysical and social characteristics.of-fit in order to compare spatial patterns in landscapes. These
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Partial Agreement and Multiple Resolutions
The key to convert nearly any conventional statistic to a multi-
ple resolution statistic is to allow for partial agreement between
the cell of one map and the corresponding cell of the other map.
In order to do this, one must allow for each cell to have partial
membership in any of the categories. Let us define the agree-
ment for category j in cell n to be the minimum of Rn,j and Sn,j
(Prentice et al., 1992). Equation 5 gives the total agreement over
all J categories in any single cell: i.e.,

proportion agreement in cell n � �
J

j�1
MIN(Rn,j, Sn,j ) (5)

A spatial aggregation technique generates a sequence of
increasingly coarse resolutions. For our notation, the resolu-
tion is the length of a grid cell side. The finest resolution is the
resolution in which the model creates its output map. The next
resolution uses a 2 by 2 grid to aggregate four of the finest reso-

Figure 2. This map of real deforestation in Costa Rica shows lution neighboring cells, the subsequent resolution uses a 3 by
that 70 percent of the 1940 forest area became deforested 3 grid to aggregate nine of the finest resolution neighboring
from 1940 to 1983. Each cell is two kilometers by two cells, and so on until the coarsest resolution aggregates all the
kilometers. finest resolution cells of the entire study area into one cell.

When one uses this aggregation technique, if there are
many near misses in the comparison at the finest resolution,
then the agreement between the maps will rise rapidly in the
early stages of aggregation. If there are many far misses, then

According to this particular run of the simulation model, there the agreement will not rise until later stages of aggregation. At
is 58 percent deforestation between 1940 and 1983. This speci-
fication of the quantity of deforestation is based on extrapola-
tion of historical information. Therefore, we see that the model
makes errors in terms of both the quantity of deforestation and
the location of the deforestation. The focus here is on map com-
parison, regardless of the method of creation of the simulated
landscape. It is not the purpose of this paper to discuss the
method of simulation. Whatever the method of simulation, we
will assume that the simulation model can make errors in
terms of both the quantity of each predicted category and the
location of each predicted category. Note that some models are
calibrated such that they make no errors in the quantity of each
category, in which case the methods of this paper still apply
but are not as interesting.

This paper gives general methods to quantify the agree-
ment between two maps, such as Figure 2 versus Figure 3.
However, this paper describes statistical methods that apply to
cases that are much more general than Figure 2 versus Figure 3.
For example, the method can compare any two maps where the
categories are classified as any combination of fuzzy and crisp
categories. Specifically, the methods can compare any two
maps, denoted R for reality and S for simulated, that meet the
following criteria. First, both map R and map S must have the
same grid cell structure. Second, in each grid cell, there must
be a multinomial distribution of categories such that Equations
1 through 4 hold, where j is a category, J is the number of catego-
ries, Rn,j is the proportion of category j in grid cell n of map R,
Sn,j is the proportion of category j in grid cell n of map S, and
Ng is the number of grid cells in the map at resolution g: i.e., Figure 3. In this map of simulated deforestation in Costa

Rica, 58 percent of the 1940 forest area is deforested
between 1940 and 1983. Cells that are non-forest in 1940

0 � Rn,j � 1 (1) are identical to those in Figure 2 and are not candidates
for deforestation from 1940 to 1983.

0 � Sn,j � 1 (2)
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the coarsest resolution, where there is just one cell, the agree- and the surviving category is 42 percent. The right column
shows hypothetical simulations that have perfect informationment is a function of only the quantity of each category in each

map; hence, location among the fine resolution cells plays no concerning quantity; thus, the proportion of each category j in
the simulated map is equal to the proportion of category j in therole in agreement.

If the study area is not perfectly square, as is the case in the reality map. Equation 9 gives the proportion of category j in the
reality map, R.,j and Equation 10 gives the proportion of cate-Costa Rica example, then the aggregation technique will pro-

duce coarse resolution cells that are made up of different num- gory j in the simulated map, S.,j: i.e.,
bers of fine resolution cells. Therefore, it is important to weight
each cell according to its importance in the analysis. A natural
selection for each weight, Wn, is the number of fine resolution

R.,j �
�
Ng

n�1
[Wn Rn,j ]

�
Ng

n�1
Wn

(9)cells that constitute a coarse cell, n. Equation 6 gives the agree-
ment between map R and map S, where each cell n has a weight
Wn. Equation 6 applies to any specific resolution: i.e.,

total agreement at resolution g

S.,j �
�
Ng

n�1
[Wn Sn,j ]

�
Ng

n�1
Wn
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�
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�
Ng

n�1
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The vertical axis of Figure 4 shows three levels of agree-
ment in terms of location between the reality map and simu-

Each resolution yields statistics of agreement, but it is also lated maps. The bottom row shows agreement for simulations
helpful to have one measure of overall agreement. Therefore, that have no information concerning location; thus, an identi-
one can combine the level of agreement at each resolution into cal multinomial distribution of categories exists within all grid
one measurement of agreement by taking a weighted average of cells of the hypothetical simulated map. A simulated map that
agreement at each resolution. If it is important to measure has no information of location is a map in which each category
agreement between the maps at precise locations, then the user is distributed evenly across the landscape. The middle row
should use large weights for fine resolutions. Equation 7 gives shows agreement for simulations that have a medium level of
total agreement, where Vg is the weight for each map resolu- information concerning location, as determined by the particu-
tion g. The resolution weights are the most subjective compo- lar comparison we are making, which is Figure 2 versus Figure
nent of this analysis. A natural selection for each Vg is the sum 3 in our example. In general, the level of the medium informa-
of the individual cell weights at resolution g, in which case total tion of location depends on the simulation’s ability to place cat-
agreement simplifies to Equation 8, which is what the Costa egories at the proper locations, as indicated by the direct
Rica example uses. comparison between the simulated map and the reality map,

denoted by M(m). Table 1 gives the formula for Klocation. The
top row shows agreement of hypothetical simulations that haveweighted total agreement �
perfect information concerning location, so the given quantity
of category j in the simulated map is placed as best as possible
to match the locations in the reality map. If a simulated map��

G

g�1
Vg ��

Ng

n�1
�Wn �

J

j�1
MIN(Rn,j, Sn,j )�
�
Ng

n�1
Wn ����

G

g�1
Vg (7) has perfect location, then the only source of disagreement

between it and the reality map is a difference in quantity.
For any single pair of maps, one can compute all nine of the

points shown in Figure 4 for every resolution. Let each of the
simplified total agreement nine points be denoted by the notation (x,y), where x is a vector

that gives the proportion of each category in the simulated map
and y is the proportion agreement when the simulated map is
compared to the reality map. Each of the three columns of Fig-� 	�

G

g�1
�
Ng

n�1
�Wn �

J

j�1
MIN(Rn,j, Sn,j )�
��

G

g�1
�
Ng

n�1
Wn (8)

ure 4 refers to a combination of quantities in the simulated map.
Let x � n for the left column; let x � m for the middle column;
let x � p for right column. Let each of the rows of Figure 4 referLocation versus Quantity
to a function of x: N(x) for the bottom row, M(x) for the middleFigure 4 shows nine mathematical expressions for the agree-
row, and P(x) for the top row. The agreement between the realityment between nine pairs of maps. The expression in middle
map and the simulation map is given always by M(m). P(p) iscolumn m and middle row M(x) gives the agreement M(m)
always 100 percent. The other seven points are levels of expec-between the reality map and the simulated map. The other
ted agreement, which are derived statistically. The map of real-eight expressions are idealized agreement between the reality
ity alone determines N(n), N(p), and P(n). The points in rowsmap and a hypothetical simulated map. Each expression is
N(x) and M(x) change with resolution, and usually increasebased on the reality map and a combination of information that
with increasing coarseness. The points in row P(x) do notcould be incorporated in the simulated map.
change with resolution. All of the more advanced statisticsThe horizontal axis of Figure 4 shows three levels of agree-
given in this paper are functions of the nine crucial points ofment in terms of the quantities of categories found in the simu-
Figure 4. Pontius (2000) describes in depth the logic of Figurelated map. The left-most column n shows agreement of
4 for a single resolution where the categorization is crisp. Thehypothetical simulations that have no information concerning
nine points partition an agreement space, which is describedquantity; thus, the proportion of every category j in the hypo-
next.thetical simulated map is 1/J (Foody, 1992). The middle col-

umn m shows simulations that have some medium level of
information concerning quantity. In general, m denotes the Agreement Space

Figure 5 shows percent agreement versus quantity of deforesta-proportions of the categories in the simulated map. For our
analysis of Figure 3, the deforestation category is 58 percent tion in the simulated map. For any particular resolution, we
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Figure 4. This figure gives mathematical expressions for nine points from which all other statistics of this paper derive. The
expression in the middle column and middle row gives the agreement between the reality map and the simulated map at
resolution g, where the variables are defined in the text. The other eight expressions are idealized agreement between the
reality map and a simulated map, based on the combination of information available concerning quantity and location. All nine
points are plotted in Figure 5.

could generate a figure similar to Figure 5. However, Figure 5
combines all resolutions into one figure, using the weighting
method that places larger weights on fine resolutions as dis-
cussed above. Figure 5 shows the nine quantities in the same
relative positions as given in Figure 4. The three points at 50
percent simulated deforestation show hypothetical simula-
tions that have no information of quantity, that is, x � n; points
at 58 percent simulated deforestation show simulations that

TABLE 1. FORMULAS FOR INDICES OF MAP COMPARISON, INCLUDING RESULTS

FOR THE EXAMPLES. ALL VALUES ARE IN PERCENT. FOR THE COSTA RICA

EXAMPLE, THE VALUES ARE WEIGHTED OVER MULTIPLE RESOLUTIONS, WITH LARGER

WEIGHTS AT FINER RESOLUTIONS

Costa Rica
Figure 5. This agreement space shows percent correct clas-Figure 1 Figure 1 Reality
sification versus percent of simulated deforestation. The rela-Fine Coarse Versus

Parameter Formula Resolution Resolution Simulation tive positions among the nine points are in the same row
and column arrangement as the mathematical expressionsPercent Correct M(m) 75 88 74
of Figure 4. We could make a figure such as this one forM(m) � N(n)

P(p) � N(n)
Kno 50 67 44 each particular resolution. However, Figure 5 is the one that

results when all resolutions are combined by a weightedM(m) � N(m)
P(m) � N(m)

Klocation 60 100 54 linear combination, with larger weights for finer resolutions.
M(m) � M(n)
M(p) � M(n)

Kquantity 50 50 42

M(m) � N(m)
P(p) � N(m)

Kstandard 43 60 40
have medium information of quantity, that is, x � m; points at

VPIQ M(p) � M(m) 10 13 8 70 percent simulated deforestation show hypothetical simula-VPIL P(m) � M(m) 13 0 14
tions that have perfect information of quantity, that is, x � p.
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The lines in Figure 5 show agreement as a function of the
percent of deforestation in the simulation. The upper “Perfect
Location” solid line shows the maximum agreement between
the simulated map and the reality map. The points on the “Per-
fect Location” line correspond to hypothetical simulations that
have perfect agreement in terms of location, which are in the
P(x) row of Figure 4. The “No Location” line shows the agree-
ment when the percent of simulated deforestation is assigned
identically to every grid cell. The points on the “No Location”
line correspond to scenarios that have chance agreement in
terms of location, which are in the N(x) row of Figure 4. The
points on the “Medium Location” line correspond to simula-
tions that have a medium ability to specify location, which are
in the M(x) row of Figure 4. The central circular point shows the
agreement M(m) between the reality map (Figure 2) and the
simulated map (Figure 3). The “Perfect Information” and
“Medium Information” lines increase in percent correct as they Figure 7. This agreement space shows variations in the
approach perfect information of quantity. The “No Informa- kappa index of agreement versus resolution for the agree-
tion” line shows that if the location of each category is distrib- ment between the map of reality (Figure 2) and the simulated
uted evenly across the landscape, then percent correct is map (Figure 3) for Costa Rica. The resolution of 1 is the fin-
maximized when the quantities are at extremes, in this case, est and 41 is the coarsest, as in Figure 6.
100 percent deforestation and 0 percent surviving forest.

Figure 5 portrays a two-dimensional slice through a three
dimensional agreement space, where the three axes are (1) per-
cent agreement, as a function of (2) resolution size, and (3)

quantity � N(m) � N(n), proportion correct due to locationpercent of a specific land type in the simulated map. For the
M(m) � N(m), proportion error due to location � P(m) � M(m),Costa Rica example, the agreement space is three-dimensional
and proportion error due to quantity � P(p) � P(m).because there are two categories, deforestation and surviving

forest. For other applications, the agreement space would
Kappaincrease by one dimension for every additional land type. The
Figures 5 and 6 show that random chance can generate largeaxis of the additional dimension would be the percent of the
agreement, especially when there are a small number of cate-additional land type in the simulated map.
gories. Therefore, it is helpful to incorporate the expected pro-Figure 6 shows a slice through the same three-dimensional
portion correct classification due to chance in an index ofagreement space as Figure 5. Figure 6 is orthogonal to Figure 5
agreement (Cohen, 1960; Brennan and Prediger, 1981; Rosen-and passes through the plane where percent deforested � 58
field, 1986; Hudson and Ramm, 1987). Equation 11 gives onepercent. The axes of Figure 6 are percent agreement versus res-
of the most popular indices, kappa, where Po is the observedolution. Figure 6 shows the agreement between the simulated
proportion correct which we denote as M(m), Pc is the expec-map and the reality map at various resolutions. For each reso-
ted proportion correct due to chance, and Pp is the proportionlution, the components of agreement are separated into propor-
correct when classification is perfect. Thus, kappa is 1 whention correct due to chance � N(n), proportion correct due to
observed agreement is perfect; kappa is 0 when observed agree-
ment is equal to the expected agreement due to chance. In the
standard kappa, Pc is the quantity N(m) and Pp is the quantity
P(p) given in Figure 4: i.e.,

kappa �
(Po � Pc)
(Pp � Pc)

(11)

In addition to the standard kappa index of agreement, Pon-
tius (2000) defines three variations: Kappa for no information
(Kno), Kappa for location (Klocation), and Kappa for quantity
(Kquantity). Kno is an overall index of agreement for which Pc
� N(n) and Pp � P(p). Klocation is an index that measures the
agreement in terms of location only, where Pc � N(m) and Pp
� P(m). Kquantity measures the agreement in terms of quantity,
where Pc � M(n) and Pp � M(p). Table 1 gives the formulas for
these variations on kappa. Figure 7 shows how these indices of
agreement change with resolution for the comparison between

Figure 6. This agreement space shows percent correct clas- reality (Figure 2) and the simulated map (Figure 3) for Costa
sification versus resolution for the agreement between the Rica.
map of reality (Figure 2) and the simulated map (Figure 3) of
Costa Rica. The unit of the resolution axis is the length of the Value of Perfect Information
side of a coarse grid cell, expressed as a multiple of the Two additional indices of agreement are value of perfect infor-
length of the side of the fine resolution cell, so that the reso- mation of quantity (VPIQ) and value of perfect information of
lution of 1 is the finest and 41 is the coarsest. Notice how the location (VPIL), defined in Table 1. VPIQ is the additional
proportion correct due to location and the proportion error increase in agreement that would be attained if the quantity in
due to location both shrink as the resolution becomes the simulated map were to match the quantity in the reality
coarser. map, given the initial agreement M(m) and assuming a con-

stant Klocation. VPIL is the additional increase in agreement
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TABLE 3. VALUES FOR THE NINE CRUCIAL POINTS TO COMPARE THE SIMULATED

MAP VERSUS THE REALITY MAP OF FIGURE 1 AT THE COARSE RESOLUTION

Information of Quantity
Information
of Location No Medium Perfect

Perfect 3/4 � 12/16 3.5/4 � 14/16 4/4 � 16/16
Medium 3/4 � 12/16 3.5/4 � 14/16 4/4 � 16/16
No 2.5/4 � 10/16 2.75/4 � 11/16 3/4 � 12/16

Results
Costa Rica Example
For the Costa Rica example, the overall agreement, denoted
M(m), between the reality map (Figure 2) and the simulated

Figure 8. This agreement space shows the value of perfect map (Figure 3) is 74 percent, when the analysis is weighted over
information of quantity (VPIQ) and the value of perfect informa- all resolutions, with higher weights for finer resolutions. Fig-
tion of location (VPIL) versus resolution for the agreement ures 5 and 6 show that the partitioning of agreement is 53 per-
between the map of reality (Figure 2) and the simulated map cent correct due to chance, 3 percent correct due to quantity, 18
(Figure 3) of Costa Rica. The resolution of 1 is the finest and percent correct due to location, 14 percent error due to location,
41 is the coarsest. Notice that for finer resolutions, VPIQ is and 12 percent error due to quantity. Table 1 shows that the val-
less than VPIL, and vice-versa. ues of kappa and its variations are near or slightly less than 0.5,

which indicates the model is near or slightly less than half way
between (a) the level of agreement expected by chance and (b)
perfect agreement. The value of perfect information of location
(VPIL) is 14 percent, and the value of perfect information ofthat would be attained if the location in the simulated map were
quantity (VPIQ) is 8 percent, which means that the modeler willto match as closely as possible the reality map, given the initial
gain more agreement from improving the model’s ability toagreement M(m) and assuming no change in the quantity in the
specify location than from improving the model’s ability tosimulated map. Figure 8 shows how these indices of agreement
specify quantity.change with resolution for the comparison between reality

Figure 6 shows how percent agreement increases as resolu-(Figure 2) and the simulated map (Figure 3) for Costa Rica.
tion becomes coarser from 1 to 41 grid cells per side of each
coarse grid cell. At the finest resolution, there are 9011 cellsA Simplified Example
and, at a resolution of 41, there are 16 coarse grid cells. WhenIn order to guarantee that the reader has followed the logic of
the resolution reaches 199, there is exactly one coarse cell. Per-this analysis, I recommend that the reader work through the
cent agreement increases from 73 percent to its maximum of 88simplified example shown in Figure 1. For the fine resolution,
percent as one moves from the finest resolution to the coarsestTable 2 shows values of the nine crucial points in the same
resolution. At the finest resolution, correct due to chance is 50arrangement as their corresponding equations in Figure 4.
percent, correct due to quantity is 3 percent, correct due to loca-Table 3 shows the same points for the coarse resolution maps
tion is 19 percent, error due to location is 16 percent, and errorin Figure 1. All the statistics of this paper derive directly from
due to quantity is 12 percent. As resolution becomes coarser,these nine points, so it is crucial to understand the logic of Fig-
correct due to chance tends to increase, correct due to quantityure 4 and Tables 2 and 3.
varies unsystematically, correct due to location decreases, errorAt the fine resolution, the overall agreement is M(m) �
due to location decreases, and error due to quantity remains12/16 and the error due to location is P(m) � M(m) � 2/16. This
constant.error of location is attributable to the fact that it is possible to

It is important to examine how the various kappa indices ofswap the locations of a pair of cells in the simulated map in
agreement change with resolution, because the percent agree-order to improve its fit with the reality map. At the coarse reso-
ment due to chance tends to increases with resolution. At thelution, the overall agreement is M(m) � 14/16 and the error due
finest resolution, Kno is 45 percent, Klocation is 55 percent,to location is P(m) � M(m) � 0. At the coarse resolution, it is
Kquantity is 41 percent, and Kstandard is 42 percent. As resolu-impossible to perform any swaps among locations of cells in the
tion becomes coarser, Kno and Kstandard decrease while Klo-simulated map to improve agreement with the reality map. The
cation and Kquantity do not vary systematically (Figure 7).near misses at the fine resolution are the reason for the perfect

Figure 8 shows that at the finest resolution VPIQ is 9 per-agreement in terms of location at the coarse resolution. At all
cent, and VPIL is 16 percent. As resolution becomes coarser,resolutions, error due to quantity is P(p) � P(m) � 2/16. Table 1
VPIQ remains steady while VPIL approaches zero. At resolutionsgives all of the statistics that derive from the nine crucial points
more coarse than 29, VPIQ is larger than VPIL.shown in Table 2.

Discussion
Guidance for Model ImprovementTABLE 2. VALUES FOR THE NINE CRUCIAL POINTS TO COMPARE THE SIMULATED
The Results section gives statistics that are helpful to scientistsMAP VERSUS THE REALITY MAP OF FIGURE 1 AT THE FINE RESOLUTION

who are trying to produce maps with high levels of agreement.
Information of Quantity Modelers and remote sensing specialists need to know how toInformation

adjust the simulation or classification methodology to increaseof Location No Medium Perfect
accuracy.

Perfect 12/16 14/16 16/16 In the Costa Rica example, VPIQ and VPIL show that an
Medium 10.4/16 12/16 13.6/16 improvement in specification of location is likely to be moreNo 8/16 9/16 10/16

helpful in increasing accuracy than will an improvement in
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specification of quantity at fine resolutions. However, at reso- proximity and fails to partition the agreement and error
according to quantity and location. The techniques in thislutions greater than 29 by 29 cells, improvement in specifica-

tion of quantity becomes more important than improvement in paper are well suited to compare maps where the cells in one
map are binary variables and the cells in the other map are mod-specification of location. These types of indices can help mod-

elers decide how to focus their modeling efforts. For example, eled probabilities.
This paper presents methods to address two fundamentalif the output from a land-use change model will serve as input

to other models, then the modeler should examine the land- questions in any categorical map comparisons as mentioned in
the introduction: Do the maps agree in quantity of each cate-use change model’s VPIL and VPIQ at the resolution of the other

models. gory? Do the maps agree in the location of each category? After
the scientist addresses these questions, then more detailedFurthermore, Figure 6 shows that, at the finest resolution,

the error due to location accounts for 16 percent of the land- questions arise, such as “Do the two maps look similar in terms
of fractal dimension, patchiness, etc.?” In order to examinescape, but at a resolution of 21 the error due to location accounts

for about 8 percent of the landscape. This means that half of the these issues, the scientist could compare the two maps in terms
of landscape pattern indices such as those described by Ritterserrors of location happen over distances less than 42 kilometers,

because the resolution of each cell is two kilometers. et al. (1999). However, it is recommended that the more basic
methods of this paper be performed first, because the quantity
and the general location of the mapped categories can con-Application to Landscape Characterization

With a trivial change in the definition of the categories in the strain and influence substantially other indices of landscape
pattern.maps, the techniques of this paper are extremely well suited to

characterize general land-cover change over time. For example,
in the Costa Rica case, suppose that in both the “simulated” Conclusions
map (Figure 2) and “reality” map (Figure 3), white meant out of This paper gives mathematical expressions to enable scientists
study area, gray meant non-forest, and black meant forest. to separate overall classification agreement into (1) agreement
Also, assume that the “simulated” map is a map from some associated with quantity versus (2) agreement associated with
point in time, say 1960, and the “reality” map is of 1983. If this location. Moreover, this paper shows how to partition these
were the case, then the exact same calculations would compare components of agreement over multiple resolutions. It is
the map of 1960 to the map of 1983. The resulting values of the important to examine multiple resolutions so that map com-
statistics of agreement would be the same; however, the inter- parison can take into consideration spatial proximity to agree-
pretation would characterize the change between 1960 and ment, and not be constricted to cell-by-cell agreement. These
1983. Total agreement is M(m) � 0.74, which means that 74 per- statistics can be used to compare any two maps of crisp or fuzzy
cent of the landscape shows no change between 1960 and categorical variables; hence, they should be useful for GIS mod-
1983. Of the remaining 26 percent that shows change, 14 per- elers, remote sensors, and any other scientists who want to
cent of the change is attributable to the change in location compare categorical maps.
between the two years and 12 percent of the change is attribut-
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