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Abstract

Analogy making is a central construct in human cognition and plays an important role to explain cognitive abilities. While various
psychologically or neurally inspired theories for analogical reasoning have been proposed, there is a lack of a logical foundation for ana-
logical reasoning in artificial intelligence and cognitive science. We aim to close this gap and propose heuristic-driven theory projection
(HDTP), a mathematically sound framework for analogy making. HDTP represents knowledge about the source and the target domain
as first-order logic theories and compares them for structural commonalities using anti-unification. The paper provides an overview of
the syntactic principles of HDTP, explains all phases of analogy making at a formal level, and illustrates these phases with examples.
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1. Introduction

Analogy making can be considered as a core of cogni-
tion: it seems to be central to many cognitive abilities such
as organization and retrieval of knowledge, learning new
knowledge via abstraction or via analogous comparisons,
creativity in finding novel solutions to problems etc. While
various psychologically or neurally inspired theories for
analogical reasoning have been proposed, there is a lack
of a logical theory for analogical reasoning in artificial
intelligence and cognitive science. We aim to close this
gap and propose heuristic-driven theory projection
(HDTP), a mathematically sound framework for analogy
making. In the tradition of classical artificial intelligence,
HDTP is based on a first-order logical language. A logical
specification has several advantages for symbolic analogy
models, since it can be combined with classical reasoning
mechanisms. Drawing logical inferences allows for a new
perspective of automatically re-representing knowledge in

* Corresponding author.
E-mail address: aschweri@uos.de (A. Schwering).

1389-0417/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.cogsys.2008.09.002

a way that analogous structures become obvious. While
classical reasoning mechanisms have been criticized for
being too restricted (Johnson-Laird, 1983), HDTP extends
these reasoning mechanisms by cognitively plausible ana-
logical inferences.

This paper extends a series of papers (Gust, Kithnber-
ger, & Schmid, 2006; Krumnack, Schwering, Gust, &
Kiithnberger, 2007; Schwering, Krumnack, Kiihnberger,
& Gust, 2007) and describes the syntactic principles of
HDTP. The remainder of the paper is structured as fol-
lows: in Section 2 we give a short overview of analogies
and the various phases of the analogy making process. Sec-
tion 3 defines the logical language and explains how
domain knowledge is represented as a logical theory in
HDTP. The analogical mapping between source and target
domain is established via anti-unification, which is
described in Section 4. Section 5 shows how domain knowl-
edge can be re-represented automatically and Section 6
explains the analogical transfer in HDTP. In Section 7,
we discuss analogies with respect to cognitive abilities
and show how HDTP can be used to explain certain cogni-
tive phenomena. Section 8 relates HDTP to other (mainly
symbolic) analogy models. Section 9 concludes the paper
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and gives directions for future work. In Appendix A, we
formalize additional analogies within HDTP.

2. Analogies and analogy models

Analogy making is a highly sophisticated cognitive pro-
cess in which two conceptualizations — specifying a source
and a target — are analyzed for common structural patterns
(Gentner, 1989). In analogies, source and target are typi-
cally of different domains. The purpose of analogy making
is to adapt knowledge available from the source domain,
such that it can be applied to the target in a way that a
new analogous relation can be established between source
and target. Analogy making requires intelligence, since
analogous patterns and transfers often are not obvious
and depend on a certain conceptualization of the domains.
Establishing an analogical relation between two domains is
furthermore not a deterministic process: there might exist
different analogies, which might all be plausible (to a cer-
tain extent). Last but not least, analogies often cover the
domains only partially or under a certain perspective.

The process of analogy making can be subdivided into
several, interrelated tasks. There are distinctions including
different pre- and post-mapping phases (Falkenhainer,
Forbus, & Gentner, 1989; Holyoak & Thagard, 1989;
Kokinov, 1994), however the following three phases are
typically considered as core of analogy making: retrieval,
mapping, and transfer (Fig. 1).

At the beginning, when exposed to a new situation (the
target), a source domain is identified to which that situa-
tion can be related. Some retrieval technique has to be
applied to search the memory for items which seem like
candidates for an analogy. In certain settings, such as intel-
ligence tests or teaching situations, the source domain may
be given explicitly. Some models for analogy making view
this as the standard case and do not provide special means
of retrieval. At the current state of development, this is also
the case in the analogy model HDTP presented in this
paper. Future research will investigate the application of
superficial similarity measures for retrieval similar to ideas
implemented in MAC/FAC (Gentner & Forbus, 1991). In
HDTP, superficial similarity can be determined via the
number of common symbols in the source and target
domain formalizations.

The mapping phase aims to establish an analogical rela-
tion between source and target, i.e. it aims to align struc-
tures from both domains. In general, there are many
possible mappings and which one is appropriate depends
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Fig. 1. Phases of analogy making.

on the context and the goal of the analogy. Two problems
are typically associated with the mapping step: The rele-
vance problem addresses the identification of parts of the
domains that are relevant within the context of the analogy
and therefore shall enter the analogical relation. The
representation problem is concerned with the difficulties in
mapping, mainly caused by differently structured represen-
tations of the domains. While it seems plausible that two
domains are represented in an isomorphic way when they
are specifically prepared for the analogy, this seems unli-
kely in general. Therefore the mapping may guide a
restructuring of one or both domains. A good deal of the
explanatory and creative power of analogies can actually
be ascribed to that process of re-representation
(cf. Section 5).

During the transfer phase the analogical relation is used
to translate information between the two domains. Typi-
cally, knowledge is transferred from the source to the target
domain and is used there to introduce new concepts or
structures, provide new explanations to phenomena, or
solve problems. This new knowledge is in no way logically
justified and should merely be seen as a hypothesis, but it
can be the source of valuable inspiration.

In some cases, these three phases are supplemented by
additional steps, such as evaluation of the transferred
knowledge, or the induction of generalized knowledge,
depending on the model applied and the context in which
analogy making is placed. In this paper, we focus on the
core phases of analogy making only.

3. Modeling domains in a logical framework

HDTP is a symbolic analogy model based on first-order
logic and reasoning techniques. The basis of all operations
and processes in HDTP is the formalization of the source
and the target domain as sets of many-sorted first-order
formulas. First, we provide the formal definition of the
underlying language.

Definition 1 (Signature). A many-sorted  signature
¥ = (Sortg, Funcy, Preds) is given by a partially ordered
set of sorts Sorts, a set Funcy of function symbols
fisy X xs, — s, and a set Predy of predicate symbols
PiSy X XS,

A signature provides the vocabulary that is used to
describe a domain and comprises the following elements:
constants (i.e. function symbols of arity 0) describe individ-
uals in the domain. Each constant is of a certain sort.
Sorts' describe the type of an entity at a general level and
will be used in the analogical mapping process to restrict
preferred alignments. Sorts can be interpreted as high-level
concepts of an ontology, e.g. object, massterm, or integer.
Function symbols are used to represent functions mapping

"' In order to simplify the readability of formal expressions we will
suppress the coding of the corresponding sorts, if sort restrictions are clear
from the context.
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individuals to individuals. Predicates express relations
between individuals. The following two definitions specify
the formation of complex expressions:

Definition 2 (7Terms). Assume a signature X is given. We
define the term algebra Term(Z, V) relative to an (infinite)
set of sorted wvariables V = {x;:s;,x2:52,...} with
s; € Sorty and a function sorty : Term(X, V) — Sorts.
The set Term(Z, V) is defined as the smallest set such that
the following conditions hold:

(1) If x: s € V, then x € Term(Z, V) and sortg(x) = s.

2)If f:syx---xs,—s€Funcg, and ¢,...1, €
Term(X, V) with sorts(t;,) =s; for i=1,...,n, then
f(t,....t,) € Term(X, V) and
sorts(f(t,...,t,)) =s.

Definition 3 (Formulas). Let ¥ be a signature. We define
the set of formulas Form(X, V) over X relative to an (infi-
nite) set of sorted variables V' as the smallest set such that
the following conditions hold:

(HIf p:syxsyx---xs,€Preds, and 1#,...,1, €
Term(X, V) with sortg(#;) =s; for i= 1,...,n, then
p(ty,...,t,) € Form(Z, V).

(2) If o,p € Form(X,V), then —o, oV, aAf, oa— f,
o B, I sia, Vx; 5,00 € Form(X, V).

Logical operators (such as A and —) and the quantifiers V
and 3 are available to construct complex facts and rules. A
domain can be described by a finite set of formulas. We will
call such a set an axiomatization, if it is logically consistent.
All formulas that can be inferred from the axioms consti-
tute the domain theory. There may be different equivalent
axiomatizations for a given domain.

Fig. 2 shows such an axiomatization of a source and a
target domain in HDTP? As a running example we use
the Rutherford analogy between the solar system and an
atom. The source domain represents knowledge about the
solar system, stating that the mass of the sun is greater than
the mass of a planet (o), that there is gravitation between
the sun and the planet (o3), and that for every pair of
objects with gravitation between them, the lighter one will
revolve around the heavier one provided a positive distance
between the objects is preserved (o). Rutherford put these
facts in alignment with his knowledge about an atom: on
the target side, it is known that the lightweight electrons
are attracted by the nucleus due to Coulomb force (f5)
and that, despite this attraction, atoms do not collapse
(B4)- The latter fact, namely that electrons and nucleus have
a distance greater than zero is an abstract formulation of
the result of the gold foil experiment due to Rutherford
(1911).

2 This axiomatization in classical first-order language is translated into a
PROLOG notation to serve as input for our implementation.

Due to its first-order representation of domain knowl-
edge, HDTP has a greater expressive power compared to
other analogy models: not only a certain situation can be
represented, but also general laws like every two bodies with
positive mass will attract each other. Moreover, a logic
based representation allows for reasoning on formulas
and for a re-representation of knowledge.

4. Analogical mapping via anti-unification

If a relevant source domain has been identified for a par-
ticular target problem, the analogy is established by com-
paring source and target for structural commonalities.
The analogical mapping phase aims at aligning analogous
terms and formulas, i.e. it aims at establishing an analogi-
cal relation between source and target domain.

A crucial idea of HDTP is the establishment of an analog-
ical relation via a generalization of the source and target
domain. HDTP applies the formalism of anti-unification
to compare formulas of the source and the target theory
for structural commonalities. Anti-unification can be under-
stood as the formal counterpart of unification: while unifica-
tion computes the most general unifier by making terms
equal via appropriate variable assignments, anti-unification
constructs more general terms for given terms. From such a
generalization process, an analogical relation can be con-
structed by associating terms with a common generalization.

4.1. First-order anti-unification

First-order anti-unification was introduced by Plotkin
(Plotkin, 1970) in the context of inductive learning. Fig. 3
gives several examples for anti-unifications. Terms are gen-
eralized resulting in an anti-instance, where differing sub-
terms are replaced by variables.® The original terms can
be restored by replacing the new variables by appropriate
subterms. This idea can be made more precise by introduc-
ing the notion of a substitution:

Definition 4 (Substitution). Assume a term algebra
Term(X,V) is given. A substitution on terms is a partial
function ¢ : V — Term(Z, V) mapping variables to terms,
formally represented by ¢ = {x| — t1,...,x,—t,} (pro-
vided x;#x; for i,j € {1,...,n},i#*j and sorts of x; and ¢,
match). An application of a substitution ¢ on a term is
defined by induction over the term structure:

t ifx—te€ao
x  otherwise
< 8m),0) = fapply(si,0),...,apply(sm,0))

o apply(x,0) = {
o apply(f(si,..
We say that a term ¢ is an instance of t and ¢ is an anti-

instance of ¢, if there is a substitution ¢ such that
apply(t, o) = . In this case we write £ — ¢ or simply # — #'.

3 Variables introduced by the anti-unification are denoted by capital
letters.

Research (2009), doi:10.1016/j.cogsys.2008.09.002

Please cite this article in press as: Schwering, A., et al. Syntactic principles of heuristic-driven theory projection. Cognitive Systems




4 A. Schwering et al. | Cognitive Systems Research xxx (2009) xxx—xxx

Solar System

Rutherford Atom

sorts
real, object, time
entities
sun : object, planet : object
functions
mass : object — real X {kg}
dist : object X object x time — real x {m}
force : object x object x time — real x {N}
gravity : object % object X time — real X {N}
centrifugal : object X object X time — real X {N}
predicates
revolves _around: object X object
facts
o 1 mass(sun) > mass(planet)
az 1 mass(planet) > 0
a2 Vi time o gravity(planet, sun, t) > 0
42 Vi time s dist(planet, sun,t) > 0
laws
as : Vit : tame, o1 @ object, 02 : object:
dist(o1, 02,t) > 0 A gravity(o1,02,t) > 0
— centrifugal(o1, 02,t) = —gravity(01, 02,1)
ot Vi time, 01 @ object, 02 : object :

0 < mass(o1) < mass(o2) A dist(01,02,6) >0 A

centrifugal(o1, 02,t) < 0
— revolves _around(o1,02)

sorts

real, object, time
entities

nucleus : object, electron :
functions

mass : object — real X {kg}

dist : object X object x time — real x {m}
coulomb : object X object X time — real x {N}
facts

B1 : mass(nucleus) > mass(electron)

B2 : mass(electron) > 0

Bs 1 Vt :time : coulomb( electron, nucleus, t)>0
B4 Vi itime @ dist( electron, nucleus, t) > 0

object

Fig. 2. HDTP formalization of the solar system and the Rutherford atom (Domain-independent predicates such as >: real x real are not listed).

b
f(X,¢)

{XH&%\XH[)} {X|—>7 \X.—»b} {Y — f(a,b)}

C
{Y — g(a,b)}

f(a,b) g(a,b)

Fig. 3. Plotkin’s first-order anti-unification.

Using substitutions, generalizations can be defined as
follows:

Definition 5 (Generalization). A generalization for a pair
of terms (s, ) is a triple (g, o, 1) with a term g and substi-
tutions o, 7 such that s < g — 7.

Anti-unification aims to find a most specific anti-unifier,
normally referred to as least general generalization (/gg),
i.e. a generalization that is minimal with respect to the
instantiation ordering.* It has been proven in (Plotkin,
1970) that for a given pair of terms a generalization always
exists and that the /gg is unique (up to renaming of
variables).

Fig. 3 demonstrates how generalizations can induce an
analogical relation: in (a), the terms a and b are generalized
to X, therefore b can be seen as an analogon to « in the tar-
get domain. In (b), the terms a and b are embedded as func-
tion arguments in a common context, but still the same
substitutions can be used for generalization and therefore
the same analogical relation is established. In (c), the two
terms differ with respect to the function symbols. Here,

4 This is dual to unification, where a most general unifier (mgu) is
computed.

the first-order anti-unification fails to detect the common
structure between these terms and generalizes it to X, using
rather complex substitutions.

In numerous papers, Gentner and colleagues have
shown empirically that analogies are typically character-
ized by deep structural commonalities (systematicity crite-
rion). For analogy making, Plotkin’s first-order anti-
unification is not powerful enough, since structural com-
monalities are ignored if they are embedded in different
contexts. Therefore, HDTP extends classical anti-unifica-
tion by introducing a new kind of restricted higher-order
anti-unification. In the context of analogies, generalizations
shall preserve as much of the structure of both domain
terms as possible. At the same time, generalizations must
not be structurally more complex than the original terms.

4.2. Restricted higher-order anti-unification

HDTP applies a restricted form of higher-order anti-
unification (Krumnack et al., 2007) for analogy making.
The main problem when dealing with higher-order anti-
unification is that generalizations can become arbitrarily
complex and may no longer reflect structural commonali-
ties of the original terms. We therefore propose to extend
the set of possible generalizations in a controlled way by
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a b c d

f(X) f(X) (a)
o\ ke v ¥
f¥Y) f(2) a)f(b)  f(a)yg

e
F(a,b,c) F(a,b)
L)F(g/ Lgf” FF’
(a,b,X,c) F"(a,G(b,c)) F(a,b) F'(b,a)

Fig. 4. Examples for all basic substitutions of the restricted higher-order anti-unification.

introducing a new notion of basic substitution. After giving
the formal definition, we will illustrate it with an example.

We extend classical first-order terms by introducing vari-
ables that can take arguments: for every natural number n
we assume an infinite set V, = {F 15y X -+ X5, — 5,...}
of variables with arity n and sy,...,s,,s € Sorts. Here we
explicitly allow the case n =0 with V7, being the set of
first-order variables. In this setting, a term is either a first-
order or a higher-order term, i.e. an expression of the form
F(t,...,t,) with F:syX---Xs,—s€V,  terms
ty...,t, € Term(X, V), and sorts(¢;) = s;. Analogously to
the first-order case shown in Fig. 4, terms can be anti-uni-
fied to a generalization subsuming the specific terms. The
following list of basic substitutions are applicable in HDTP.
These are sufficient for generalizations in analogical reason-
ing and meet the requirement to only generate less complex
anti-instances.

Definition 6 (Basic Substitutions). We define the following
set of basic substitutions’:

(1) A renaming p"™* replaces a variable F €V, by
another variable F' € V, of the same argument
structure:
pF‘F’

,tn) —>F,(l1,...

F(t,... J ).

(2) A fixation qS_‘; replaces a variable F' € V,, by a function
symbol Funcs of the same argument structure:

(/)F
L) > f(t, ...

F(t17"'7 7t")'
(3) An argument insertion 1 / with
0<ig<nFeV,GeVy with k<n—i and
F' € V,_4y1 is defined by
o
F(tr, .o ty) S F(ty, ot Gty o Gk Livkds - 5 B).

(4) A permutation =¥ with F,F' €V, and bijective
o:{l,...,n} = {l,...,n} rearranges the arguments
of a term:

F.F!

Fti,eooty) = Ftayy oo s ta)-
Fig. 4 gives examples for all basic substitutions. (a)
shows an example for renaming: the terms in the source

and the target domain both contain variables Y and Z

5> To improve readability we omit the sortal specifications of the variable
symbols, as long as they can be inferred from the context.

which are generalized to the variable X. Since variables
can represent any possible term, it is irrelevant which var-
iable name is chosen. It is possible to align a variable of the
source domain with a variable in the target domain without
any cost. The renaming substitution is only required for
formal reasons: it does not lead to a real generalization.

Argument fixation as shown in (b) can be used to replace
a variable in the generalization by a symbol of the same
argument structure, e.g. f(X) is replaced by f(a) in the
source, respectively f(b) in the target, with X € V. In
the Rutherford analogy, this basic substitution is applied
in order to map mass(sun) to mass(nucleus) via the general-
ized term mass(X), fixating X to sun, respectively nucleus.
Example (c) demonstrates a fixation of a higher-order term
F(a) to f(a), respectively g(a). The higher-order variable F
has one argument, therefore F' € ;. In our running exam-
ple, this substitution is needed to align the gravitation force
with the coulomb force.

Argument insertion is a bit more complicated: inserting a
0-ary variable X increases the arity of the embedding term
by 1. In (d), a variable X is inserted after the second argu-
ment on the source side F(a,b,c) — F'(a,b,X,c). F' has
now four arguments. Inserting a variable G € V,, with
n = 2 reduces the arity: On the target side a two-ary vari-
able G is inserted after the first argument
F(a,b,c) — F"(a,G(b,c)). F" has now only two argu-
ments. This basic substitution is required if a complex
structure maps on a less complex structure.®

An example for permutation is shown in (e). Source and
target domain contain terms with an equivalent structure.
They differ only with respect to the argument order.
F(a,b) serves as generalization for both terms. On the tar-
get side, both arguments are permuted and
F(a,b) — F'(b,a). In our running example, the function
distance(a, b,t) is symmetric in the first two arguments.
Therefore the order of the arguments in source and target
might be exchanged (e.g. distance(sun,planet,t) and
distance(electron, nucleus,t)). If the anti-unification of
other terms proposed that sun maps on nucleus while pla-
net maps on electron, permutation could be applied to
change the order of the arguments.

 In the heat flow analogy, which is formalized in Appendix A, the
height of the water currently being in the vial (height(in(water,vial),t))
maps on the temperature of the ice cube (temp(ice_cube,t)). The term in
the water flow domain is more complex than the term in the heat flow
domain.
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F(d,G(a))

Ve NN

flg(a,b,c),d) f(d,h(a))  flg(a,b,c),d) f(d, h(a))
Fig. 5. Example with multiple least general generalizations.

For generalizing complex terms, we can successively
apply several substitutions: To receive a non-ambiguous
set of substitutions we apply the basic substitutions in the
order renaming, argument insertion, permutation, and
finally fixation. We will call any composition of basic sub-
stitutions a (higher-order) substitution and write ¢ — ¢, if
there exists a sequence of basic substitutions that trans-
forms ¢ into 7. Again we will call # an (higher-order)
instance of ¢, and ¢ an (higher-order) anti-instance of #.

It has been proven in (Krumnack et al., 2007) that the
application of a basic substitution will never make a term
less complex and so the following fact holds:

Fact 1. For a given term ¢ there are (up to renaming) only
finitely many anti-instances (i.e. terms s with s — 7).

Fact 1 implies that this notion of substitution is a viable
tool to compute generalizations in the context of analogy
making. It is a real extension of first-order substitution
and, as demonstrated in the examples, it is capable of
detecting structural commonalities that are ignored by
first-order anti-unification.

4.3. Preferred generalizations

Replacing the notion of substitution by higher-order
substitution, generalizations can be defined exactly like in
Definition 5. As a direct consequence of Fact 1 there exist
only finitely many generalizations up to renaming. How-
ever, least general generalizations are no longer unique,
as demonstrated in Fig. 5.

Having multiple possible generalizations is not necessar-
ily bad, particularly in the context of analogies, where usu-
ally several mappings with different degrees of plausibility
may coexist. It is generally accepted that often there is
not only one analogy between a source and a target,
instead several differing solutions are to be expected. How-
ever, not all of them might be equally plausible. It would be
useful to have a criterion to rank the alternatives. To opti-
mize the analogy making process and compute the pre-
ferred analogies, we require a mechanism to evaluate
generalizations and select only the preferred ones. The rep-
resentation of substitutions as compositions of basic substi-
tutions allows for a natural complexity measure:

Definition 7 (Complexity of Substitution). The complexity
of a basic substitution o is defined as

0 ift=p (renaming)
1 if t=¢, (fixation)

6t = . : . .
k+1 ift=1y,and V € V; (argument insertion)
1 if t=m, (permutation)

For a composition of basic substitutions we define
%(01...0,) =) %(0;) and for an arbitrary substitution o
the complexity is %(¢) = min{%(;...0,) | o1...0, =0}.”

The complexity of a substitution is meant to reflect its
processing effort. Therefore permutations have a non-zero
complexity even though they do not change the structural
complexity of a term. The argument insertion restructures
the term, and the higher the arity of the inserted variable,
the more arguments are moved and therefore the more
complexity is assigned to that operation.®

Definition 8 (Complexity of Generalization). Let (g, 1) be
a generalization for a pair of terms (s,7). Define the
complexity of the generalization by %((g,0,1))=
%(0) + € (7).

With this complexity measure we can select a preferred
generalization by minimizing their complexity. Obviously,
preferred generalizations are always least general, while
the contrary is not always the case as demonstrated in Fig. 5.

For practical applications it is necessary to anti-unify
formulas and not just terms. HDTP extends the notion of
generalization from terms to formulas in a straightforward
way: from an anti-unification point of view, formulas in
clause form can be treated in the same way as terms. This
is due to the fact that (positive) literals are structurally
equal to function expressions and complex clauses in nor-
mal form (e.g. conjunctive normal form) can be processed
component wise. Due to space limitations we elaborate the
theory only for terms, but it is equally applicable to formu-
las in clause form and thereby allows the anti-unification of
domain axiomatizations as introduced in Section 3.°

4.4. Reuse of substitutions

An analogy between two domains is established by anti-
unifying the formulas of the target domain with the formu-
las of the source domain, i.e. not only two formulas, but
two sets of formulas are anti-unified. Therefore, the situa-
tion might occur in which one formula of the target domain
could be aligned with different formulas of the source
domain. There may exist different possible and competing
anti-unifiers (generalizations).

HDTP uses a sequential heuristic-driven algorithm to
compute generalizations: the algorithm consecutively
chooses formulas of the target domain and searches for cor-
responding formulas in the source domain for anti-unifica-
tion. These generalized formulas together form the

7 The minimum construction is needed, as there exist multiple decom-
positions of ¢ with different complexities. One can define a normal
decomposition which can be shown to have minimal complexity. This is
left out in this paper due to space limitations.

8 The complexity values for basic substitutions given in Definition 7
have proven to be useful in practice. The analysis of different values is
subject of future work.

° In the case of formulas, we consider only admissible substitution, i.e.
substitutions that do not introduce variables into the scope of a quantifier.
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generalized theory, which links source and target and repre-
sents the commonalities at an abstract level. When choosing
the preferred generalization, we have to account for the fact
that substitutions which were required earlier to anti-unify
two formulas, might be applicable again to the anti-unifica-
tion of formulas later in the process. It is possible to reuse
substitutions without any cost. Therefore the order in which
formulas are anti-unified influences the resulting analogy.
Assume the following course of events: In our running
example, HDTP aligns the formulas mass(sun) >
mass(planet) with mass(nucleus) > mass(electron):
mass(X) > mass(Y)
Dduns Optanet oX

d)Y
“nucleus?’ Yelectron

mass(sun) > mass(planet) mass(nucleus) > mass(electron)

Two fixation substitutions on each side aligning
sun/nucleus and planet/electron were required to
compute the generalization. When anti-unifying the
next two formulas, e.g. coulomb(electron,nucleus,t) > 0
with gravity (planet,sun,t) > 0, these substitutions can be
reused. It seems plausible that the reuse of already estab-
lished mappings is cognitively preferred and it is further
supported, because it leads to a coherent mapping.

The analogical relation is constructed via successively
choosing the preferred generalizations of an axiom from
source and target. For the Rutherford analogy, the result-
ing generalized theory is shown in Fig. 6. It contains three
generalized variables X, Y, and F with the following ana-
logical alignment: X — sun/nucleus, Y — planet/electron,
and F' — gravity/coulomb.

4.5. Advantages versus disadvantages of anti-unification

HDTP successively generalizes two aligned formulas
from source and target and constructs a generalized theory

types

real, object, time
constants

X @ object, Y : object
functions

mass : object — real x {kg}

which explicitly describes the commonalities at an abstract
level. We consider this as one of the main advantages of
HDTP, because it not only allows for analogical reasoning
in the target domain, but also for analogical generalization,
which is essential for human learning via abstraction (com-
pare Section 7).

Applying the theory of restricted higher-order anti-uni-
fication to establish an analogical relation between formu-
las is very powerful: unlike many other analogy models,
HDTP matches functions and predicates with same and
different labels, but anti-instances for identical function
and predicate names are more specific than for differing
ones. The same holds for structural differences: HDTP also
matches formulas with different structure, which might end
up in a very generic anti-unifier. The substitution complex-
ity is used to guide this anti-unification and lead to an over-
all meaningful generalization. HDTP supports the idea of
one-to-one mapping in the heuristic, but does not reject
alignable formulas which violate the one-to-one mapping
criterion. The major restriction of HDTP alignment is log-
ical consistency: an alignment is only accepted if the gener-
alized formula is consistent with the rest of the generalized
theory. Additionally, to avoid nonsensical alignments and
to compensate the weak restrictions of higher-order anti-
unification, HDTP introduces other constraints such as
including sortal information in the mapping: only entities
of the same sort may be aligned.

The alignment process in HDTP is sequential and
requires decisions on how to proceed: the algorithm has
to choose the next term to anti-unify and it has to choose
the preferred anti-instance. This process is guided via heu-
ristics: the order in which formulas are chosen to find an
alignable match is determined by the structural complexity
and starts with the simplest ones. Another heuristic deter-
mines the generalization to a least general anti-instance.
Those generalizations are preferred that conserve as much

dist: object X object X time — real x {m}

F': object X object x time — real X {N'}

centrifugal : object x object x time — real x {N}

predicates

revolves _around : object X object X object

facts

1 : mass(X) > mass(Y')

vz : mass(Y) >0

Y3 : Vt:time: F(X,Y,t) >0
va : Vit : time : dist(X,Y,t) >0
laws

5% 1 Vi : time, o1 : object, 02 :

object :
dist(01,02,t) > 0 A F(o1,02,1) > 0

— centrifugal(o1,02,t) = —F (01, 02, 1)

Yo : Vi : time, 01 : object, 02 :

object :

0 < mass(0o1) < mass(o2) A dist(o1,02,t) > OA centrifugal(o1,02,t) < 0

— revolves_around(o1,02)

Fig. 6. Generalization Thg of the solar system and the Rutherford atom (including the generalizations from the transfer marked with *).
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information as possible, i.e. those generalizations are pre-
ferred that maximize the analogical relation and the gener-
alized structure, because every substitution implies
information loss. Moreover, the substitutions required to
transform a generalized to a specific formula should be as
simple as possible, since the complexity of substitutions
indicates the degree of structural divergence. Second-order
substitutions are to be avoided.

5. Re-representation

Analogy making is based on a mapping of individuals
and formulas between two domains. While the creation
of such an analogical mapping is well examined, if the cor-
responding representations of both domains are already
chosen in a way that the structural compatibility is obvi-
ous, such situations seem to be somewhat artificial. In fact,
the structural commonalities characterizing two analogous
domains are usually not obvious in advance, but become
visible as a result of the analogy making process. The con-
ceptualization (i.e. the representation) must be modified
and adapted to make implicit analogous structures explicit.
It is argued that an essential part of establishing an analogy
is a change of representation of one or both domains to
allow for discovering the common structure (Indurkhya,
1992).

Although analogical reasoning and the development of
computational models for analogy making has a relatively
long history of more than thirty years, it happened to be
rather recently that research on re-representation has been
recognized as an important aspect of analogy making.
Most prominently Indurkhya’s work (Indurkhya, 1992)
should be mentioned as a foundation of re-representation.
He develops a theory where the computation of analogies is
based on the accommodation of an internal concept net-
work to an input (resulting in a re-representation of the
concept network), or the projection of a concept network
to the input (resulting in a re-representation of the input),
or both. Re-representation techniques were also applied
to geometric figures (O’Hara, 1992) and the string domain
(Hofstadter, 1995), two classical domains where structural
descriptions of objects need to be rerepresented in order to
compute analogical relations. Although only little attention
was paid to re-representation in the structure-mapping tra-
dition at the beginning (Falkenhainer et al., 1989), this
changed due to the application of structure-mapping to
real-world problems, such as physics problems taken from
textbooks: in (Yan, Forbus, & Gentner, 2003), a theory of
re-representation in the SME tradition is presented based
on operations such as transformation, decomposition, or
entity splitting.

In this section, we show that the logical framework used
in HDTP entails a mechanism for re-representation in a
quite natural way: a logical representation of a domain
does not only provide the axioms, that are explicitly given,
but also makes all formulas available that can be inferred
from the axioms by logical deduction. The idea is to incor-

porate these derived formulas into the mapping process, if
the original representation given by the axioms does not
lead to a satisfying analogical relation. We will exemplify
this idea by our running example, and then give a formal
treatment of this re-representation mechanism.

5.1. Re-representation exemplified

The original axiomatization of the Rutherford analogy
in Fig. 2 was chosen in a way, such that the analogy could
directly be discovered by matching the axioms of the two
domains one by one. In Fig. 7, we give a different axiomat-
ization of the two domains. We do not explicitly state that
sun and planet as well as nucleus and electron attract each
other, but we formulate general laws from which these facts
can be derived. Notice that this new formalization is more
general, as all axioms of Fig. 2 can be inferred from those
of Fig. 7.

Given this new representation of the Rutherford analogy,
there is no way to achieve a generalized formula
Vt : attracts(X, Y, t) by anti-unifying axioms, since neither
the axiomatization of the source domain, nor that of the tar-
get domain contains an axiom that would be an instance of
this formula. However, using logical deduction, the formula

Vit : gravity(sun, planet, t) > 0

can be derived from {¢,,a;,%,04} on the source side,
which can be anti-unified with

Vt : coulomb(nucleus, electron,t) > 0

which in turn can be inferred from {f;, i, f5} on the target
side.

By allowing the application of logical deductions prior
to anti-unification, we also have another way to address
the problem of argument swap concerning the distance
function, which has been discussed in Section 4.2. Notice
that the parameters of /3, are switched compared to the for-
malization in Fig. 2, so that anti-unifying o, and f, would
result in the unwanted mapping of sun to electron and pla-
net to nucleus, which contradicts the mapping established
by anti-unifying o; and f,. In this situation, another repre-
sentation of this axiom would exhibit the common struc-
ture of the two domains in a way such that anti-
unification leads to an appropriate generalized theory:
from background knowledge it is known that distance is
a symmetric function, i.e.

vVt : distance(nucleus, electron,t) > 0

can be derived from {¢,, $,}, which is a good candidate for
anti-unification with a3, as it allows the reuse of
substitutions.

In general, the task of re-representation consists of find-
ing pairs of formulas from the domain theories, that posses
a common structure and therefore lead to a good general-
ization. In this example, re-representation is just needed to
enhance the support for the analogy, i.e. to increase the
number of formulas that can be anti-unified with the same
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Solar System

Rutherford Atom

a1 mass(sun) > mass(planet)

a2 mass(planet) > 0

ag: Yt distance(sun, planet,t) > 0

aq: YaVyvt : mass(xz) > 0 A mass(y) > 0
— gravity(x,y,t) > 0

as: YaVyvt: grevity(x,y,t) >0
— attracts(x,y,t)

ag:  VaVyvt : attracts(xz,y, t)A
distance(x, y,t) > OA
mass(x) > mass(y)

— revolves _arround(y, T)

51 mass(nucleus) > mass(electron)

B2 Vt: distance(electron, nucleus,t) > 0

Bs:  charge(nucleus) > 0

Ba:  charge(electron) < 0

Bs: VaVyVt: charge(xz) > 0 A charge(y) < 0
— coulomb(z,y,t) >0

Bs:  VaVyVt: coulomb(z,y,t) > 0
— attracts(xz, y, t)

Background Knowledge

o1 VaVyvt . distance(z,y,t) = distance(y, x,t)

g2 VaVyVz:z>yAy>z2z—x>2

Fig. 7. Another formalization of the Rutherford analogy.

set of substitutions. However, cases exist in which no useful
analogy can be computed at all, if only the given axioma-
tizations for the two domains is considered.

5.2. Formal treatment

As usual, we will write Ax F ¢ if formula ¢ can be
derived from a set of axioms Ax and we denote the set of
all formulas that can be derived from Ax by Th(Ax). We
can state the idea behind the method of re-representation
as follows: do not only consider the formulas given by
the axiomatizations Axs and Axy of the source and the tar-
get domain for anti-unification, but all formulas from the
theories Th(Axs) and Th(Axr). Therefore we extend the
notion of anti-unification to theories:

Definition 9. Let G be a finite set of formulas.

(1) We call G an anti-instance of a set of formulas F iff
there exists a substitution ¢ such that
Th(apply(G, o)) C Th(F). Again we will write G- F
or just G — F.

(2) Let Axg, Axr be sets of formulas and ¢, T substitutions.
We call the triple (G, o, 1) a generalization of Axs and
Axp iff Axs & G5 Axy.

Notice, that we only do inference on the set apply(G, o)
but not in G directly. Furthermore, we do not require that
there exist anti-instances for all formulas of Fin G. Hence
the empty set is an anti-instance of every set of formulas,
and also a generalization for all pairs of sets of formulas.
However, this is probably not a generalization we are look-
ing for, since it results in the empty analogical relation.
Therefore, we introduce the concept of coverage:

Definition 10. Given a generalization (G,a,1) of Axg and
Axr, the subset Th(apply(G,a)) of Th(Axs) is said to be
covered by G and for Axr accordingly.

Obviously, adding formulas to G will never decrease the
coverage. More generally one can state:

Fact 2. An anti-unifier (G,0,7) has at least the same
coverage as {(G', ', 7') if there exists a substitution G' — G
that is compatible with the domain substitutions (i.e.
¢ =cofand v =100).

In general, a greater coverage is preferable, since it pro-
vides more support for the analogy. However, there are
some caveats: One can construct examples where it is possi-
ble to extend the coverage of the generalization by adding an
infinite number of formulas, that can be derived from for-
mulas that are not covered by the generalization. This can
be done without changing the substitutions, and therefore
no additional knowledge about the analogical relation is
gained by extending the generalization in this way. As seen
in the example in Section 5.1, some axioms are not covered
by the generalization, while they nevertheless have been
used to derive formulas that can be generalized. We will call
these axioms indirectly covered by the generalization. The
computation of the analogical relation can be stopped if
all axioms for a given domain are indirectly covered.

In many cases, it is possible to extend the coverage by
creating double mappings. In the Rutherford analogy,
one might extend the generalization by adding
({H(Z) > 0},0,7) with ¢ = {H +> mass,Z + planet} and
1 = {H > charge,Z — nucleus}. However, with this addi-
tional formula not only coverage is increased, but now
the analogical relation maps mass to mass as well as mass
to charge, a situation that is normally undesirable. A good
strategy to compute an analogical relation is to maximize
the (indirect) coverage of the domains while avoiding dou-
ble mappings.

5.3. Discussion

Re-representation is a major challenge in computing
analogies. To allow for automatic re-representation, the
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representation mechanism applied has to offer a notion of
equivalence of different formalizations, and should provide
means to create new representations for a given formaliza-
tion. Here, the choice of logic as a representation mecha-
nism exhibits its power, since beside the formulas
explicitly given by an axiomatization there are also implicit
formulas that can be inferred from these axioms. This pro-
vides an integrated notion of representation, where other
analogy models have to introduce special and sometimes
quite artificial means.

However, there are also problems associated with this
approach: the number of formulas that can be derived is
not finite and therefore strategies have to be developed to
control the re-representation process. The integration of
mapping and re-representation seems to be necessary, as
only the comparison of source and target formalization
can exhibit information that are needed to guide re-repre-
sentation. Future work concerns a theoretical assessment
of the trade-off between the maximization of coverage and
the minimization of substitution complexities. These consid-
erations lead to the formulation of heuristics and an algo-
rithmic treatment of re-representation which allows for a
thorough practical evaluation of the proposed approach.

6. Analogical transfer

Although analogical mapping is the central point of con-
cern in most analogy models and the establishment of an
analogical relation takes most of the space in the literature
on analogy, the mapping phase is usually not the goal, but
just a step to prepare an analogical transfer. During this
transfer, knowledge from the source domain is translated
using the analogical mapping, to hypothesize new state-
ments about the target domain. The kind of knowledge
transferred depends on the context in which the the analogy
is established: in analogical reasoning tasks just one state-
ment, the analogical inference, is transferred. In analogical
problem solving, analogical theorem proving, or analogical
modeling more complex structures might be transferred.

In the framework of HDTP, the analogical mapping is
computed via a generalization process: matching terms of
the source and target domain are generalized to a common
variable in the generalized theory. Thereby a correspon-
dence of terms of the source and target domain is estab-
lished, which can be used to translate formulas of the
source domain into the target domain. Although there is
no general way to predict which formulas of the source
domain are good candidates for the analogical transfer, it
seems to be plausible to propose formulas that are not
already covered by the generalized theory (in the sense dis-
cussed in Section 5.2), as these may induce new knowledge
about the target domain. However, it should be kept in
mind, that although these analogical inferences are pro-
duced within a logical framework, they are not logical
inferences in the classical sense, i.e. they can create new
and even contradicting statements. HDTP can detect
inconsistent inferences by applying a standard theorem

prover. However, there is no generally applicable method
to judge the usefulness of an analogical inference, as this
varies with the given task. For example, in analogical prob-
lem solving, the utility of an analogical inference is deter-
mined by its contribution to a solution of the problem.

> revolves_ around(X,Y)

revolves_ around(planet, sun) revolves_ around(electron, nucleus)

In the context of HDTP, two types of analogical trans-
fers are distinguished: first, there are new statements about
the target domain, that can be formulated within the exist-
ing vocabulary. This is exemplified in our running example:
the statement revolves_around(planet,sun), which can be
inferred from the source domain, can be projected to
revolves_around(electron,nucleus) in the target domain.
This analogical inference does not follow from the axiomat-
ization of the target domain and therefore provides new
(hypothetical) knowledge. It is acceptable from a logical
point of view, since it does not contradict the existing axi-
oms. It is therefore reasonable to consider the hypothesis
and further investigate, whether the knowledge should be
incorporated into the axiomatization of the target domain.
How this decision is made, depends on the kind of knowl-
edge that is represented. In the case of our running example,
in which a model of a physical domain is constructed, phys-
ical experiments are an appropriate means to assess the
quality of the analogical inference: in fact, Rutherford’s
atom model was soon superseded by Bohr’s atom model,
due to some early quantum mechanical results.

Another kind of analogical transfer introduces entirely
new concepts into the target domain. A classical example
for this kind of concept creation by analogical transfer is
provided by the heat flow analogy (Fig. 8). In this analogy,
two connected vessels filled with different quantities of
water are analogically related to two massive bodies of dif-
ferent temperature that are connected via some metal bar.
Although the height of the water in the vessels can be
related to the temperature of the objects, and change of
temperature corresponds to change of water level, there is
a priori no direct correspondence to the water in the ves-
sels. However, such a correspondence can be created by
introducing a new concept, usually referred to as heat,
whose properties are induced by analogical transfer. This
new concept, although not directly observable in a physical
sense, allows to model and predict the observable change of
temperature. In the context of HDTP, such concept cre-

ice ([~
cube u
L=

Fig. 8. Heat flow analogy.

! heat flow

silver bar

beaker
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ations occur, when formulas are proposed for transfer, that
contain subterms which are not mapped to terms of the tar-
get domain. We give a formal treatment of the heatflow
analogy in Appendix A.

If an analogical inference has been accepted, the target
theory can be extended by the new formula. As the infer-
ence corresponds to knowledge from the source domain,
it increases the coverage of the analogical mapping and
broadens the basis of the analogy. In the framework of
HDTP, this implies that the generalized theory can also
be extended by the transferred formula, reflecting a greater
structural commonality of the two domains.

7. Modeling cognitive abilities with HDTP

Analogies are central to the understanding and model-
ing of cognitive phenomena and play an important role
in many different cognitive abilities (Gust, Krumnack,
Kiihnberger, & Schwering, 2008). The previous chapters
have reviewed HDTP primarily under a computational
perspective and explained the formal mechanisms applied
in analogy making. In this chapter, we compare HDTP
to other, cognitively inspired or cognitively plausible anal-
ogy models. We discuss several characteristics of analogies
and their role in cognitive abilities.

Although there has been a long tradition of research on
analogical reasoning methods in artificial intelligence and
cognitive science, there do not exist many formal theories
on analogical inferences that could be compared to classi-
cal inference mechanisms such as induction, deduction
and abduction. HDTP extends these reasoning mechanisms
to analogical reasoning, a reasoning mechanism commonly
applied as source of knowledge in creative inventions (Lor-
enz, 1974) and human learning (Gentner, 1989). HDTP is a
formal model based on a logical language in the tradition
of artificial intelligence. Logical languages have proven
suitable to model knowledge on domains, however they
have been criticized for being restricted to logical infer-
ences. It is unclear to what extent logical reasoning can
be called cognitively plausible.

There is widespread agreement that analogy is based on
an alignment of relational or structural commonalities
between a source and a target domain (Holyoak & Tha-
gard, 1989; Gentner, 1983; Falkenhainer et al., 1989).
Analogies typically rely on large and deeply interconnected
systems of relations that hold among elements from the
source domain and among elements of the target domain
as well. HDTP follows the same strategy: It uses anti-uni-
fication, a syntactical operation to compare formulas at a
structural level, and detects structural correspondences
between two logical theories. By re-using existing substitu-
tions, i.e. by applying a mapping that has already been
used before, a consistent and coherent overall mapping is
established, similarly to the systematicity principle in
SME (Gentner, 1983).

Like most approaches to model analogy making (Gent-
ner, 1989; Indurkhya, 1992; Hofstadter & Mitchell, 1995;

Hummel & Holyoak, 1997; Hummel & Holyoak, 2003),
HDTP prefers a one-to-one mapping. However, it does
not reject multiple alignments per se. A one-to-many or
many-to-many mapping is often an indication of different
possible conceptualizations of the domains. The represen-
tation must be adapted to make the analogous structures
obvious (e.g. (Ferguson, 2007)). In Section A.3 we show
an analogy with many-to-many mappings.

Analogy provides new insight about the target domain,
but it is also fundamental in learning general principles
(Colhoun, Gentner, & Loewenstein, 2008) and abstract
concepts or categories. While classical inductive learning
requires a large set of data samples to create general laws,
humans can generalize already over a small set of samples
by applying analogical comparison. In (Gentner & Kurtz,
2005; Kuehne, Forbus, Gentner, & Quinn, 2000; Colhoun
et al., 2008), Gentner et al. showed that relational catego-
ries are better learned by a common abstract relational
structure or rules rather than common properties. Reflect-
ing this analogical generalization process is one of the
strengths of HDTP: during the analogical mapping, the
anti-unification automatically constructs a generalization
for every aligned pair of terms. This way, HDTP creates
an explicit generalized theory over two domains — the
source and the target domain. This general theory contains
common structures at an abstract level, but also common
rules. In (Gust, Krumnack, Kiihnberger, & Schwering,
2007), is shown that it is possible to successively refine this
generalized theory via analogical comparison to other
domains.

An analogy between two different domains is established
when analogous entities and relations are aligned and
mapped to each other. Often, analogy models assume that
representations of source and target domain are already
available in a way that the structural commonalities are
obvious. We consider the process of finding a suitable rep-
resentation as part of analogy making. In (Indurkhya,
1994), it is argued that commonalities are not there in
advance, but are created in the analogy making process.
Detecting analogous structures is strongly connected with
seeing things in a new and different way. In fact, humans
handle incompatible information every day. We argue, that
an essential part of analogy making is the change of repre-
sentation of one or both domains to allow for discovering
the common structure: establishing an analogy between
two different domains means transforming two, in the first
place incompatible conceptualizations to align analogous
elements and establish a compatible, analogous relation
between them. HDTP actively supports this process of re-
formulation of knowledge: based on a deductive reasoner
it is possible to re-represent given formalizations of source
and target to a suitable and compatible representation.
This may lead to a deeper understanding of already well
established domains.

HDTP is one integrated framework and processes the
different tasks — analogical mapping, re-representation
and generalization — in an integrated way. This is in
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contrast to other analogy models such as SME, which sep-
arates these different tasks and models them in different
modules. In accordance to Chalmers, French and Hofstad-
ter (Chalmers, French, & Hofstadter, 1992), we argue that
analogy making is complex, high-level cognition which
should not be seen as sequence of separate, but as one inte-
grated and interacting cognitive process.

Creativity is a cognitive ability which plays an important
role in human reasoning and problem solving. Creativity as
defined in (Csikszentmihalyi, 1999, p. 205) is “‘the produc-
tion of an idea, action, or object that is new and valued”.
Analogies can provide a means for creativity, as they can
introduce new knowledge into a domain via analogical
transfer. The principles guiding the transfer ensure that
the concepts are relevant in order to understand the target
domain. HDTP models creativity in different ways. First,
analogical transfer is used to propose new entities in the
target domain, to generate new knowledge about existing
entities, but also to hypothesize new concepts which would
not have been possible to conceptualize without the anal-
ogy. For instance in the heat flow analogy, “heat” in con-
trast to temperature is not observable and can be
conceptualized only via analogy to a perceivable domain,
e.g. water flowing between two vessels with different water
levels. The height of the water is aligned with the tempera-
ture. From the observation that water keeps flowing until it
has the same height in both vessels (source domain) and
that temperature tends towards an equilibrium and bal-
ances after some time (target domain), it can be inferred
via analogy that there must exist an analogous “flowing
thing” on the target side: the concept heat. Creative gener-
ation of knowledge of this type is classically modeled via
abduction (Falkenhainer, 1990). Using analogy in this
abductive process guides and motivates why certain things
are hypothesized and others not. Second, HDTP models
creativity via analogical generalization. Establishing an
analogy between two domains also leads to the construc-
tion of new concepts at a general level: e.g. in the Ruther-
ford analogy the sun and the nucleus, respectively the
planet and the electron are aligned. For the purpose of
the analogy they form the ad-hoc concept “central body”
and “orbiting object”, respectively. These ad-hoc concepts
can emerge as permanent concepts after several learning
cycles.

8. Related work

Various approaches to model analogy making have been
developed. We review several well-known symbolic and
hybrid approaches and outline the commonalities and dif-
ferences to HDTP.

Probably the best-known theory of analogy making is
the Structure Mapping Theory (SMT) (Gentner, 1983)
and its implementation simulating the structure-mapping
process, the structure mapping engine (SME) (Falkenhain-
er et al., 1989). SME uses graph structures to describe the
entities in a domain, their attributes, functions, and the

relations between entities. In this approach, the core of
the analogy making process is the structure-mapping pro-
cess. It is complemented by pre- and postmodules for addi-
tional tasks such as reasoning and re-representation of
knowledge. The representation formalism is not restricted
and might be of the same expressivity as HDTP, but the
core structure-mapping is graph matching, i.e. the mapping
does not account for the semantics of for example quanti-
fied variables in general laws as HDTP does. Structural
commonalities between a source and a target domain indi-
cate an analogy: SME follows the systematicity principle
and supports analogies which comprise a hierarchically
deep match, because this indicates a structural system of
interconnected knowledge. The systematicity principle
states that an element belonging “to a mappable system
of mutually interconnecting relationships is more likely to
be imported into the target than an isolated predicate”
(Gentner, 1983, p. 163). SME identifies structural com-
monalities via graph matching techniques in a stepwise
process: first, it searches for identical relations in source
and target to create local match hypotheses. Match
hypotheses are also created for arguments of matching
relations if they are both entities or both functions. These
local match hypotheses are evaluated according to local
evidence scores which also include systematicity. This is a
parallel process. Afterwards, the global match construction
composes gradually larger and consistent mappings to con-
struct the best inter-domain mapping. While SME aligns
entities and functions without matching literally, the align-
ment of attributes and relations requires identical labels.
Attributes are only mapped on attributes, functions on
functions, predicates on predicates and they have to have
the same arity. The mapping in HDTP is less rigid than
in SME: HDTP aligns any entity, function or predicate,
however it prefers literally-matching alignments to non-lit-
erally alignments and same structures to structural mis-
matches. Since often knowledge can be modeled equally
well as attributes, functions or predicates (Chalmers
et al., 1992) and this design decision is up to the knowledge
engineer, it seems to be reasonable to relax the mapping
restrictions. The heuristic used in the overall mapping pro-
cess is sequential; a parallel heuristic could be applied as
well, but is computationally very expensive. A further dif-
ference between HDTP and SME results from the way a
mapping between two domains is established: while HDTP
constructs an explicit generalization, SME’s mapping is
constructed without generalizing across domains. A gener-
alization is constructed only on demand (Kuehne et al.,
2000). SME has been applied to various domains such as
strategy games (Hinrichs & Forbus, 2007), naive physics
(Klenk & Forbus, 2007) and analogies in natural language
(Forbus, Riesbeck, Birnbaum, Livingston, & Sharman,
2007), which we consider as typical domains for HDTP
as well.

Indurkhya (1992); Indurkhya (2007) developed another
influential framework for analogy making: the Interaction-
ist Theory uses classical algebras to represent source and
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target domain by % = (4, %) and 7 = (B, Q) where 4 and
B are sets and Q and X are sets of operations defined on 4
and B. The analogical (or metaphorical) relation (R, W) is
considered again as an algebra. Indurkhya’s framework
and its successors (e.g. (Dastani et al., 1997)) model analo-
gies nicely in the string and the geometric domain, in par-
ticular proportional analogies of the form A:B::? (read: A is
to B as C is to what?). Notice that in examples of propor-
tional analogies usually it is assumed that the source
objects A and B are taken from the same domain as the tar-
get objects C and ?. However, it is not easy to see how
Indurkhya-style frameworks can be applied to domains
which cannot be represented in such a straightforward
algebraic way. For example, how can this framework be
used to model analogies that require full first-order logic
for a description of the source and target domains?

Copycat is a “computer program designed to discover
insightful analogies, and to do so in a psychologically real-
istic way” (Hofstadter & Mitchell, 1995, p. 205). Hofstad-
ter and Mitchell developed Copycat at a general level of an
architecture, which computes not only analogies but aims
to model human cognition, more precisely to model the
development of fluid concepts. Copycat is a hybrid of con-
nectionist and symbolic analogy models and consists of
three major components: Slipnet is the long-term memory
containing a network of concepts, Workspace represents
the working memory, which contains instances of concepts.
In the string domain, the Workspace contains source and
target strings such as “abc¢” and ““abd”. These strings have
structured representations, e.g. a successor relation
between “a” and “b”. The Coderack which contains a
framework of suggestions of competing or cooperating
relations between instances of the workspace. Copycat’s
domain is hard-wired into it. While HDTP is an open
domain system, Copycat is limited to string analogies.
However, like HDTP, Copycat can re-represent, i.e. adapt
the structured representation of the domains.

Kokinov (1994); Petkov, Naydenov, Grinberg, & Koki-
nov (2006); Petkov & Shahbazyan (2007) proposes DUAL,
a hybrid cognitive architecture integrating the connection-
ist and symbolic approaches. Cognitive processes like ana-
logical reasoning and the estimation of semantic similarity
play an important role in DUAL. The system consists of a
network, the DUAL memory, representing the system’s
world knowledge. The nodes of the network, called
micro-agents, have an inner structure and are in a state
affecting their behavior in cognitive processes. Such pro-
cesses are triggered by activation potential and marker
passing along the connections between the micro-agents.
An initial activation pattern is determined by context and
then propagated according to the characters of the individ-
ual agents and their interconnections. The activation pat-
tern represents the contents of the short-term memory,
while the whole micro-agent network corresponds to
long-term memory. The relation between source and target
concepts are visualized via spreading activation from
source and target through the network. For example, the

framework has been demonstrated to be capable of analog-
ical problem solving: given the task to heat water in a woo-
den vessel in a forest with only matches and a pocket knife
the system proposed, analogous to an immersion heater, to
warm up the knife and then put it into the water. Since
DUAL is a hybrid analogy model, its representation of
domains and the way analogical relations are established
differ very much from HDTP. Specifically, it is unclear
how generalization can be handled in this framework.
Other neuro-inspired analogy models such as LISA
(Hummel & Holyoak, 1996), ARCS (Thagard, Holyoak,
Nelson, & Gochfeld, 1990), VSA (Gayler, 2003) are not
explicitly compared to HDTP, as the way of representation
and establishing an analogical relations differ significantly.

9. Summary and future work

This paper gives an overview of the syntactic principles
of heuristic-driven theory projection (HDTP), a framework
to analyze the analogical relation between a source and a
target domain. HDTP is a symbolic analogy model, which
describes source and target domain with first-order logic
theories. A restricted form of higher-order anti-unification
is used to determine structural commonalities between the
source and the target at a syntactic level and compute a
generalization with substitutions for both domains. The
analogical relation is established via the generalized theory.

We argue for using a logical system to represent knowl-
edge, because it is possible to automatically infer knowl-
edge. A deductive reasoner can be used to re-represent
knowledge, i.e. deduce new formulas from the given set
of target domain axioms, which are logically inferable
but match the source domain better in a structural manner.
We believe that analogy making essentially relies on the
ability of re-representing knowledge exactly in such a
way, so that the structural commonalities become visible
and the analogy can be established. HDTP provides an
inherent mechanism for such a re-representation.

Additional knowledge about the source domain can be
transferred to the target domain using the generalization
with its substitutions established by the analogical relation.
The analogical transfer has only hypothetical status in the
target domain: Logical consistency may serve as first indi-
cator whether the analogical transfer is correct. In particu-
lar in the physics domain, experiments should be created to
systematically evaluate the new knowledge.

HDTP can be used to explain different cognitive phe-
nomena and human learning. For example, the creative
generation of new knowledge can be modeled via the ana-
logical transfer. The analogy guides and motivates why cer-
tain new facts or laws are hypothesized and others are not.
Analogical comparison may also lead to a formation of
new, abstract concepts (such as the central-force-system
with its central body and satellite in the Rutherford anal-
ogy). This generalization process is possible, because differ-
ent, at the first glance incompatible domains, become
comparable via establishing the analogy. Therefore, HDTP
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models analogical learning via the analogical transfer (like
most other analogy models), but it models the analogical
generalization process via the construction of the general-
ized theory (Gust et al., 2007).

This paper focuses only on the syntactic principles of
HDTP. However, one advantage of our formal logic anal-
ogy model is the explicit separation of syntax and seman-
tics. Semantic aspects of the analogical relation in HDTP
have been discussed in (Gust et al., 2006 & Gust, Krum-
nack, Kithnberger, & Schwering, 2007a).

The HDTP framework has been implemented in PRO-
LOG, currently however it comprises only a restricted
implementation of re-representation. The completion of
this framework is still ongoing. Heuristics play an impor-
tant role in controlling the efficiency of the analogy making
process: according to the heuristics applied, HDTP starts
with a target domain, orders the axioms according to their
complexity. During the anti-unification process, the com-
plexity of the required substitutions are minimized. Further
heuristics need to be developed and evaluated against other
analogy models and in psychological experiments.

In future work, we will develop several extensions of our
analogy model. As HDTP uses a formal logic knowledge
representation in the tradition of classical Al, it is suitable
for an integration with knowledge bases such as Cyc. A
suitable retrieval mechanism is required to select knowl-
edge about a relevant source domain for a given target
problem. Further work will investigate the role of analog-
ical reasoning in an overall context of human learning.
HDTP will function as one reasoning unit in the cognitive
architecture [-Cog (Kiithnberger et al., 2007).
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Water flow (Source)

Appendix A

This section shows formalizations of the source and
target domain for different analogies and gives a general-
ization and the corresponding mappings.

A.1. Heat flow analogy

As argued before, analogies provide a means to under-
stand abstract concepts by relating them to observable phe-
nomena. A classical example is the heat flow analogy which
has been introduced informally in Section 6. We will now
give a detailed description of this analogy within HDTP.
We choose a formalization that includes the following
pieces of knowledge:

e In the source domain, there are two vessels, a beaker and
a vial, that are connected via a pipe (o).

e The vessels are filled with water and initially the height
of the water in the beaker is higher than the height of
the water in the vial.

e There is water flowing from the beaker to the vial which
can be observed as the height of the water in the beaker
decreases (og) while the height of the water in the vial
increases.

e The total amount of water in the two vessels does not
change (o).

e In the target domain, the coffee in the cup is connected
to the ice cube via a sliver bar (f,).

e It is observable that the temperature of the coffee in the
cup decreases while the ice cube gets warmer (f5;).

It should be noted, that water and coffee are mass terms
that do not refer to any specific object in the domains and
therefore can not be measured by functions like feight or
volume. We introduce the operator in that denotes a certain
amount of liquid inside some container, so that tempera-
ture, height, and volume can be assigned to it.

sorts

real,massterm,object,time

entities

vial:object,beaker.object
water:massterm, pipe.object ty.,.time

facts
oy : connected(beaker, vial, pipe)

functions

height : object x time — real x {cm}
footprint : object x time — real x {cm*}
in : object X massterm — object

volume : object x time — real x {cm’}
predicates

connected : object X object x object

oy : YVt : time, tp : time : footprint(beaker,t) = footprint(beaker,t;)
o3 : Vi) : time, ty : time : footprint(vial,t)) = footprint(vial,ty) oy : Vt : time : volume(in(water, beaker),t) =

Jfootprint(beaker, t) x height(in(water, beaker), t)

s : Vit : time : volume(in(water, vial),t) = footprint(vial, t) x height(in(water, vial), t)

o : Vit : time : footprint(beaker,t) > footprint(vial,t)

o7 : height(in(water, beaker), tyqy) > height(in(water, vial), tyq)
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laws
ag : Vi, tp : time :
tr > 1) A connected(beaker, vial, pipe)

Nheight(in(water, beaker), t,) > height(in(water,vial), t;)

— height(in(water, beaker), t\) > height(in(water, beaker), t,)

og : V1,1 : time,01,07,03 : object :
tp > t; A connected (o1, 03,03)
— volume(in(water,01),t1) + volume(in(water, 02), t1)

= volume(in(water, 01),t) + volume(in(water, 03), t7)

Heat flow (Target)

sorts

real , massterm, object, time

entities

coffee : massterm, ice_cube : object
cup : object, bar : object, ty,, : time

facts
B, : connected(in(coffee, cup),ice_cube, bar)
By : temp(in(coffee, cup), tyar) > temp(ice_cube, tyqy)

laws
f3 V1, ty : time :
tr > t; A connected(in(coffee, cup), ice_cube, bar)
A temp(in(coffee,cup),t)) > temp(ice_cube,t))
— temp(in(coffee, cup), t;) > temp(in(coffee,cup),t2)

When computing the generalized theory, comparison of
the terms

height(in(water, beaker), ty,,) and

temp(in(coffee, cup), tyan)

might lead to the assumption, that water should be mapped
to coffee and beaker to cup, an assignment that testifies a
fundamental misunderstanding of the analogy. However,
considering the other parts of the axiomatizations, a pre-
ferred generalization in the sense of Section 4 will produce
the following mapping:

T(A» tstart,)
o T
height(in(water, beaker), tsiart) temp(in(coffee, cup),tsiart)

T(B, tstart)

o T

height(in(water, vial), tstart) temp(ice  cube, tstart)

Here the following substitutions are applied:
0 ={T +> JxAt.height(in(water,x),t), A beaker,B > vial}
1 ={T > JxAt.temp(x,t),A — in(coffee,cup),B+ ice.cube}

Notice that all these substitutions can be expressed as
compositions of the basic substitutions introduced in

functions

temp : object X time — real x {C}
in : object x massterm — object
predicates

connected : object x object x object

Section 4.2. For  example the  substitution
T + JxAt.height(in(water,x),t) is the following sequence
of basic substitutions:

Generalization

sorts functions

real, massterm, object, time T : object x time — realx
{Unit}

entities in : object x massterm
— object

A : object,B : object, predicates

C : object, tyay : time
connected : object X object
xobject

facts
71 @ connected(A,B, C)
Yy 2 T(A, tyar) > T(B, tsar)

laws
v3 Vi, by @ time :
tr > 11 A connected(4,B, C)
AT (4,t1) > T(B,t)
—T(4,t1) > T(4,t)
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T I X Lr T,T
¢height o ¢in o (bwater © lX,O o l],O

The generalized theory will comprise the following axioms:

When computing hypotheses for the analogical transfer,
unused parts of the source axiomatization are considered.
The term volume(in(water, beaker),t;) contains the symbol
volume for which no generalization exists. However, the
rest of the term can be generalized using existing substitu-
tions, introducing a variable for the new symbol. This leads
to the following proposal for transfer:

> V(A1)

volume(in(water, beaker),t1)  V (in(coffee, cup),t1)

with the extended substitution

¢ = o U{V  xt.volume(in(water,x),t)}

Waterflow System (Source)

The new substitution can be expressed as
' I X r vy
¢Uolume o (z)in o (bwater 0 IX,O ° 11,0

so it reuses the basic substitutions ¢}, ¢~ .. and zﬁ(l(; and
therefore fits well into the analogy. On the target side,
the projection of the new Variable V, which is denoted
by 7, lacks an interpretation and thereby indicates that
some new concept needs to be introduced to understand
the situation, in this case the concept “heat”. Using the ex-
tended substitution axiom (ag) can be transferred to the tar-
get domain and states that the total amount of heat stays
constant over time. In a similar way, the symbol footprint
can induce the new concept “specific heat capacity”.

A.2. Analogy between the electric and the water circuit
The analogy between an electric circuit and waterflow is

another classical example taken from high-school level
physics. Fig. A.1 visualizes the analogy.

Electric Circuit (Target)

sorts

real,object, massterm

entities

water_system : object, water : massterm, pump : object
functions

presure : object — real x {N/m?}
predicates

closed : object

water_circuit : object

flow_in_circuit : object

facts

oy : closed(water _system)

o : water _circuit(water_system, water)
o3 : pressure(pump) > 0

sorts

real,object, massterm

entities

electric_system : object, current : massterm, battery : object
functions

voltage : object — real x {V}

predicates

closed : object

electric_circuit : object

facts

B : closed(electric_system)

B, : electric _circuit(electric_system, current)
B3 : voltage(battery) > 0

laws
oy : pressure(pump) > OA
closed(water _system)
— flow_in_circuit(water)
Generalization Anti-Unifier and Substitutions
sorts System — water_system/electric_system
real, object, massterm A — water [current
entities X — pump/battery
System : object, A : massterm Circuit — water_circuit/electric_circuit
X : object F — pressure/voltage
predicates

closed : object

Circuit : object

facts

71 = closed(System)

75 : Circuit(System, 4)

y3: F(X) >0

p4% : F(X) > 0 A closed (System)
— flow_in_circuit(A)
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Fig. A.1. Analogy between an electric circuit and waterflow.

The remaining axioms from the source domain can be
transferred to the target domain as follows:

F(X) > 0A closed(System)

. — flow_in_ circuit( A)

voltage(battery) > 0 A
closed(electric_ system)
— flow_in_ circuit( current)

pressure(purﬁp) >0A
closed(water_system)
— flow_in_ circuit(water)

German Government (Source)

A.3. Political analogy

The following analogy compares the structure of the
Germany government with the American government.
Knowledge about the source and about the target domain
are equivalently available. Therefore, we give only the gen-
eralization specifying the analogical alignment, but there is
no transfer.

In this analogy, HDTP discovered one-to-one map-
pings for the following anti-unifiers: B, C, F and G.
But there are also several many-to-many mappings, for
example while American people map to German people
since they both elect the bundestag/congress, American
people directly elect the president. In Germany, the
chancelor is elected by the bundestag. All mappings can
be seen the the figure above.

US Parliament (Target)

sort
object

entities
bundestag,bundesrat,chancellor, court,
fischer,government, minister,people, president,schroeder

facts

elect(people,bundestag)
make_laws(bundestag)
ratify_laws(bundesrat)
execute_laws(courts)
sign_laws(president)
elect(bundestag,chancellor)
nominates(chancellor,minister)
is(chancellor,schroeder)
is(minister fischer)
controls(bundestag,government)
member(minister,government)
chief(chancellor,government)

sort
object

entities
bush, congress,court,house,
Judge,minister,people,powell, president, senate

facts

elect(people,congress)
make_laws(house)
ratify_laws(senate)
execute_laws(courts)
sign_laws(president)
elect(people,president)
nominates(president ,minister)
is(president,bush)
is(minister,powell)
controls(congress,president)
member(minister,government)
chief(president,government)

Generalization Generalization with Substitutions
sort A — bundestag [ congress

object B — bundestag /house

entities C — bundesrat [senate
people,congress,house, senate,courts,president D — people/parliament

minister E — chancelor /president

A g
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facts

elect(people,A)
make_laws(B)
ratify_laws(C)
execute_laws(courts)
sign_laws(president)
elect(D, E)
nominates(E,minister)
is(E,F)

is(minister,G)
controls(A,H)
member(minister,government)
chief E,government)
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