Spatial Intelligence

Angela Schwering

What I do

What I do

 intelligent representation and processing of spatial information

- From the Cognitive Perspective
- How do humans perceive spatial information?
- How do humans process spatial information?

- Enhancement in Geoinformatics
- How to support humans interacting with GI software?
- Spatial Qualitative Reasoning
- Common-Sense Reasoning (similarity & analogy)

What I do

... and how does it fit to our project ideas?

1. Enhancing GUIs:

How to support humans interacting with GI software?

 \rightarrow develop an intuitive GUI for querying spatial information systems

Searching for Common Structures in Data
→ use analogical comparison

Query-By-Sketch (M. Egenhofer)

- make HCI easier
- describe query in formal way is not intuitive
- sketch maps support human spatial thinking

Typical imprecision / errors in human cognition:

- distance (importance, amount information)
- direction (rectangular angles, straighten)
- shape, size (simplify, distort)

Typical imprecision / errors in human cognition:

- distance (importance, amount information)
- direction (rectangular angles, straighten)
- shape, size (simplify, distort)
- relevance

Formalization of sketches:

• topological relations

Formalization of sketches:

- topological relations
- direction / cardinal relations

Formalization of sketches:

- topological relations
- direction / cardinal relations
- metric information

- 1. People draw sketches
 - \rightarrow analyze distortions / errors
 - . Formalization of sketches
 - → qualitative spatial relations? topology / metric / direction
 - → what is important to capture? account for schematization errors in human cognition?
- 3. Test usability of the approach

What I do

... and how does it fit to our project ideas?

1. Enhancing GUIs:

How to support humans interacting with GI software?

 \rightarrow develop an intuitive GUI for querying spatial information systems

Searching for Common Structures in Data
→ use analogical comparison

- Classical reasoning on computers
- deduction, abduction, induction

Human reasoning

- new situations are compared to previous similar experiences
- analogical reasoning
 - compare for structural similarities
 - map analogous elements
 - transfer knowledge from one situation to other situation

- analogical reasoning used to automatically analyze topographic maps
 - classification of polygons (road layer)
 - spatial relation between polygons (adjacent)

- changes lead to new developments
- learn from previous experiences
 - search for similar land use patterns
 - to predict development
 - to suggest best practices

knowledge • interrelations of different factors

- **background** knowledge about changes in land use patterns
 - interrelations of different factors

knowledge

background
knowledge about changes in land use patterns
knowledge
interrelations of different factors

Summary

- make interaction with systems easier for humans
- include human-level reasoning in information processing
- 1. Enhancing GUIs:

How to support humans interacting with GI software? → develop an intuitive GUI for querying spatial information systems

Searching for Common Structures in Data
→ use analogical comparison

