Closing the Gap between Sensor Networks and the Sensor Web

INPE / IfGI Research Workshop 2009 GIScience for Dynamic Environmental Sensors

Arne Bröring

ifgi Institute for Geoinformatics University of Münster

Motivation

Sensor Networks are used for:

- Precision agriculture
- Wildlife tracking
- □ Early warning systems
- □ Hazard management
- □ ...

Important.

Integration of sensors and spatio-temporal resources

Motivation

Sensor Web Enablement (SWE) can be used

Integration on application level

Building blocks for a Sensor Web

Motivation

- Service interfaces & communication protocols
- Integration of sensors and SOA
- Core functionalities:
 Sensor discovery
 Sensor data access
 Sensor tasking
 Alerting & Notification
 (SAS / WNS)

see Botts et al. (2006)

Application Level

Sensor Web Level (SWE)

Sensor Network Level

OSIRIS - Industrial Fire Scenario

(www.osiris-fp6.eu)

Hot fire training lab

photos: APS

Problem

- Proprietary bridges
- Contrary to our aim: Interoperability
- Cumbersome and inefficient
- Extensive amount of adaption effort
- \rightarrow Key cost-factor in large-scale systems

see Aberer et al. (2006)

Problem

Gap: Sensor Network - Sensor Web

□ Different protocols

Low-level data - high-Level information models

Missing:

Concepts & methods for sensor - service interaction

■ → Deficits hinder the Sensor Web to emerge

Aim:

Elaborate methods to close the gap between Sensor Networks and Sensor Web

- 1. Identifying general interaction patterns
- 2. Analysis of infrastructure topologies
- 3. Integrate *Event Processing* methods

- 1. Identifying general interaction patterns
- Building blocks for:
 Event-driven, publish/subscribe systems

Interactions:

- Sensor Registration
- Service Registration
- Asset Discovery
- Data Publication
- Sensor Tasking

- 2. Analysis of infrastructure topologies
- Examples: *Bus, P2P, Hub-and-Spoke, ...*?
- \rightarrow Evaluation:
 - Technical functionalities
 - Performance
 - □ Scalability

Fat Sensor Bus

Thin Sensor Bus

3. Integrate *Event Processing* methods

- □ (Multi-) Sensor Fusion
- Combine multiple sources
- Improve information
 - (greater relevance, greater quality,...)
- □ Transform: low-level data → high-level information
 - see Luckham "The power of Events" (2005) or Wu et al. (2008)

Example Event:

Trigger:

temperature > 50°Cfrom Sensor S_{temp} in Room RANDPM10 > 0,001 mg/m3 (> 5 min)from Sensor S_{smoke} in Room R

Output:

Fire Event

Actions:

- \rightarrow Trigger SPS to start fire sprinkler
- → Send alert via SAS
- \rightarrow Insert Observation in SOS

Research Questions (preliminary state)

□ How to close the gap between SN - SW?

Which interaction patterns exist on the intermediary level between sensors and sensor web services?

Where to do what kind of event processing? (In-network, intermediary layer, service level, application level)

References

- ABERER K., M. HAUSWIRTH, A. SALEHI (2006): Middleware support for the Internet of Things. 5. GI/ITG KuVS Fachgespräch "Drahtlose Sensornetze", Universitt Stuttgart, 2006.
- BOTTS, M., G. PERCIVALL, C. REED & J. DAVIDSON (2006): OGC® Sensor Web Enablement: Overview And High Level Architecture. OGC White Paper. Open Geospatial Consortium: 06-046r2, Version: 2.0.

LUCKHAM, D. (2005): The Power of Events. Addison-Wesley, Boston, USA.

WU E., Y. DIAO, S. RIZVI (2006): High-Performance Complex Event Processing over Streams. SIGMOD 2006, June 27-29, 2006, Chicago, Illinois, USA

Thanks for your Attention!

Questions?

Comments?

Increasing Information Content

Information Content