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Abstract 

The author presents on-going dissertation research on an “Agent-based Dynamic Spatial 
Simulation” (ADSS), used in this paper to project short-term forest-regrowth scenarios in the Yucatán 
Peninsula, Mexico.  A conceptual framework based on land manager decision making in relation to 
socioeconomic institutions and the environment is mapped onto a model composed of an agent-based 
model and generalized cellular automata.  The ADSS is calibrated and validated with household surveys, 
archival research, and spatial data including imagery and maps of land-use/cover and biophysical 
characteristics. 
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Introduction 

This paper introduces a novel “Agent -based Dynamic Spatial Simulation” (ADSS) as a means of 
exploring human-environment relations.  The ADSS is an integrated assessment model that aids policy 
development and advances understanding of human decision-making in environmental contexts through 
identification of interrelationships among socioeconomic and biophysical factors.  In creating the ADSS, 
the author seeks a new means of addressing human-environment relationships, moving away from 
equilibrium-oriented and deterministic conceptions of these relationships and towards a technique that 
accommodates their dynamic and cross-scalar nature.  The ADSS uses two streams of research, 
conceptual and methodological, to accomplish this goal.  It combines research into decision making, 
socioeconomic institutions, and ecology to create a conceptual framework.  Then, by drawing upon 
recent methodological advances in geographic information science, the conceptual framework is mapped 
onto a model composed of an agent-based model and a generalized cellular automata within a 
geographic information system (GIS) framework. 

This paper describes a prototype of  the ADSS applied to a regional policy context by projecting short-
term land-use/cover change (LUCC) scenarios of cultivation and subsequent forest secondary succession 
in the southern Yucatán peninsular region (SYPR) of Mexico.  Land-use/cover change (LUCC) is a 
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major human dimension of global environment change.  Human-induced transformations in terrestrial 
cover significantly change biogeochemical cycles and thereby affect climate, biotic diversity, and 
livelihoods (Meyer and Turner 1994).   Policy responses mandated by the magnitude of these impacts 
are often frustrated by the inability to project land-use/cover change trajectories due to insufficient 
understanding of the complex relationships between LUCC and global change and among the forces that 
induce change in land-use/cover. 

The research described here is guided by three themes not well addressed by present land-use/cover 
research.  First, deforestation and cultivation occur incrementally in spatially distinct patterns that have 
different implications for environmental change, yet most models are aspatial or coarse-grained 
(Kaimowitz and Angelsen 1998).  The ADSS has a regional scale of analysis that allows a fine temporal 
and spatial grain.  Second, current LUCC models do not adequately account for the complexity of, and 
relationships among, socioeconomic and environmental factors (Turner et al. 1995).  The ADSS places 
human-environment relations such as LUCC at the intersection of theories of land manager decision 
making, the environment, and socioeconomic institutions.  Third, this research addresses uncertainty as 
a factor that plays a large role in understanding human-environment interaction but that is largely 
ignored in regional-scale models. 

The “actor-institution-environment” conceptual framework that underlies the ADSS is described in the 
next section.  Section 3 follows with an overview of methods to model LUCC and how they relate to the 
ADSS.  Section 4 describes the ADSS structure as applied to LUCC in Mexico.  Section 5 concludes 
with future research directions and an exploration of the significance of the research presented here. 

Conceptual framework 

One major vein of human-environment research lies in global environmental change (GEC).  Within the 
GEC research community there is general consensus on how to conceive of human-environment issues 
by considering how environmental change results from infrastructure development, population pressure, 
market opportunities, resource institutions, and environmental or resource policies (Stern et al. 1992).  
The international LUCC Science/Research Plan partitions these causes (and their effects) among the 
conceptual foci of social systems, ecological systems, and land managers (Turner et al. 1995). 

The ADSS recasts these foci as a three component “actor-institution-environment” conceptual 
framework (Figure 1).  The first part focuses on the decision making of households and other actors.  In 
the context of SYPR, the chief actors are farming households, or smallholders.  The actor component 
draws on research in decision making, bounded rationality, and the effect of actor resources on decision 
making.  The second component concerns socioeconomic institutions that affect actor decision making.  
Simultaneously artifacts and dynamic processes, institutions constitute, and are constituted by, 
regularized behavior.  Institutions channel the external large-scale political economy and internal power 
relations.  Both actors and institutions interact with the third component of the conceptual framework, 
the biophysical environment.  Complex relationships result when biophysical forces are affected by 
production strategies that lead to environmental changes such as cover conversion, soil erosion, or 
nutrient depletion.1 

While the example explored in this paper concerns deforestation and cultivation, the actor-institution-
environment framework, as it is derived from the larger body of GEC research, offers a general view on 
human-environment situations.  The iterative nature of human-environment interaction highlights the 
need for all three components of the actor-institution-environment conceptual framework.   Actor 
decision making impacts, and is affected by, the environment and is subject to institutions that modify 
actor resource profiles and decision variables.  Actor-institution relationships are the means by which 



institutions impact the environment.  Finally, actors are not merely beholden to institutions, but are 
active participants that form much of what makes institutions. 

  

 

Figure 1.  The actor-institution-environment conceptual framework 

Approaches to projecting LUCC and the ADSS framework 

There are few spatiotemporally explicit LUCC modeling techniques and none suit implementation of the 
actor-institution-environment framework.  Common approaches, including cellular automata, spatial 
statistical techniques, and Markov models, downplay decision making and institutions (e.g., Li and 
Reynolds 1997; Ludeke et al. 1990).  Spatial econometrics is a good technique but not amenable to the 
conceptual framework used here (e.g., Geoghegan et al. 1998).  Dynamic spatial simulation (DSS) 
portrays the landscape as a two-dimensional grid where rules based on factors such as agricultural 
suitability determine how cells change (e.g., Gilruth et al. 1995; Southworth et al. 1991).  DSS typically 
lack heterogeneous actors, institution-actor relations, and multiple production activities.  In an 
exhaustive review of deforestation models, however, DSS is recommended by Lambin as the “most 
advanced modelling approach for a complex, dynamic and spatial problem such as tropical 
deforestation” (1994: 92). 

The research described in this paper builds on DSS models and addresses their shortcomings by 
coupling an agent-based model (ABM) and generalized cellular automata (GCA) to create an agent-
based DSS, or ADSS.  Agent-based approaches are used to combine empirical and theoretical models of 
actor behavior in resource-use situations (Conte et al. 1997).  Here they embody the actor and institution 
components of the conceptual framework.  The use of cellular automata in ecological models suggests 
the use of generalized cellular automata to represent the environment (Smith and Bull 1997).  GCA 
models offer greater realism through rules independent of adjacency (Takeyama and Couclelis 1997).  
By coupling generalized cellular automata and agent-based models, the ADSS is a novel means of 
operationalizing the actor-institution-environment framework and offers a powerful approach to 
understanding and projecting environmental change. 



In summary, this research implements the actor-institution-environment conceptual framework by 
coupling an agent-based model and generalized cellular automata (Figure 2).  Actor decision making is 
represented by smallholder-agent processes that choose production strategies based on resource profiles, 
environmental information from GCA cells, and other decision variables.  Agent behavior feeds back on 
GCA cells through non-adjacent rules, allowing continual interaction that simulates actor-environment 
relationships.  Institution-agents modify smallholder-agent resource profiles and decision variables to 
affect actor decision making.  This is also the means by which institution-agents impact the 
environment. 

  

 

Figure 2.  ADSS model structure.  

Implementation and example 

Prototype framework 

The ADSS is a C++ language program consisting of the ABM and GCA bound together by a program 
shell.  The shell’s graphical user interface is used to specify exogenous parameters, establish model 
configurations, and examine model output.  The ADSS is an example of “close-coupling” (Goodchild et 
al. 1992) because the ADSS offers the user a script language, compete with control structures and 



variables, with which to specify agents, specify GCA grids, enact calibration/validation routines, make 
general operating system calls, and make direct calls to the Idrisi32 raster GIS and Microsoft Access 
databases. 

The ADSS shell uses a Monte Carlo strategy whereby it conducts many runs with identical parameters, 
extracts the simulated environment from each run, and combines the results for a probabilistic measure 
of land-use/cover change.  A single simulation run iterates through four stages once a year for time 
intervals ranging up to forty model ‘years’ (1970-2010).  First, the shell updates exogenous parameters.  
Second, institution-agents change smallholder-agent resource profiles.   Third, each smallholder -agent 
chooses production activities with a decision making model that combines its resource profile, 
exogenous parameters, and environmental characteristics.  The result is registered in the agent’s 
resource profile and as a land-use/cover impact on a GCA grid.  Finally, the shell updates the GCA 
environment. 

Calibration of smallholder-agent decision making, institution-agent processes, and GCA operations is 
considered below.  The author is fortunate to be part of a larger research project, Land-Cover/Land-Use 
Change in SYPR (LCLUC-SYPR), which provides spatial data such as imagery, LUCC, aerial 
photography, elevation, topography, climate, soils, precipitation, and hydrology.  The project also 
provides an actor survey of 188 households that details an extensive set of socioeconomic characteristics 
and spatiotemporally explicit land-use histories.  Finally, the author conducts archival research and 
interviews researchers to gather information on several aspects of the conceptual framework and model 
calibration. 

Generalized Cellular Automata 

The environmental component of the model is specified and calibrated as seven sets of GCA grids, 
denoted Ex, that encompass the study area.  Grids update through endogenous transitions and non-
adjacent transitions that result from actor behavior.  The author derives GCA rules from ecological 
theory and field work and tests them with repeated runs.  A simple set of rules, for example, can 
correlate forest cover in a cell with the state of its neighbors to represent secondary succession.  The 
GCA is also the repository for relatively unchanging model components such as environmental 
attributes. 

The GCA grids are as follows:  

1. EUSE  - A repository for simulated land-use by actors. 
 

2. ECOVER - State of land cover as a function of land-use and extant cover.  
3. ESOIL - Stores soil fertility as a function cover, past soil fertility, and duration of the cell's present 

land-use.  
4. EENV - Environmental attributes: hydrology, soil type, slope, and aspect.  
5. ESUIT - Suitability for three production activities: agriculture, forestry, and nontimber forest 

products. Based on land use, land-cover, soil quality and biophysical attributes.  
6. EECON - Distance to market and transportation infrastructure.  
7. ELUCC - Actual land-use and land-cover for model verification and calibration (1970-1996).  

Agent-Based Model 

The ABM is composed of smallholder and institution agents.  The latter communicate institutional rules 
to smallholder-agents, specifically land tenure and market characteristics such as crop and fuel prices or 



governmental subsidies.  The ADSS converts these characteristics into: 1) GIS layers of spatial extent 
over time for use by institution-agent processes in directing the focus of institutions towards particular 
smallholder-agents; 2) institution-agent processes for land tenure rules; and 3) exogenous shell 
production functions that incorporate subsidies. 

The agents that represent smallholder actors are invested with one of three different decision making 
models.  The first is a set of heuristic processes similar to those used by other dynamic spatial 
simulations (e.g., Gilruth et al. 1995).  An example rule set is would have the agent use land near roads, 
use a field for three years and then return it to fallow, and use recent secondary regrowth with an age of 
4-7 years.  While simple, in many respects these rules can capture more complex relationships or 
practices when they reflect key aspects of smallholder behavior without recourse to complex 
combinations of data.   As such, they are applicable to data-poor situations, such as when the sole source 
of spatial data is remotely sensed imagery that provides only information on land-cover and 
infrastructure (e.g., roads, settlements). 

The second decision making model is subsistence orientation, as explored above in the discussion of the 
conceptual framework.  It is implemented as a multicriteria evaluation that uses household variables, 
agricultural suitability (ESUIT), and accessibility measures (EECON), to determine the location and kind of 
production necessary to feed the household.   This is a basic model with a number of restrictive 
assumptions, such as risk taking behavior and lack of labor market participation.   It demonstrates how a 
theory-led model may be incorporated into the ADSS, however, and later can be empirically specified 
and expanded.  This model is implemented as a weighted linear average of the form where suitability is 
a function of factor weights, criterion scores, and constraints. 

The third form of decision making invested in agents is provided by sets of genetic programs (GP) 
calibrated by matching actor land-use histories to an array of decision variables from the smallholder 
survey and GCA grids.  GP may be treated as inductive black-boxes for use in projection of land-use 
change by selecting GP strategies that are best able to match actual land-use histories to projected land-
use change.  When applied to decision making, GP are bounded-rationality representations of decision 
making models (Edmonds 1999).     As such, GPs offer insight into actor decision making when their 
internal structure is examined.  Frequency counts of spatial and aspatial factors and their branching 
points in GP, for instance, can indicate the relative importance of factors. 

ADSS Validation 

The ADSS validation suite measures the difference in accuracy between high probability projected 
LUCC and observed land-use/cover change.  The complexity inherent to spatial simulation demands 
several different approaches to validating the model.   The ADSS therefore uses a set of five different 
tests to measure projection accuracy: Kappa Index of Agreement (KIA) coefficients; differences in land-
use/cover fragmentation in fractal dimension (D) and contagion; multi-resolution goodness of fit (F) 
(Costanza 1989); and a Monte Carlo Uncertainty (MCU) measure (Ogneva-Himmelberger 1998). 

A key aspect of all model validation is that the balance between model specification and prediction 
almost invariably causes support to vary across the test suite (Alonso 1968).  Consider, for instance, the 
difference in output between the different models of smallholder decision making in projecting the 
location of secondary succession of forest for a sub-section of the study area (Figure 3).  Although each 
of the three models use the same underlying data, agreement varies among them.  The difference among 
decision making models across validation metrics is illustrated in Table 1. 



Figure 3.   Comparisons of model choice for the example of secondary succession. 

Variation across decision making models and tests is potentially quite useful because the differences 
between the model results provides information.  For example, the weighted linear average models is 
interesting in its ability to replicate regional parcel structure, as indicated by its contagion index.  For 
applications where this measure is important, such as assessing the effects of ecological structure on 
biodiversity (Skole and Tucker 1993), a weighted linear average model may be a good choice even if its 
overall predictive power does not match that of other models. 

Table 1.    ADSS validation metrics. 

Conclusion 

The ADSS is a general means of modeling the complexity of human-environment relationships.  By 
facilitating the management of complex information and relationships, the ADSS improves 
understanding of environmental change, especially in light of decision making theory and 
conceptualization of institutions.  It also allows examination of the impacts of policy alternatives that 
often cannot be easily explored in reality.  The ADSS is also an example of “computational human 
geography” that bridges theoretical and empirical conceptions of what constitutes geographical 
information science and geography in general.  This research speaks to actor-structure debates by 
explicitly combining micro-scale phenomena (ABM actors and GCA neighborhood transition functions) 
with those at larger scales (ABM institutions and GCA non-contiguous transition functions).  As such, 
and in conjunction with the ADSS’s explicit embodiment of the conceptual framework, the research 
serves as a point of communication between GIS and its critics.  Finally, ABM and GCA combined 
address the problem of surface/entity integration in GIS, answer the call for artificial intelligence in GIS-
based modeling, and further the use of GIS for dynamic environmental modeling. 

 
Actual succession

 
All models agree

 
Two models agree

 
No agreement

Model  Heuristic WLA Genetic Program 

Test Metric Rank Metric Rank Metric Rank 

KIA 0.173 3 0.194 2 0.223 1 

Fractal Dimension (D) 0.024 3 0.0106 2 0.008 1 

Contagion Index 0.00149 2 0.0002 1 0.00306 3 

MRGF (F)  (1 = perfect) 0.770 2 0.767 3 0.783 1 

MCU (0 = perfect) 0.8772 1 0.9039 2 0.9116 3 
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End Notes 

1. Portions of this paper, including an extended description of the conceptual framework, were 
presented at the UCGIS 2000 Summer Assembly, Portland OR, June 23, 2000.  See 
http://www.ucgis.org/oregon/papers/manson.htm. 
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