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ABSTRACT 

Costanza, R., 1989. Model goodness of fit: a multiple resolution procedure. Ecol. Modelling, 
47: 199--215. 

Quantitatively evaluating the goodness of fit of ecological simulation models is difficult, 
and no generally agreed upon method has evolved. This paper presents a method for 
quantifying the goodness of fit of spatial and/or  time series data and models based on 
measuring the similarity of the patterns, and the idea that measurement at one resolution is 
not sufficient to describe complex patterns. The method yields indices that summarize the 
way the fit changes as the resolution of measurement changes. An expanding 'window" is 
used to gradually degrade the resolution of the comparison. Lack of fit can be partitioned 
into 'registration', 'resolution' and residual components. This allows a better understanding 
of the underlying patterns and type of correspondence. Multiple resolution methods yield 
additional information not contained in single resolution methods that is necessary to 
adequately evaluate the performance of complex ecological models. 

INTRODUCTION 

No theory or model fits reality perfectly. As Albert  Einstein once said: 
"The  laws of mathematics, as far as they refer to reality, are not certain, and 
as far as they are certain, do not refer to reality." What  scientists really need 
to know is exactly how well (or how poorly) their models perform over a 
broad range of conditions and criteria. Because there are no generally agreed 
upon procedures for measuring the degree of fit between simulation models 
and reality, this testing and evaluation process is not often given the 
importance it deserves. Lack of consensus results from the fact that many 
levels of disaggregation are used and the range of spatial and temporal 
resolutions over which models must operate and be tested is very large. 
Standard statistical tests of goodness of fit are generally applied only at a 
single resolution of measurement.  The thesis of this paper is that there is no 
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Fig. 1. Habitat  distribution data and various model predictions for the Atcha fa l aya /  
Terrebonne area of coastal Louisiana. Each of the 2479 grid cells represents 1 km 2. 
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one 'proper' resolution, but rather a range of resolutions is necessary to 
adequately describe the fit of models with reality. 

For relatively simple purposes there are well-established statistical mea- 
sures of goodness-of-fit (i.e. R2, X2). However, most ecological modeling 
involves quantifying the degree of matching or similarity between complex 
spatial and temporal patterns. Spatial pattern matching is not a straightfor- 
ward statistical procedure. Even quantifying the degree to which nonspatial 
ecosystem modeling time series results match real patterns of ecosystem 
behavior is difficult and there is no universally agreed upon procedure 
(Gardner et al., 1980; Jorgensen, 1982). In spatial ecological analysis the 
literature has concentrated on determining if non-random patterns exist in 
point data (Ripley, 1981; Getis and Franklin, 1987), determining the opti- 
mum quadrat size based on an analysis of variance (Moellering and Tobler. 
1972; Grieg-Smith, 1983), and determining whether or not two maps are 
statistically "different" (Pielou, 1977). But most statistical tests tend to miss 
or mask the details of spatial and temporal patterns in the data, concentrat- 
ing instead on deviations from standard, random distributions. For example~ 
a standard X 2 test can be used to measure the fit between two land use 
maps, but it ignores the spatial pattern of the land use variables. It would 
yield information only about whether the total number of pixels in each land 
use category were significantly different between two maps, but not whether 
there was a significant difference in the pattern of two maps. The maps may 
both have the same total number of pixels in each land use category but be 
radically different in the arrangement of the pixels. The problem is more 
akin to the problem of matching amino acid sequences in large protein 
sequence data bases, which had been successfully attacked by developing 
"similarity scores" (Lipman and Pearson, 1985). The approach described in 
this paper extends the similarity scoring concept to include the possibility of 
performing the scoring over multiple resolutions. 

The practical problems which led to the development of the procedures in 
this paper arose from work on spatial simulation modeling of long-term 
habitat succession in the Louisiana coastal zone (Sklar et al., 1985; Costanza 
et al., 1986, 1988). Some sample model results are shown in Fig. 1. which 
includes measured habitat distribution maps for 1956 and 1978 and various 
model predictions for 1978. We needed to gauge the models' performance in 
predicting the 1978 conditions from the 1956 conditions in a quantitative 
way that would allow parameter optimization, and we also needed an 
indication of the relative effectiveness of the various models. The simplest 
pattern sensitive goodness of fit metric under these circumstances is the 
percent of the cells that are correct (i.e., are the same type in both the model 
and data in a cell by cell comparison). The problem with this method was 
that it ignored 'near misses', and two maps with the same percent correct 
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could exhibit very different patterns in their residuals (misses). One might 
have random misses while the other might have systematic misses, for 
example at the boundaries between habitat types. We wanted a method that 
would give some weight to near misses as well as direct hits and tell us 
whether the 'pattern'  was being relatively well matched. Lipman and Pear- 
son's (1985) method of handling the 'near miss' problem was to weight 
comparisons based on the evolutionary likelihood of one category (amino 
acid) changing into another. This requires a priori information on which 
categories are 'most  simalar' to which other categories. In our case, it would 
have required us to determine, for example, that salt marsh is more similar 
to fresh marsh than it is to open-water habitat. To avoid having to make 
these somewhat arbitrary judgments,  we developed an algorithm that uses 
spatial similarity in the pattern, rather than similarity between categories 
that must be supplied from other sources. 

The method applies standard fit procedures over a number  of temporal 
a n d / o r  spatial resolutions and uses the way the fit changes with resolution 
to interpret the model's performance. The procedure is first developed for 
categorical spatial data (the most difficult case) and then extended to 
interval spatial data, and to non-spatial time series data. It also borrows 
from ideas about edge detection as applied to problems of emulation of 
human vision (Rosenfeld and Kak, 1978; Marr and Hildreth, 1980) based on 
using moving two-dimensional 'windows' to filter the data (Spacek, 1986), 
but extends this idea to multiple resolutions. 

Conceptually, this multiple resolution approach is similar to a "fractal 
dimension" (Mandelbrot, 1977, 1983) which measures the way the length of 
a coastline or other boundary changes as the resolution of measurement 
changes. For example, if we wished to determine the length of the coastline 
of Britain, the answer would depend on what resolution map we used (or the 
size of the fundamental unit of measurement). The smaller the fundamental  
unit of measurement (or the higher the resolution of the map) the longer the 
coastline measurement would be. Rather than speak of the ' length'  of the 
coastline (which is resolution-dependent) we could alternatively speak of the 
way length depends on resolution. We can then develop resolution indepen- 
dent measures of the relationship between resolution and length. The fractal 
dimension is an elegantly simple example. It can be interpreted as a measure 
of the 'complexity' of boundaries. 

The fundamental idea underlying fractals can be generalized and stated 
simply as: measurement at one particular resolution is always insufficient to 
describe complex natural phenomenon. It is necessary to measure phenome- 
non at several resolutions and interpret the way the results change with 
changing resolution to arrive at a meaningful description. The algorithm 
described in this paper implements this idea for model testing. 



M O D E L  G O O D N E S S  O F  F I T :  A M U L T I P L E  R E S O L U T I O N  P R O C E D U R E  203 

COMPONENTS OF FIT 

Lack of fit between a model and data (or between any two data series) 
can be partit ioned among three components:  registration, resolution, and 
residual. Lack of fit due to registration has to do with the failure of the 
model and data to 'line up' even though their patterns may be similar. For 
example, two identical pictures may show very little pixei by pixel corre- 
spondence if they are slightly rotated, if one is moved slightly horizontally or 
vertically, or if one is a different size. By rotating, sliding, expanding or 
contracting the pictures (or time series), the fit may be dramatically in- 
creased. Lack of fit due to misregistration can be removed by performing the 
above manipulations on the data until the fit is maximized. In analyzing two 
data maps, spatial misregistration can be an important  problem, especially 
when the goal is to detect small changes between the two maps. In spatial 
modeling work, spatial misregistration is seldom a problem since the model 
is designed to spatially register with the data. Temporal  misregistration can 
be an important problem in measuring fit, however, as we discuss further on. 

Once the lack of fit due to misregistration has been removed, the 
resolution component  of fit can be analyzed. This is described by way of 
example in the following sections. 

SPATIAL PATTERN MATCHING USING VARIABLE RESOLUTION FITTING 

Two example 10 × 10 scenes with four different categories of cover (Fig. 
2) are used to describe the procedure. Looking at the two scenes we can 
discern that the patterns are 'similar' but not identical. There is a block of 
category-1 cells in the upper left corner of each scene, they both have a large 
block of category-3 cells covering most of the right side, etc. The patterns 
are also certainly non-random. Humans  seem to have an inate ability to 
recognize these kinds of pattern similarities. The problem is to systematize 
this ability to the point that computer  algorithms can approximate it. 

Pattern recognition is scale-dependent (Allen and Starr, 1985). It depends 
on both resolution and extent (the size of the scene). For example, Fig. 3 
presents two related scenes at different scales. The enlarged view (Fig. 3a) 
has higher resolution, lower extent and the general pattern is not apparent.  
In Fig. 3b resolution has been sacrificed for increased extent and the pattern 
is apparent. The increased extent is not necessary to discern the pattern, 
however. Decreasing the resolution is often enough, as can be seen by 
squinting at Fig. 3a or holding it at a distance so the effective resolution is 
decreased. 
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scenes with four categories. 

The algorithm described in this paper decreases the resolution of compari-  
sons by increasing the size of a sampling window that slides over scenes for 
which fit is calculated. The effect is similar to squinting to unfocus the 
scenes in order to perceive the larger pattern. Doing this with scene a makes 
the pattern apparent. 

There are several alternative ways of measuring fit at a particular window 
size (resolution), depending on the nature of the data  and other considera- 
tions. The multiple resolution approach does not depend on which measure 
of fit is used, as long as it is consistently applied at all resolutions. If 
numerical data are available, a standard coefficient of correlation ( r  2) can 
be used. Categorical data are more of a problem. 

For a sampling window size of 1, a convenient measure of fit for 
categorical data is the proportion of cells accurately matched (80% in the 
example 10 x 10 scenes). As the sampling window size is increased, one 
would like to use an analogous measure of fit. Essentially, the data are being 
aggregated within each sampling window and there are several possible ways 
to perform this aggregation. The simplest approach is 'proport ional '  aggre- 
gation which chooses that category which is the highest proport ion of the 
cells within the window, randomly deciding ties. This method tends to 
quickly eliminate rare categories, however. Most aggregation schemes re- 
place all the cells within the sampling window with a single category, and 
result in a rapid loss of information about the relative proportions of the 
categories. For some purposes this loss of information is acceptable, but for 
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Scene a / / 
- / / 

Scene b 
Fig. 3. Example showing the effects of resolution and extent on ability to recognize patterns. 
Scene a is a blowup of the right eye of what is obviously a picture of a woman in scene b, but 
it is only recognizable as such if we ignore some of the detail. 

calculating fit, it is to be avoided if possible. A simple formula was devised 
that retains more of the information about the relative proportions of 
categories within the sample window in estimating fit while decreasing the 
resolution. The fit for each sampling window is estimated as 1 minus the 
proportion of cells that would have to be changed to make the sampling 
windows each have the same number of cells in each category, regardless of 
their spatial arrangement. For example, if a particular 2 × 2 window had 
two cells of forest and two of marsh in both scenes, the fit would be 100% 
regardless of how the cells were arranged within the windows. If one 
sampling window had one forest and three marsh, while the other had two 
of each category, the fit would be 75% (since one cell out of four would have 
to be changed to make the fit 100%). The fit for the whole scene for a 



206 R. COSTANZA 

particular sampling window size is the average fit over all the sampling 
windows of that size. The sampling window is moved through the scene one 
cell at a time until the entire image is covered. 

The following formula for the fit at a particular sampling window size 
(Fw) implements this idea for aggregation. It reduces to the percent correct if 
the sampling window size is 1 and retains information about relative 
category proportions as the window size is increased: 

I r 1 ,~ ~ I < , -  a2i I 
1 - ~ = 1  

s=l 2w2 
S 

F w = (1) 
tw 
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Fig. 4. Example  of  the multiple resolution fitting procedure for two sample 10 x l 0  scenes 
with four categories. The plot shows that the two scenes match moderately well, as there is 
significant improvement in the fit with increasing window size. The total fit (F t )  is an 
exponentially weighted average over all the window sizes with k = 0.1. See text for further 
explanation. 
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where F w is the fit for sampling window size w, w the dimension of one side 
of the (square) sampling window, aki the number  of cells of category i in 
scene k in the sampling window, p the number  of different categories (e.g., 
habitat types) in the sampling windows, s the sampling window of dimen- 
sion w by w which slides through the scene one cell at a time, and t~, the 
total number of sampling windows in the scene for window size w. 

One can then plot the fit between the scenes (F~,) vs. the size of the 
sampling window (w) as in Fig. 4. Using other aggregation methods or fit 
estimates would yield similar (but not identical) results, but  the fundamental  
idea would still apply. If the plot behaves as it does for the two example 
scenes (it increases rapidly at first) then the pattern between the two scenes 
is very well matched even though the initial fit at window size 1 is relatively 
low. This would occur if the patterns between the scenes were similar, but  
the precise boundaries in the maximum resolution scenes were slightly off. 
Conversely, if the plot starts at a relatively low fit and is flat, then the spatial 
pattern is not well matched even though the initial fit might be higher than 
that for the two sample scenes. If the scenes were exactly identical, a perfect 
match over all window sizes would result. If two randomly generated scenes 
were compared, the expected fit would start at 1 /p  and rapidly increase to 1 
as the expanding sampling window made the statistical similarity between 
any two random scenes apparent. 

To use these measures to determine an overall degree of fit between two 
maps the information in the plot of window sizes vs. fit must be sum- 
marized. A weighted average of the fits at different window sizes is one 
possible way of summarizing the overall fit that allows more weight to be 
given to smaller window sizes while not totally ignoring the large window 
sizes. For this purpose one can use the following formula: 

Y1 

F., e 

F t  w = ] = h 
e _ k ( w _ 1 )  

w ~ l  

(2) 

where F t is a weighted average of the fits over all window sizes, F,. the fit 
for sampling windows of linear dimension w, k a constant, and w linear 
dimension of a sampling window. This formula gives exponentially less 
weight to the fit at lower resolution. The value of k determines how much 
weight is to be given to small vs. large sampling windows. If k = 0, all 
window sizes are given the same weight. At k = 1, only the first few window 
sizes will be important.  The relative importance of matching the patterns 
precisely vs. crudely must be answered in the context of the model 's  
objectives and the quality of the data. F rom previous studies on aggregation 
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Fig. 5. Example plots of fit vs. window size for the various models in Fig. 1 compared to the 
1978 data. Upper graph shows the CELSS model, the Markov model, and the initial (1956) 
conditions on an expanded y axis. 

error in data and models (e.g., Gardner et al., 1982), we know that simple 
models  may always be somewhat incorrect, but they may do a good job of  
matching the general patterns of the data, especially when there is high 
variance and uncertainty in the data. For the purposes of matching spatial 
patterns of  land use, we have found that a value of k---0.1 gives an 
'adequate' amount  of weight to the larger window sizes. For the example in 
Fig. 2, k = 0.1 yields F t = 0.84. 

The power of the technique in interpreting the patterns of  correspondence 
between data and various models can be seen in Fig. 5, which shows the 
variable resolution procedure applied to the spatial modeling results sum- 
marized in Fig. 1. Fit vs. window size is plotted for the 1978 data compared 
with the 1978 CELSS simulation model prediction (labeled 'CELSS model'), 
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and several 'null  models'. The most simple-minded null model is a com- 
pletely random distribution of habitats with all of the categories being 
equiprobable (labeled ' r andom equiprobable' in the figure). A slightly more 
reasonable null model is a random distribution but with the same overall 
land cover probabilities (frequencies) as the 1978 data (labeled ' r andom with 
1978 frequencies' in the figure). A simple Markov chain model, is a slightly 
more sophisticated null model. It incorporates the statistical trend of habitat  
changes in an area in the form of transition probabilities (or frequencies). In 
our case, we use the frequencies of transition of each habitat type into each 
other type over the 1956-1978 interval. The fit over various window sizes for 
the Markov model is labeled 'Markov model'  in the figure. Finally, the 1956 
initial conditions represent a null model that predicts no change (labeled 
'initial conditions' on the figure). 

The CELSS simulation model performs better than any of the null 
models, but its performance can best be judged in relation to the null 
models. The simulation model fits the 1978 data better than ' r andom 
equiprobable' ( F  t = 88.2% vs. 32.5%) and ' r andom with 1978 frequencies' 
(F, = 88.2% vs. 50%). The fit for ' r andom with 1978 frequencies' approaches 
one as window size increases indicating that the overall percentages of 
habitat  types are the same but the pat tern is not well matched. 

Compared to the 'initial conditions' the CELSS model might not appear 
to be significantly better if only the fit at window size 1 is considered (85% 
vs. 81%). The initial conditions model appears to fit fairly well because only 
about 20% of the cells actually changed type between 1956 and 1978. But the 
pattern of fit is revealed by looking at the plots of fit vs. window size. The 
simulation model plot increases rapidly as window size increases indicating 
that the 'pat tern '  between the model and data is well matched. The initial 
conditions model exhibits a flatter plot indicating the pattern is not well 
matched. Total weighted fit (Ft) is significantly higher for the CELSS model 
than the initial conditions null model (88.2% vs. 81.6%). 

The Markov model has a lower initial fit (69%) than the initial conditions 
model (81%), but the fit increases more rapidly as the window size increases. 
At the maximum window size it fits better than the initial conditions model 
since the total number  of cells of each type is closer to the 1978 data. Total 
weighted fit for the Markov model is less than the initial conditions model 
(81.6% vs. 76.1%) since by randomly placing the transition cells the detailed 
spatial pattern is disrupted while increasing the fit at larger window sizes. 

STATISTICAL SIGNIFICANCE 

Since the F t values generated by our procedure do not follow a normal 
distribution, one cannot calculate a statistical probabili ty (P  value). The 
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most satisfactory approach at present seems to be to generate z values 
following the method of Lipman and Pearson (1985), where: 

(Ft /mean of randomly permutated Ft) 
Z ~ 

standard deviation of randomly permutated F t 

The randomly permutated F t values are generated by randomly rearranging 
one of the maps while retaining the same total number of pixels in each 
category. At least 20 random permutations should be used and Lipman and 
Pearson (1985) suggest the following significance guidelines: 

- z > 3: possibly significant 
- z > 6: probably significant 
- z > 10: significant. 
The results would be similar to comparing the CELSS model 1978 map 

(Fig. 1) to the Random with 1978 percentages map for several random 
permutations to test for significance of the fit with the 1978 data map. 
Because of the large number of cells involved and the highly patterned 
nature of the data maps, the mean of the randomly permutated F t will 
generally be much lower than F t (0.882 vs. 0.50 yielding a ratio of about 1.7) 
and the standard deviation of the randomly permutated F t will be relatively 
low (around 0.1) yielding z scores much greater than 10 and highly signifi- 
cant comparisons. 

T E M P O R A L  P A T T E R N  M A T C H I N G  

The multiple resolution procedures are also applicable to time series 
rather than spatial data. In analysing time series data the sampling 'window' 
takes in progressively more time rather than progressively more space. In 
both cases, we are interested in summarizing the effects of 'smoothing' or 
averaging the data on goodness of fit. The procedures are also applicable to 
data that are ordinal, interval, or ratio rather than categorical (or nominal), 
by simply altering the formula for the fit at a particular window size 
(equation 1). For ratio and ordinal data the coefficient of correlation (r 2) 
can be substituted for F w in equation (1). 

An example similar to one that might occur in ecological modeling work 
is given in Fig. 6a, which shows hypothetical 'data' and 'model' time series. 
In this example the data are ratio values (meaning relative to some absolute 
zero, for example biomass or K) and the fit is calculated as the coefficient of 
determination between the data and the model (r2). 

In this example the effects of misregistration can be clearly seen. Fig. 6b 
is a plot of the data compared to the model output lagged by two time steps. 
Fig. 7a is a plot of fit versus window size (in this case the number of 
intervals in a moving average of the data) for the unlagged data (Fig. 6a). 
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Fig. 6. Hypothetical data and model curves (top) and the same curves with the model lagged 
by two points, 

Even though it is obvious (to human eyes) that the model and data curves in 
Fig. 6a are quite 'similar', the fit starts at 0.1 and decreases as the window 
size increases to a minimum of 0.02 before increasing again to 0.08 at a 
window size of 11. This occurs because there is a slight temporal misregistra- 
tion in the two series. Fig. 7b is a plot of fit vs. lag for the two series. A lag 
of two time units increases the fit from 0.1 to almost 0.8. Figure 8 shows the 
fit vs. window size calculations performed after the model had been lagged 
by 2 units. F t for this plot (with k = 0.1) is 0.804. 

We need to subtract something for the model 's  failure in this example to 
get the timing right, making it necessary to lag the model  by 2 units. Again, 
the amount  to subtract is subjective and depends on how important  it is to 
the model's purpose to precisely match the timing of the data. Small 
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by two time units. 



M O D E L  G O O D N E S S  O F  F IT :  A M U L T I P L E  R E S O L U T I O N  P R O C E D U R E  213 

misregistrations (low number of lags) are probably less important than large 
lags, so one approach would be to subtract successively more as the required 
lag increased. We might apply the following formula for a weighted fit over 
lag and window size: 

Ft~ ~ = Ft  e k , L  ( 3 )  

where FtL is the total weighted fit over lag and window size, kt. is the 
weighting factor for lag, L is the lag required to maximize the fit, for 
example, if F t = 0.804, L = 2, and k L = 0.05 then FIL = 0.728. 

DISCUSSION AND CONCLUSIONS 

A simple procedure for determining the overall fit between model output  
and data that incorporates the effects of temporal and spatial misregistra- 
tion and allows a degree of pattern matching by varying the resolution of the 
fit has been developed. Subjective weighting factors for the importance of 
precise vs. general pattern matching (k)  and the importance of precise 
registration (kL) must be supplied by the user, based on the purposes of the 
proposed model. 

The procedures have many possible applications in modeling work, and 
also in descriptive pattern analysis. For example, one potential use of the 
procedures is analysis of the degree of organization of a landscape or other 
pattern. Organization can be defined as the degree of departure from a 
random pattern. While other measures (i.e. fractal dimension) yield informa- 
tion about the degree of departure from a random pattern, they are not 
sensitive to specific spatial patterns in the data. The multiple resolution 
fitting procedure described above can be used to directly measure the 
departure from a random pattern by measuring the degree of fit between a 
specific landscape pattern and a random one. For example, for the scenes in 
Fig. 2, the weighted average fits (Ft) were 0.445 for scene 1 and 0.517 for 
scene 2 when compared with a randomly generated pattern (using k = 0.1). 
This indicates that scene 1 is slightly more organized (farther from random, 
less complex, more predictable) than scene 2. The advantage of this measure 
over others is that it is sensitive to aperiodic patterns or clusters and is 
insensitive to the complexity of the patterns. This is an advantage since it is 
possible to have complex, aperiodic patterns that are highly non-random. 
The Atchafalaya/Terrebonne marsh landscape in Fig. 1 has a total weighted 
fit with a random scene of 0.325, indicating it is fairly highly organized. 

The multiple scale procedures allow a much more sophisticated descrip- 
tion of patterns and of the way models (particularly spatial models) fit the 
data. Ecological modeling cannot progress without procedures that allow 
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better assessment of the relative successes of the models. The procedures 
outlined here are a modest step in that direction. 
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