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1. INTRODUCTION 
 
The Significance of Land-Use Change 
 
Land-use change is a locally pervasive and globally significant ecological trend. Vitousek 
(1994) notes that “three of the well-documented global changes are increasing concentrations 
of carbon dioxide in the atmosphere; alterations in the biochemistry of the global nitrogen 
cycle; and on-going land-use/land-cover change.” In the case of the United States for 
example, 121,000 km2 of non-federal lands were converted to urban developments over the 
15-year interval between 1982 and 1997 (NRCS/USDA 1999). On a global scale and over a 
longer time period, nearly 1.2 million km2 of forest and woodland and 5.6 million km2 of 
grassland and pasture have been converted to other uses during the last three centuries, 
according to Ramankutty and Foley (1999). During this same time period, cropland has 
increased by 12 million km2. Currently, humans have transformed significant portions of the 
Earth’s land surface: 10 to 15 percent is dominated by agricultural rowcrop or urban- industrial 
areas, and 6 to 8 percent is pasture (Vitousek et al. 1997). 
 
The Need for Land-Use Models 
 
These changes in land use have important implications for future changes in the Earth’s 
climate and, in return, great implications for subsequent land-use change. Thus, a critical 
element of the U.S. Global Change Program of the Department of Agriculture’s Forest 
Service (FSGCRP) is to understand the interactions between human activities and natural 
resources. In particular, FSGCRP has identified three critical actions for this program 
element: 
 
1.  In response to global climate change, identify and assess the likely effects of changes in 

forest ecosystem structure and function on human communities and society. 

2.  In order to mitigate and adapt to the effects of global climate change, identify and evaluate 
potential policy options for rural and urban forestry. 

3.  In order to integrate risks associated with global climate change, identify and evaluate 
potential rural and urban forest management activities. 

 
In addition to the action items listed above, significant attention has focused on land-use 
change models. All land-use models need to be built on good science and based on good data. 
Research models should exhibit a high degree of scientific rigor and contribute some original 
theoretical insights or technical innovations. In contrast, originality is less of an issue in 
policy models and sometimes it is more desirable for a model to be considered “tried and 
true.” Also important to policy models is whether the model is transparent, flexible, and 
includes key “policy variables.” This is not to say that research models might not have 
significant policy implications (as is the case with global climate models developed during the 
past decade) nor is it to say that policy models might not make original contributions to the 
science of environmental modeling (Couclelis in press). 
 
Because of the applied mission of the FSGCRP, we propose that the FSGCRP will need to 
focus on land-use models that are relevant to policy. This does not mean that we expect these 



 2 

land-use models to be “answer machines.” Rather, we expect that land-use change models 
will be good enough to be taken seriously in the policy process. King and Kraemer 
(1993:356) list three roles a model must play in a policy context: A model should clarify the 
issues in the debate; it must be able to enforce a discipline of analysis and discourse among 
stakeholders; and it must provide an interesting form of “advice,” primarily in the form of 
what not to do—since a politician is unlikely to simply do what a model suggests. Further, the 
necessary properties for a good policy model have been known since Lee (1973) wrote his 
“requiem” for large-scale models: (1) transparency, (2) robustness, (3) reasonable data needs, 
(4) appropriate spatio-temporal resolution, and (5) inclusion of enough key policy variables to 
allow for likely and significant policy questions to be explored. 
 
Global Change Research and Assessments and Land-Use Change Models 
 
In response to the FSGCRP’s action priorities and associated interest in land-use modeling, 
the Forest Service’s Northern and Southern Global Change Programs decided, through the 
National Integrated Ecosystem Modeling Project (NIEMP:Eastwide), to: 
 
1.  Inventory existing land-use change models through a review of literature, websites, and 

professional contacts. 

2.  Evaluate the theoretical, empirical, and technical linkages within and among land-use 
change models. 

 
The goal of this report is to contribute to the NIEMP:Eastwide modeling framework by 
identifying appropriate models or proposing new modeling requirements and directions for 
estimating spatial and temporal variations in land-cover (vegetation cover) and forest-
management practices (i.e., biomass removal or revegetation through forestry, agriculture, and 
fire, and nutrient inputs through fertilizer practices) in terms of extent and distribution of land-
cover and land-management practices and historic, current, and potential future scenarios of 
land-cover and land-management practices. 
 
Overview of Report 
  
This report is structured in the following way: In the Methods section, we develop a 
framework for comparing different models of land-use change. In particular, we propose that 
models of land-use change be compared in terms of scale and complexity, and how well they 
incorporate space, time, and human decision making (often called HDM). Subsequently, we 
describe the methods we used for identifying the models we reviewed, including how we 
narrowed a list of 250 relevant citations to a set of 136 possible references, and then to a list 
of 19 land-use models that we found to be the most relevant and representative. In the 
Findings section, we summarize the 19 models in terms of scale and complexity as well as 
critical model features, such as whether or not they include time lags and feedback loops. In 
the Discussion section, we discuss model characteristics in terms of spatial and temporal 
complexity and which models incorporate higher levels of human decision making. We then 
examine the social drivers of land-use change and methodological trends exemplified in the 
models we reviewed. Finally, we conclude with some proposals for future directions in land-
use modeling for the NIEMP:Eastwide project. 
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2. METHODS 
  
Background 

 
Models can be categorized in multip le ways. One may focus on the subject matter of the 
models, on modeling techniques or methods used (from simple regression to advanced 
dynamic programming), or on the actual uses of the models. A review of models may focus 
on techniques in conjunction with assessments of model performance for particular criteria, 
such as scale (see, for example, the review of deforestation models by Lambin 1994). In the 
case of FSGCRP, models are evaluated by the following criteria: 

 
1. Identify and assess the likely effects of changes in forest ecosystem structure and function 

on human communities and society. 

2.  Evaluate potential policy options for rural and urban forestry. 

3.  Evaluate potential rural and urban forest management activities. 
 

While this review does indirectly cover these topics, we developed an alternative analytical 
framework. As Veldkamp and Fresco (1996a) note, land use “is determined by the interaction 
in space and time of biophysical factors (constraints) such as soils, climate, topography, etc., 
and human factors like population, technology, economic conditions, etc.” In this review, we 
utilize all four of the factors that Veldkamp and Fresco (1996a) identify in the construction of 
a new analytical framework for categorizing and summarizing models of land-use change 
dynamics. 
 
Framework for Reviewing Human-Environmental Models 
 
To assess land-use change models, we propose a framework based on three critical 
dimensions for categorizing and summarizing models of human-environmental dynamics. 
Time and space are the first two dimensions and provide a common setting in which all 
biophysical and human processes operate. In other words, models of biophysical and/or 
human processes operate in a temporal context, a spatial context, or both. When models 
incorporate human processes, our third dimension—referred to as the human decision-making 
dimension—becomes important as well (Figure 2.1). 

 
 
Figure 2.1 Three-Dimensional Framework for Reviewing Land-Use Change Models  
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In reviewing and comparing land-use change models along these dimensions, there are two 
distinct and important attributes that must be considered: model scale and model complexity. 
We begin with a discussion of scale, since it is a concept that readers will probably find most 
familiar. 
 
Model Scale 
 
Time Step and Duration 
 
Social and ecological processes operate at different scales (Allen and Hoekstra 1992; 
Ehleringer and Field 1993). When we discuss the temporal scale of models, we can talk in 
terms of “time step” and “duration.” Time step referred to here is the smallest temporal unit of 
analysis for change to occur for a specific process in a model. For example, in a model of 
forest dynamics, tree height may change daily. The model would not consider processes 
which act over shorter temporal units. Duration refers to the length of time that the model is 
applied. For instance, change in tree height might be modeled daily over the course of its life 
from seedling to mature tree: a period of 300 years. In this case, time step would be one day, 
and duration would equal 300 years. When the duration of a model is documented, it might be 
reported in several ways. In our example, the model duration might be 109,500 daily time 
steps, a period of 300 years, or calendar range: January 1, 1900, to January 1, 2200. 
 
Spatial Resolution and Extent 
 
When we discuss the spatial scale of models, we employ the terms “resolution” and “extent.” 
Resolution refers to the smallest geographic unit of analysis for the model, such as the size of 
a cell in a raster grid system. In a raster environment grid cells are typically square, arranged 
in a rectilinear grid, and uniform across the modeled area, while a vector representation would 
typically have polygons of varying sizes, although the smallest one may be considered the 
model’s resolution. Extent describes the total geographic area to which the model is applied. 
Consider a model of individual trees in a 50-hectare forested area. In this case, an adequate 
resolution might be a 2x2 meter cell (each cell is 4 m2), and the model extent would equal 50 
hectares. 
 
Scale is a term fraught with confusion because it has contrasting meaning across disciplines, 
notably geography vs. the other social sciences. Geographers define the term scale by the ratio 
of length of a unit distance (scale bar) on a map and the length of that same unit distance on 
the ground in reality (see Greenhood 1973). A large-scale map (e.g., a map of a small town or 
neighborhood at 1:10,000) usually shows more detail but covers less area. Small-scale maps 
usually show less detail but cover more area, such as a map of the USA at 1:12,000,000. 
Other social scientists give opposite meanings to the terms large scale and small scale. To 
them, a large scale generally means it covers a large area, and a small-scale study is a detailed 
study covering a small area. The term scale is also complicated by the change in geographic 
technology as we move from hard-copy, analog data (maps) to digital products (images and 
GIS coverages). 
 
Therefore, to avoid this confusion, we define two other terms (fine scale and broad scale) that 
hopefully have more intuitive meaning. Resolution and extent may be used to describe fine- 
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or broad-scale analyses. Fine-scale models encompass geographically small areas of analysis 
(small extents) and small cell sizes (and thus are large scale, to use the geographer’s term), 
while broad-scale models encompass larger spatial extents of analysis and cells with larger 
sizes (and thus correspond to small-scale maps of geographers). Figure 2.2 provides an 
example of analysis moving from broad scales (A) to increasingly finer scales (E).  
 
 
 

 
Figure 2.2 Hierarchical Spatial Scales in Social-Ecological Contexts 
 
 
For clarity, we use different terms to characterize temporal and spatial scale. Temporal time 
step and duration are analogous to spatial resolution and extent, respectively. Resolution and 
extent are often used to describe both temporal and spatial scales; however, we make these 
distinctions more explicit so that readers will not be confused by which scale we are referring 
to in any particular discussion, and we think these careful distinctions in scale terminology are 
important for further dialog of land-use/land-cover modeling. We propose a similar approach 
in describing scale of human decision making. 
 
Agent and Domain 
 
How does one discuss human decision making in terms of scale? To date, the social sciences 
have not yet described human decision making in terms that are as concise and widely 
accepted for modeling, as time step/duration or resolution/extent. Like time and space, we 
propose an analogous approach which can be used to articulate scales of human decision 
making in similar terms: “agent” and “domain.” 
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Agent refers to the human actor or actors in the model who are making decisions. The 
individual human is the smallest single decision-making agent. However, there are many 
land-use change models that capture decision-making processes at broader scales of social 
organization, such as household, neighborhood, county, state or province, or nation. All of 
these can be considered agents in models. Domain, on the other hand, refers to the broadest 
social organization incorporated in the model. Figure 2.2 illustrates agents (villages) and 
domain (countries of the western hemisphere) for the study of social ecosystems in a 
hierarchical approach. 
 
 

 
 
Examples of hierarchically nested patch structure at three scales in the Central Arizona–Phoenix (CAP; upper panels) and 
Baltimore Ecosystem Study (BES; lower panels) regions. At the broadest scale (A, D), patches in the CAP study area include 
desert (mustard), agriculture (green), and urban (blue); for the BES, patches are rural (green), urban (yellow), and aquatic 
(blue). B: The municipality of Scottsdale, Ariz., showing major areas of urban-residential development (blue, lower portion) 
and undeveloped open lands (tan, developable; brown, dedicated). C: Enlargement of rectangle in B showing additional patch 
structure at a neighborhood scale (green, golf course/park; mustard, undeveloped desert; red, vacant; pink, xeric residential; 
purple, mesic residential; yellow, asphalt). E: Gwynns Falls watershed, Md., with residential (yellow), commercial/industrial 
(red), agricultural (light green), institutional (medium green), and forest (dark green) patch types. F: Enlargement of rectangle 
in E showing additional patch structure at a neighborhood scale (dark green, pervious surface/canopy cover; light green, 
pervious surface/no canopy cover; yellow, impervious surface/canopy cover; red, impervious surface/no canopy cover; blue, 
neighborhood boundaries; black circles, abandoned lots). Panel A courtesy of CAP Historic Land Use Project 
(caplter.asu.edu/elwood.la.asu.edu/grsl/); panels D, E, and F courtesy of USDA Forest Service and BES LTER 
(http://www.ecostudies.org/bes). 

Source: (Grimm et al. 2000) 
 
Figure 2.3 Spatial Representation of a Hierarchical Approach to Modeling Urban 
Systems   
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While the agent captures the concept of who makes decisions, the domain describes the 
specific institutional and geographic context in which the agent acts. Representation of the 
domain can be facilitated in a geographically explicit model through the use of boundary 
maps or GIS layers. 
 
For example, in a model of collaborative watershed management by different forest 
landowners, a multiscale approach would incorporate several levels of linked resolutions and 
domains. For instance, at a broad scale, the domain would be the collaborative arrangement 
among owners (coincident with the watershed boundaries), the agent would be the owners and 
the resolution their associated parcel boundaries (the agent would be the collaborative 
organization). At a finer scale, the owner would be the domain, and the resolution would be 
the management units or forest stands within each parcel (the agent being the individual). In 
this example, we might also model other agents, operating in one of the two domains (e.g., 
other parcels), such as neighboring landowners whose parcel boundaries would also be 
depicted by the same domain map. Institutionally, agents may overlap spatially. For example, 
a landowner might receive financial subsidies for planting trees in riparian buffer areas from 
an agent of the Forest Service; receive extension advice about wildlife habitat and 
management from an agent of the Fish & Wildlife Service; and have her lands inspected for 
non-point-source runoff by an agent from the Environmental Protection Agency. 
 
In our watershed example, also consider the role of other types of forest landowners. For 
instance, the watershed might include a state forester (agent = state) who writes the forest 
management plan for the state forest (domain = state boundary) and prescribes how often 
trees (resolution) in different forest stands (extent) should be harvested (time step) for a 
specific period of time (duration) within state-owned property. In this case, the human 
decision-making component of the model might include the behavior of the forester within the 
organizational context of the state- level natural resource agency.  
 
Model Complexity 

 
A second important and distinct attribute of human-environmental models is the approach 
used to address the complexity of time, space, and human decision making found in “real 
world” situations. We propose that the temporal, spatial, or HDM complexity of any model 
can each be represented with an index, where low values signify simple components and high 
values signify more complex behaviors and interactions. Consider an index for temporal 
complexity of models: A model that is low in temporal complexity may be a model that has 
one time step, or possibly a few, and a short duration. A model with a mid-range value for 
temporal complexity is one which may use many time steps and a longer duration. Models 
with a high value for temporal complexity are ones that may incorporate a la rge number of 
time steps, a long duration, and the capacity to handle time lags or feedback responses among 
variables, or have different time steps for different submodels. 
 
Temporal Complexity 
 
There are important interactions possible between temporal complexity and human decision 
making. For instance, some human decisions are made in very short time intervals. The 
decision of which road to take on the way to work is made daily (even though many 
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individuals routinize this decision and do not self-consciously examine this decision each 
day). Other decisions are made over longer time periods, such as once in a single growing 
season: for instance, which annual crop to plant in a region that has only one growing season 
per year. Still other decisions may be made for several years at a time, such as investments 
made in tractors or harvesting equipment. When the domain of a decision maker changes, this 
change may also affect the temporal dimension of decisions. For example, a forest landowner 
might make a decision about cutting trees on his or her land each year. If this land were 
transferred to a state or national forest, the foresters may harvest only once every ten years. 
 
The decision-making time horizon perceived by an actor could also be divided into a short-
run decision-making period, and a long-run time horizon. Thus, to extend the forest example, 
if a certain tree species covering a 100-hectare area matures in 100 years, there is a need for a 
harvest plan that incorporates both the maturity period and the extent of forest land that is 
available. In other words, at least one level of actor needs to have an awareness of both short  
and long time horizons and be able to communicate with other actors operating at shorter time 
horizons. Institutional memory and culture can often play that role.  
 
Spatial Complexity 
 
An index of spatial complexity would represent the extent to which a model is “spatially 
explicit.” There are two general types of spatially explicit models: spatially representative and 
spatially interactive. A model that is spatially representative can incorporate, produce, or 
display data in at least two and sometimes three spatial dimensions, such as northing, easting, 
and elevation, but cannot model topological relationships and interactions among geographic 
features (cells, points, lines, or polygons). In these cases, the value of each cell may change or 
remain the same from one point in time to another, but the logic that makes the change is not 
dependent on neighboring cells. In contrast, a spatially interactive model is one that explicitly 
defines spatial relationships and their interactions (e.g., among neighboring units) over time. 
A model with a low value for spatial complexity would be one with little or no capacity to 
represent data spatially; a model with a medium value for spatial complexity would be able to 
fully represent data spatially; and a model with a high value would be spatially interactive in 
two or three dimensions. 
 
The human decision-making sections of models vary in terms of their theoretical precursors 
and may be simply linked deterministically to a set of socioeconomic or biological drivers, or 
they may be based on some game theoretic or economic models. Table 2.1 below presents the 
equivalence among the three parameters, space, time, and human decision making, based on 
the earlier discussion about resolution and extent.  
 
Table 2.1 Resolution and Extent in the Three Dimensions of Space, Time, and Human 
Decision Making 

 Space Time Human Decision Making 
Resolution or 
equivale nt 

Resolution: smallest 
spatial unit of analysis 

Time step: shortest temporal 
unit of analysis 

Agent and decision-making 
time horizon 

Extent or 
equivalent 

Extent: total relevant 
geographical area 

Duration: total relevant 
period of time 

Jurisdictional domain and 
decision-making time 
horizon 
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Human Decision-Making Complexity 
 
Given the major impact of human actions on land use and land cover, it is essential that 
models of these processes begin to illuminate the factors that affect human decision making. 
Many theoretical traditions inform the theories that researchers use when modeling decision 
making. As discussed below, some researchers are strongly influenced by deterministic 
theories of decision making and do not attempt to understand how external factors affect the 
internal calculation of benefits and costs: the “dos” and “don’ts” that affect how individuals 
make decisions. Others, who are drawing on game theoretical or other theories of reasoning 
processes, make explicit choices to model individual (or collective) decisions as the result of 
various factors which combine to affect the processes and outcomes of human reasoning. 
 
What is an appropriate index to characterize complexity in human decision making? We use 
the term HDM complexity to describe the capacity of a human-environmental model to handle 
human decision-making processes. In Table 2.2, we present a classification scheme for 
estimating HDM complexity using an index with values from one to six. A model with a low 
value (1) for human decision-making complexity is a model that does not include any human 
decision making. In contrast, a model with a high value (5 or 6) is a model that includes one 
or more types of actors explicitly or can handle multiple agents interacting across domains 
like those shown in figures 2.2 and 2.3. In essence, figures 2.2 and 2.3 represent a hierarchical 
approach to social systems where lower-level agents interact to generate higher-level 
behaviors and where higher- level domains affect the behavior of lower- level agents (Grimm 
et al. 2000; Vogt et al. in press; Grove et al. 2000).  
 
 
Table 2.2 Six Levels of Human Decision-Making Complexity 

Level  
1 No human decision making -- only biophysical variables in the model 
2 Human decision making assumed to be determinately related to population size, 

change, or density 
3 Human decision making seen as a probability function depending on 

socioeconomic and/or biophysical variables beyond population variables 
without feedback from the environment to the choice function 

4 Human decision making seen as a probability function depending on 
socioeconomic and/or biophysical variables beyond population variables with 
feedback from the environment to the choice function 

5 One type of agent whose decisions are overtly modeled in regard to choices 
made about variables that affect other processes and outcomes 

6 Multiple types of agents whose decisions are overtly modeled in regard to 
choices made about variables that affect other processes and outcomes; the 
model may also be able to handle changes in the shape of domains as time steps 
are processed or interaction between decision-making agents at multiple human 
decision-making scales 
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Application of the Framework 
 
The three dimensions of land-use change models (space, time, and human decision making) 
and two distinct attributes for each dimension (scale and complexity) provide the foundation 
for comparing and reviewing land-use change models. Figure 2.4 is an example of the 
framework with the three dimensions represented together with a few general models, 
including some types that were reviewed in this study. Various modeling approaches would 
vary in their placement along these three dimensions of complexity since the location of a 
land-use change model reflects its technical structure as well as its sophistication and 
application. 
 

 
 
Figure 2.4 A Three-Dimensional Framework for Reviewing and Assessing Land-Use 
Change Models 
 
 
The analysis that follows attempts to characterize existing land-use models on each modeling 
dimension. Models are assigned a level in the human decision-making dimension, and their 
ability in the spatial and temporal dimensions are estimated as well. In addition, we document 
and compare models across several other factors including: the model type, dependent or 
explanatory variables if any, modules, and independent variables. 
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Identifying List of Models 
 
Any project that purports to provide an overview of the literature in an area needs to provide 
the reader with some information regarding how choices were made regarding inclusion in the 
set to be reviewed. In our case, we undertook literature and web searches as well as 
consultations with experts. 
  
Literature and Web Searches 
 
We began our search for appropriate land-use/land-cover change models by looking at a 
variety of databases. Key word searches using land cover, land use, change, landscape, land*, 
and model*, where * was a wildcard, generated a large volume of potential articles. The 
databases that proved to be most productive were Academic Search Elite and Web of Science. 
Both databases provide abstract and full-text searches. Other databases consulted, but not 
used as extensively, include Carl Uncover, Worldcat, and IUCAT (the database for Indiana 
University’s library collections). We also searched for information on various web search 
engines. Some of the appropriate web sites we found included bibliographies with relevant 
citations. 
 
All of these searches yielded a total of 250 articles, which were compiled into bibliographic 
lists. The lists were then examined by looking at titles, key words, and abstracts to identify the 
articles that appeared relevant for this review. This preliminary examination yielded a master 
bibliography of 136 articles. They were chosen because they either assessed land-use models 
directly or they discussed approaches and relevance of models for land-use and land-cover 
change. Articles in the master bibliography are included in the References section. We then 
checked the bibliographies of these articles for other relevant works. Web of Science also 
allowed us to search for articles cited in other articles. 
 
Twelve models were selected by reading articles identified through this process.  The basic 
selection criteria were relevance and representativeness. A model was relevant if it dealt with 
land-use issues directly.  Thus, models that focused largely on water quality, wildlife 
management, or urban transportation systems were not reviewed. The other seven models 
were chosen from recommendations received from colleagues and experts, especially the U.S. 
Forest Service. These additional recommended models were also reviewed for relevance and 
representativeness. 
 
The criteria for representativeness included the following:  

1. Emphasis on including diverse types of models.  Model type was considered in 
choosing articles for review.  If several models of a particular type had already been 
reviewed, other applications of  that model type were excluded in favor of  different 
model types.  For example, our search uncovered multiple spatial simulation models, 
several of which were reviewed.    

2. If there were numerous papers on one model (e.g., six on the NELUP model), only the 
more representative two or three were reviewed. 

3. If there were several papers by one author (e.g., Wear) covering two or more models, 
a subset that looked most relevant was reviewed. 
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Survey of Experts 
 
Expert opinion helped locate some of the models we reviewed. In addition to our literature 
and web searches, we consulted with the program managers for the USFS Southern and 
Northern Global Change Programs to identify other significant land-use change models. In 
addition to the models they identified, the Program Managers also identified science contacts 
who were working in or familiar with the field of land-use modeling. We followed up with 
these contacts in order to (1) identify any additional relevant models that we had not identified 
through our literature and web searches, and (2) evaluate whether or not our literature and 
web searches were producing a comprehensive list. The evaluation was accomplished by 
comparing our “contacts’ lists” with the land-use model list we had developed through our 
literature and web searches. Over the course of three months, this follow-up activity provided 
fewer and fewer “new models,” and we shifted our efforts to the documentation and analysis 
of the models we had already identified. 
 
By the end of the exercise, we had covered a range of model types. They included Markov 
models, logistic function models, regression models, econometric models, dynamic systems 
models, spatial simulation models, linear planning models, non-linear mathematical planning 
models, mechanistic GIS models, and cellular automata models.  For further discussion, 
please refer to the subsection on methodological trends in Section 4.1  
 
 
3. FINDINGS 
 
We reviewed 19 land-use models for their spatial, temporal, and human decision-making 
characteristics using the framework we discussed in the previous section. 
 
Models Surveyed 
1. General Ecosystem Model (GEM) (Fitz et al. 1996) 
2. Patuxent Landscape Model (PLM) (Voinov et al. 1999a) 
3. CLUE Model (Conversion of Land Use and Its Effects) (Veldkamp and Fresco 1996a) 
4. CLUE-CR (Conversion of Land Use and Its Effects – Costa Rica) (Veldkamp and Fresco 1996b) 
5. Area base model (Hardie and Parks 1997) 
6. Univariate spatial models (Mertens and Lambin 1997) 
7. Econometric (multinomial logit) model (Chomitz and Gray 1996) 
8. Spatial dynamic model (Gilruth et al. 1995) 
9. Spatial Markov model (Wood et al. 1997) 

10. CUF (California Urban Futures) (Landis 1995, Landis et al. 1998) 
11. LUCAS (Land Use Change Analysis System) (Berry et al. 1996) 
12. Simple log weights (Wear et al. 1998) 
13. Logit model (Wear et al. 1999) 
14. Dynamic model (Swallow et al. 1997) 

                                                                 
1 We have tried to be as thorough as possible in our search for existing land-use/land-cover change models (as of 
May 2000). However, we certainly would like to know of any important models we may have missed in this 
review. For this reason, we will be posting the model references to a new web-based database we call the “Open 
Research System” (at http://www.open-research.org). If you have a reference to a model we missed, we 
encourage you to visit this site, register with the system, and submit a reference to a model publication using the 
submit publication form. 
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15. NELUP (Natural Environment Research Council [NERC]–Economic and Social Research 
Council [ESRC]: NERC/ESRC Land Use Programme [NELUP]) (O’Callaghan 1995) 

16. NELUP - Extension, (Oglethorpe and O’Callaghan 1995) 
17. FASOM (Forest and Agriculture Sector Optimization Model) (Adams et al. 1996) 
18. CURBA (California Urban and Biodiversity Analysis Model) (Landis et al. 1998) 
19. Cellular automata model (Clarke et al. 1998, Kirtland et al. 2000) 
  
We summarize some key variations in modeling approaches in Table 3.1. All the models were 
spatially representative. Of the 19 models, 15 (79 percent) could be classified as spatially 
interactive rather than merely representative. The same number of models were modular. 
Models that were not modular were conceptually simple and/or included few elements. 
Interestingly, a majority of the models did not indicate if they were spatially explicit. Another 
observation was the level of temporal complexity: some models include multiple time steps, 
time lags, and negative or positive feedback loops.  
 
 
Table 3.1 Summary Statistics of Model Assessment 

 
Review Criteria  # (%) of Models Model #s 
Spatial interaction 15 (79%) All but 5,9,12,13 
Temporal complexity  6 (31%) 1,2,3,4,15,16 
Human Decision Making – Level 1  3 1,6,9 
Human Decision Making – Level 2  2 12,19 
Human Decision Making – Level 3  7 5,7,10,11,13,17,18 
Human Decision Making – Level 4  4 2,3,4,8 
Human Decision Making – Level 5  2 14,16 
Human Decision Making – Level 6  1 15 

 
 
In tables 3.2, 3.3, and 3.4, we provide a summary and assessment of land-use change models. 
Table 3.2 gives basic information about each model: type, modules, what the model explains 
(dependent variables), independent variables, and the strengths and weaknesses of each 
model. Table 3.3 describes the spatial characteristics of each model: spatial representation or 
interaction, resolution, and extent. Table 3.4 details the temporal characteristics of each 
model: time step and duration as well as the human decision-making element’s complexity, 
jurisdictional domain, and temporal range of decision making. A list of definitions is provided 
in the glossary at the end of this report. We discuss some of our findings in Section 4.
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Table 3.2 In-Depth Overview of Models Reviewed 
 
Model Name/ 
Citation 

Model Type Components/  
Modules 

What It Explains / 
Dependent Variable 

Other Variables Strengths Weaknesses 

Name of model, 
if any, and 
citation 

Technical, 
descriptive 
terms 

Different models, or 
submodels or modules, 
that work together 

 Description of other sets of 
variables in the model 

  

1. General 
Ecosystem 
Model (GEM) 
(Fitz et al. 1996) 

Dynamic 
systems model 

14 Sectors (modules), e.g. 
Hydrology 
Macrophytes 
Algae 
Nutrients  
Fire 
Dead organic matter 
Separate database for 

each sector 

Captures feedback 
among abiotic and 
biotic ecosystem 
components  

103 input parameters, in a set of 
linked databases, representing the 
modules, e.g., 
Hydrology 
Macrophytes 
Algae 
Nutrients  
Fire 
Dead organic matter 

Spatially dependent model, with 
feedback between units and 
across time  

Includes many sectors  
Modular, can add or drop 

sectors  
Can adapt resolution, extent, 

and time step to match the 
process being modeled 

Limited human decision 
making 

2. Patuxent 
Landscape 
Model (PLM) 
(Voinov et al. 
1999a) 

Dynamic 
systems model 

Based on the GEM model 
(#1, above), includes the 
following modules, with 
some modification: 
1) Hydrology  
2) Nutrients   
3) Macrophytes  
4) Economic model 

Predicts fundamental 
ecological processes 
and land-use patterns 
at the watershed level 

In addition to the GEM variables, it 
-adds dynamics in carbon-to-nutrient 

ratios  
-introduces differences between 

evergreen and deciduous plant 
communities  

-introduces impact of land 
management through fertilizing, 
planting, and harvesting of crops 
and trees  

In addition to the strengths of 
the GEM, the PLM incorporates 
several other variables that add 
to its applicability to assess the 
impacts of land management 
and best management 
practices  

Limited consideration of 
institutional factors  
 
 
 
 
 
 
 
 

3. CLUE Model 
(Conversion of 
Land Use and 
Its Effects) 
(Veldkamp and 
Fresco 1996a) 

Discrete, finite 
state model 

1) Regional biophysical 
module 

2) Regional land-use 
objectives module 

3) Local land-use 
allocation module 

Predicts land cover in 
the future 

Biophysical drivers 
Land suitability for crops 
Temperature/Precipitation 
Effects of past land use (may explain 

both biophysical degradation and 
improvement of land, mainly for 
crops) 

Impact of pests, weeds, diseases  
 
Human Drivers 
Population size and density 
Technology level 
Level of affluence 
Political Structures (through 

command and control, or fiscal 
mechanisms) 

Economic conditions  
Attitudes and values  

Covers a wide range of 
biophysical and human drivers 
at differing temporal and spatial 
scales  

Limited consideration of 
institutional and 
economic variables  
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Table 3.2 In-Depth Overview of Models Reviewed 
 
Model Name/ 
Citation 

Model Type Components/  
Modules 

What It Explains / 
Dependent Variable 

Other Variables Strengths Weaknesses 

4. CLUE-CR 
(Conversion of 
Land Use and 
Its Effects – 
Costa Rica) 
(Veldkamp and 
Fresco 1996b) 

Discrete finite 
state model 

CLUE-CR an application 
of CLUE (#3, above) 

Same modules  

Simulates top-down and 
bottom-up effects of 
land-use change in 
Costa Rica 

Same as CLUE (#3, above) Multiple scales - local, regional, 
and national 

Uses the outcome of a nested 
analysis, a set of 6x5 scale-
dependent land-use/land-
cover linear regressions as 
model input, which is 
reproducible, unlike a specific 
calibration exercise 

Authors acknowledge 
limited consideration of 
institutional and 
economic factors  
 

5. Area base 
model  
(Hardie and 
Parks 1997) 

Area base 
model, using a 
modified 
multinomial 
logit model 

Single module Predicts land-use 
proportions at county 
level 

Land base - classified as farmland, 
forest, and urban/other uses  

County average farm revenue 
Crop costs per acre 
Standing timber prices  
Timber production costs  
Land quality (agricultural suitability) 
Population per acre 
Average per capita personal income 
Average age of farm owners  
Irrigation 

Uses publicly available data 
Incorporates economic (rent), 

and landowner characteristics 
(age, income) and population 
density 

Incorporates the impact of land 
heterogeneity 

Can account for sampling error 
in the county-level land-use 
proportions and for 
measurement error incurred 
by the use of county averages 

An extended dataset 
over longer time 
periods would improve 
the model's predictions  

Long-term forecasts run 
the risk of facing an 
increasing probability 
of structural change, 
calling for revised 
procedures  

6. Mertens and 
Lambin 1997 

Univariate 
spatial models  

Multiple univariate 
models, based on 
deforestation pattern in 
study area 

1) Total study area 
2) Corridor pattern 
3) Island pattern 
4) Diffuse pattern 

Each model runs with all 
four independent 
variables separately 

Frequency of 
deforestation 

All four models run with all four 
independent variables:  

1) Road proximity  
2) Town proximity  
3) Forest-cover fragmentation 
4) Proximity to a forest/non-forest 

edge 

Presents a strategy for 
modeling deforestation by 
proposing a typology of 
deforestation patterns  

In all cases, a single variable 
model explains most of the 
variability in deforestation 

Does not model 
interaction between 
factors 
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Table 3.2 In-Depth Overview of Models Reviewed 
 
Model Name/ 
Citation 

Model Type Components/  
Modules 

What It Explains / 
Dependent Variable 

Other Variables Strengths Weaknesses 

7. Chomitz and 
Gray 1996 

Econometric 
(multinomial 
logit) model 

Single module, with 
multiple equations  

Predicts land use, 
aggregated in three 
classes: 

Natural vegetation 
Semi-subsistence 

agriculture 
Commercial farming 

Soil nitrogen  
Available phosphorus  
Slope  
Ph  
Wetness  
Flood hazard  
Rainfall  
National land  
Forest reserve  
Distance to markets, based on 

impedance levels (relative costs of 
transport) 

Soil fertility 

Used spatially disaggregated 
information to calculate an 
integrated distance measure 
based on terrain and 
presence of roads  

Also, strong theoretical 
underpinning of Von Thünen’s 
model 

Strong assumptions that 
can be relaxed by 
alternate specifications  

Does not explicitly 
incorporate prices  

8. Gilruth et al. 
1995 

Spatial 
dynamic 
model 

Several subroutines for 
different tasks  

Predicts sites used for 
shifting cultivation in 
terms of topography 
and proximity to 
population centers  

Site productivity (# of fallow years)  
Ease of clearing 
Erosion hazard  
Site proximity  
Population, as function of village size 

Replicable 
Tries to mimic expansion of 

cultivation over time 

Long gap between data 
collection; does not 
include impact of land-
quality and 
socioeconomic variables  

9. Wood et al. 
1997 

Spatial Markov 
model 

Temporal and spatial 
land-use change Markov 
models  

Land-use change Models under development Investigating Markov variations, 
which relax strict assumptions 
associated with the Markov 
approach 

Explicitly considers both spatial 
and temporal change 

Not strictly a weakness, 
this is a work in progress 
and, hence, has not yet 
included HDM factors 

10. CUF 
(California 
Urban Futures) 
(Landis 1995, 
Landis et al. 
1998) 

Spatial 
simulation 
 

Population growth 
submodel 

Spatial database, various 
layers merged to project 
Developable Land Units 
(DLUs) 

Spatial Allocation 
submodel 

Annexation-incorporation 
submodel  

Explains land use in a 
metropolitan setting, in 
terms of demand 
(population growth) and 
supply of land 
(underdeveloped land 
available for 
redevelopment)  

Population growth, DLUs, and 
intermediate map layers with: 

Housing prices  
Zoning 
Slope 
Wetlands  
Distance to city center 
Distance to freeway or BART station 
Distance to sphere-of-influence 

boundaries 

Underlying theory of parcel 
allocation by population 
growth projections and price, 
and incorporation of 
incentives for intermediaries -
developers, a great strength 

Large-scale GIS map layers 
with detailed information for 
each individual parcel in 14 
counties provide high realism 
and precision 

Compresses long period 
(20 years) in a single 
model run 

Has no feedback of 
mismatch between 
demand and supply on 
price of developable 
land/housing stock 

Does not incorporate 
impact of interest rates, 
economic growth rates, 
etc. 
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Table 3.2 In-Depth Overview of Models Reviewed 
 
Model Name/ 
Citation 

Model Type Components/  
Modules 

What It Explains / 
Dependent Variable 

Other Variables Strengths Weaknesses 

11. LUCAS 
(Land-Use 
Change 
Analysis 
System) (Berry 
et al. 1996) 

Spatial 
stochastic 
model 

1) Socioeconomic module 
2) Landscape change 

module  
3) Impacts module 

Transition probability 
matrix (of change in 
land cover) 

Module 2 simulates the 
landscape change 

Module 3 assesses the 
impact on species 
habitat 

Module 1 variables: 
Land cover type (vegetation) 
Slope 
Aspect 
Elevation 
Land ownership 
Population Density 
Distance to nearest road 
Distance to nearest economic market 

center 
Age of trees 
 
Module 2: Transition matrix and same 

as Module 1, to produce land-cover 
maps  

 
Module 3: Utilizes land-cover maps  

Model shows process (the 
TPM), output (new land-use 
map), and impact (on species 
habitat), all in one, which is 
rare and commendable 

Is modular and uses low-cost 
open source GIS software 
(GRASS) 

LUCAS tended to 
fragment the 
landscape for low-
proportion land uses, 
due to the pixel-based 
independent-grid 
method 

Patch-based simulation 
would cause less 
fragmentation, but 
patch definition 
requirements often 
lead to their 
degeneration into one-
cell patches  

12. Wear et al. 
1998 

Simple log 
weights 

Single module Predicts area of 
timberland adjusted for 
population density 

Raw timberland 
Population density (per county) 

Simple and powerful indicator 
of forest sus tainability, of the 
impact of human settlement 
decisions on one forest function 
--its role as timberland 

Limited consideration of 
human decision making 
and other forest goods 
and services  

13. Wear et al. 
1999 

Logit model Single module Predicts the probability 
of land being classified 
as potential timberland 

Population per square mile 
Site index 
Slope 
Two dummy variables defining  
 ease of access to a site  

Includes several biophysical 
variables  

Includes only basic 
human choice variables, 
e.g., population density 

14. Swallow et 
al. 1997 

Dynamic 
model 

Three components: 
1) Timber model 
2) Forage production 

function 
3) Non-timber benefit 

function 

Simulates an optimal 
harvest sequence 

Present values of alternative possible 
states of the forest, using the three 
model components  

The long time horizon, and the 
annual checking of present 
values under alternate possible 
states of the forest makes it a 
useful forest management tool 
for maximizing multiple-use 
values 

Authors note that the 
optimal management 
pattern on any individual 
stand or set of stands 
requires specific analysis 
rather than dependence 
on rules of thumb 
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Table 3.2 In-Depth Overview of Models Reviewed 
 
Model Name/ 
Citation 

Model Type Components/  
Modules 

What It Explains / 
Dependent Variable 

Other Variables Strengths Weaknesses 

15. NELUP 
(O’Callaghan 
1995) 

General 
systems 
framework 

Economic 
component 
uses a 
recursive 
linear 
planning 
model 

1) Regional agricultural 
economic model of land 
use at catchment levels  

2) Hydrological model 
3) Ecological model 

Explains patterns of 
agricultural and forestry 
land use under different 
scenarios  

Variable types include: 
Soil characteristics  
Meteorological data 
Parish census data 
Input/output farm data 
Species  
Land cover 

Uses land cover to link market 
forces, hydrology, and 
ecology in a biophysical 
model of land use 

Uses mostly publicly available 
data, especially in the 
economic model, which 
greatly aids transferability 

Limited institutional 
variables  

16. NELUP - 
Extension  
(Oglethorpe 
and 
O'Callaghan 
1995) 

Linear 
planning 
model at farm 
level 

Four submodels for farm 
types  
1) Lowland and mainly 

arable 
2) Lowland mainly grazing 

livestock  
3) Dairy  
4) Hill 

Maximizes income 
Profit is the dependent 

variable. 

Level of farm activity 
Gross margin per unit of farm activity 
Fixed resources, represented as 

physical constraints 

Detailed farm -level model, with 
extensive calibration 

Farmers shown as rational 
profit-maximizing beings, but 
also includes the impact of 
off-farm income 

Limited institutional 
variables  

17. FASOM 
(Forest and 
Agriculture 
Sector 
Optimization 
Model) 
(Adams et al. 
1996) 

Dynamic, non-
linear, price 
endogenous, 
mathematical 
programming 
model 

Three submodels : 
1) Forest sector - 

transition timber supply 
model 

2) Agricultural sector that 
is optimized with the 
forest sector submodel 

3) Carbon sector for 
terrestrial carbon 

Allocation of land in the 
forest and agricultural 
sectors  

Objective function 
maximizes the 
discounted economic 
welfare of producers 
and consumers in the 
U.S. agriculture and 
forest sectors over a 
nine-decade time 
horizon 

Forest sector variable groups:  
Demand functions for forest products  
Timberland area, age-class dynamics  
Production technology and costs 
  
Agricultural sector variables:  
Water 
Grazing 
Labor 
Agricultural demand 
Imports/exports 
 
Carbon sector variables:  
Tree and ecosystem carbon 
 
Additional variables:  
Land transfer variables  

Incorporates both agriculture 
and forest land uses  

Price of products and land is 
endogenous  

The model is dynamic, thus 
changes in one decade 
influence land-use change in 
the next decade 

Good for long-term policy 
impacts  

Broad scale means that 
land capability variations 
within regions are not 
taken into account 
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Table 3.2 In-Depth Overview of Models Reviewed 
 
Model Name/ 
Citation 

Model Type Components/  
Modules 

What It Explains / 
Dependent Variable 

Other Variables Strengths Weaknesses 

18. CURBA 
(California 
Urban and 
Biodiversity 
Analysis 
Model) (Landis 
et al. 1998) 

Overlay of GIS 
layers with 
statistical 
urban growth 
projections  

1) Statistical model of 
urban growth 

2) Policy simulation and 
evaluation model 

3) Map and data layers of 
habitat types, 
biodiversity, and other 
natural factors  

The interaction among 
the probabilities of 
urbanization, its 
interaction with habitat 
type and extent, and, 
impacts of policy 
changes on the two 

Slope and elevation 
Location and types of roads  
Hydrographic features  
Jurisdictional boundaries  
Wetlands and flood zones  
Jurisdictional spheres of influence 
Various socioeconomic data 
Local growth policies  
Job growth 
Habitat type and extent maps  

Increases understanding of 
factors behind recent 
urbanization patterns  

Allows projection of future 
urban growth patterns, and of 
the impact of projected urban 
growth on habitat integrity 
and quality 

Human decision making 
not explicitly 
considered 

Further, errors are likely 
from misclassification 
of data at grid level or 
misalignment of map 
feature boundaries  

Errors also possible from 
limitations in explaining 
historical urban growth 
patterns  

19. Clarke et al. 
1998, Kirtland 
et al. 2000 
 
  

Cellular 
automata 
model 

Simulation module 
consists of complex 
rules  

Digital dataset of 
biophysical and human 
factors 

 

Change in urban areas 
over time 
 
 
 
 

Extent of urban areas  
Elevation 
Slope 
Roads  

Allows each cell to act 
independently according to 
rules, analogous to city 
expansion as a result of 
hundreds of small decisions  

Fine-scale data, registered to a 
30 m UTM grid 

Does not unpack human 
decisions that lead to 
spread of built areas  

Does not yet include 
biological factors  
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Table 3.3 Spatial Characteristics of Each Model 
 

Spatial Complexity Spatial Scale Model 

Representation Interaction Resolution Extent 

 Static. Represents 
data on a map and 
may portray variation 
as well 

Dynamic. Includes effect of 
variation on processes as well 
as feedback between 
neighboring units and location of 
parcel within the larger scale 

Rastor or vector. The area of the basic unit 
of analysis. A grid if rastor.  

Location and total area covered by 
model, e.g., grid area x # of grids 
 

1. General Ecosystem 
model (GEM) 
(Fitz et al. 1996) 

Yes Yes 
Feedback between units  

Raster 
Entire model runs for each spatial unit 
Trial unit of 1 sq. km can vary 

A trial simulation for the Florida Everglades/ 
Big Cypress area 

Approx. 10,000 acres  

2. Patuxent Landscape 
Model (PLM) 
(Voinov et al. 1999a) 

Yes Yes 
Feedback between units  

Raster 
Hydrological model: 200 m and 1 km  

58905 cells (200 m) or 2352 cells (1 sq. km) 
The Patuxent watershed (Maryland, USA), 

covering 2353 sq. km 

3. CLUE Model 
(Conversion of Land 
Use and Its Effects) 
(Veldkamp and Fresco 
1996a) 

Yes Yes 
Attributes of one grid unit affect 

land-use outcomes in another 
unit. 

Raster 
In the generic CLUE model, size determined by 

extent divided by grid scale neutral matrix of 
23x23 cells  

Can be scaled up or down 

See next model, CLUE-CR, for an 
application 

4. CLUE-CR 
(Conversion of Land 
Use and Its Effects – 
Costa Rica) 
(Veldkamp and Fresco 
1996b) 

Yes As above Raster 
Run at local, regional, and national levels  
One grid unit = 0.1 degrees or 6 minutes  

(= 7.5x7.5 km = 56.25 sq. km at the equator) 

Multiple extents that correspond to different 
modules  

National: Costa Rica, 933 aggregate grid 
units  

Regional: 16 to 36 aggregate grids  
Local: 1 grid unit 

5. Area Base Model 
(Hardie and Parks 
1997) 

Yes 
Relies on land 
heterogeneity to 
explain the coexistence 
of several land uses 
and the shift between 
them 

No Neither raster nor vector 
Data averaged at county level 
Average county area = 315,497 acres  

Five southeastern U.S. states - Florida, 
Georgia, South Carolina, North Carolina, 
Virginia 

= 147,423,760 acres  
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Table 3.3 Spatial Characteristics of Each Model 
 

Spatial Complexity Spatial Scale Model 

Representation Interaction Resolution Extent 

6. Mertens and Lambin 
1997 

Yes Yes 
Status of pixel is dependent on 

other spatial factors 

Raster 
80 m x 80 m (Landsat Pixel size) 

Southeast Cameroon. Area not specified, 
but is the overlap between two Landsat 
images  

7. Chomitz and Gray 
1996 

Yes Yes 
Spatial variation in several 

variables, influences other 
variables, e.g., wetness and roads 
and slope to assess impedance to 
markets 

Uses vector data only Central and South Belize, approx. 2/3 of the 
total area of 22,000 sq. km 

8. Gilruth et al. 1995 Yes Dynamic, spatially explicit model Raster 
100 m x 100 m cells, in a 60x60 cell grid, 

resampled from 120x120 grid 

6 sq. km area, representative of a 60 sq. km 
Diafore watershed, in the Tougue district, 
Guinea 

9. Wood et al. 1997 Yes No Raster 
Cell size of 80 m (x 80m) 

One department, Velingara, in south-central 
Senegal 

10. CUF (California 
Urban Futures) 
(Landis 1995, 
Landis et al. 1998) 

Yes Yes Vector. 
Individual sites, with property boundaries  
Model run at city and county levels 

Nine counties of the San Francisco Bay area 
(Alameda, Contra Costa, Marin, Napa, San 
Francisco, San Mateo, Santa Clara, Solano, 
Sonoma) and five adjacent ones, (Santa 
Cruz, Sacramento, San Joaquin, Stanislaus, 
Yolo) 

11. LUCAS (Land-Use 
Change Analysis 
System)  
(Berry et al. 1996) 

Yes Tentatively Yes, if the transition 
probability for one pixel, affected by 
factors in another pixel  

Raster 
Each pixel in this example represents  

90 m x 90 m, and has an attached table with 
unique attributes  

Two watersheds, the Little Tennessee River 
basin in North Carolina and the Hoh River 
watershed on the Olympic Peninsula in 
Washington State 

12. Wear et al. 1998 Yes 
Displays variations 

among counties  

No Neither 
County-level aggregate data 

Southern states of the USA 

13. Wear et al. 1999 Yes 
Variations among 

counties  

No Vector. 
Fine scale, forested plots in private ownership  

Five-county region around Charlottesville, 
Virginia - Albermarle, Fluvanna, Louisa, 
Greene, and Nelson 

14. Swallow et al. 
1997 

Yes Yes 
Takes interactions among stands 

into account 

Still conceptual, neither raster nor vector 
Model simulates multi-stand dynamics. 
Stands can vary in size 

Multiple stands  
Case study uses a simplified ecosystem of 

two stands. 
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Table 3.3 Spatial Characteristics of Each Model 
 

Spatial Complexity Spatial Scale Model 

Representation Interaction Resolution Extent 

15. NELUP 
(O’Callaghan 1995) 

Yes 
Incorporates variation 

Yes 
Variation affects neighboring units  

Raster 
Ecological model: 1 sq. km units  
The main economic model treats the whole 

catchment as  a macro farm, but accounts for 
land-use variation using the land-cover data 

River Tyne catchment in Northern England - 
3000 sq. km  

16. NELUP - 
Extension 
(Oglethorpe and 
O'Callaghan 1995) 

Yes 
Developed four 

submodels to capture 
variation 

Yes 
Not in submodel itself, but in the 

total NELUP model 

Neither 
Farm level 

Multiple farms 
Trial runs for 10 and 14 farms, and will cover 

the entire catchment 

17. FASOM (Forest 
and Agriculture Sector 
Optimization Model) 
(Adams et al. 1996) 

Yes 
Divides USA in 11 

regions that may be 
represented on a 
map 

Yes. 
Model at subcontinental scale, and 

changes in inventory and prices in 
one region affect prices and 
inventory in other regions  

Vector 
Demand: one national region 
Supply: subnational region 

The entire USA, except, Hawaii and Alaska  

18. CURBA (California 
Urban and Biodiversity 
Analysis Model) 
(Landis et al. 1998) 

Yes Yes, as impact of changes in one 
cell - in terms of highway, growth 
policies, population and job growth, 
influences probability of 
urbanization of surrounding cells  

Raster 
One-hectare grid cell (100x100 m) 

County level in California 
Pilot study for Santa Cruz County 
Model datasets developed for nine counties  

19. Clarke et al. 1998, 
Kirtland et al. 2000 
 

Yes Yes 
Each cell acts independently, but 

according to rules that take spatial 
properties of neighboring 
locations into account 

Raster 
Converted vector data, e.g., roads to raster 
Base data registered at 30 m x 30 m 
Model run at 1 sq. km level 

Initial run for 256 sq. km region around San 
Francisco in central California, USA 
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Table 3.4 Temporal and Human Decision-Making Characteristics of Each Model 

Model Temporal Scale Human Decision Making 

 Time Step Duration of Model Run Complexity Domain Temporal Range 
 Time period for one 

iteration of the model. 
Modules may have different 
time steps -a function of the 
particular process. 

Time step x number of runs  A 6-point scale for human 
decision making or human 
choice (rank and rationale) 

Jurisdictional domain   Short-run decision-making 
period and longer-run 
decision-making horizon 

1. General 
Ecosystem Model 
(GEM) 
(Fitz et al. 1996) 

Initial simulation runs at 0.5-
day time step 

The time step can vary across 
modules to match the 
dynamics of particular 
sectors  

Can match the cycle of process 
being modeled 

Level: 1 
Not covered in core model 

Not really considered Not really considered, as there 
is no explicit socioeconomic 
component in the basic GEM 
model 
 

2. Patuxent 
Landscape Model 
(PLM) 
(Voinov et al. 
1999a) 

Hydrological module: one-day 
time step 

Land-use map from the 
economic model imported at 
a one-year interval 

Experimental run compared 
1990 land-use patterns with 
complete forest 

Level: 4 
Incorporates human decisions 

as a function of economic 
and ecological spatial 
variables  

Predicts probabilities of land-
use conversion as functions 
of predicted values in 
residential and alternative 
uses and the costs of 
conversion 

Maximizes rent as a function 
of the value in different uses 
and the costs of conversion, 
hence generally referring to 
private decision making, but 
aggregated at the grid level 

Annual iteration to capture 
variations in land use  

3. CLUE Model 
(Conversion of 
Land Use and Its 
Effects) 
(Veldkamp and 
Fresco 1996a) 

One month to update model 
variables  

Changes in land-use types 
however, are made on 
decisions for each year 

Set by user 
Example scenario is for several 

decades  

Level: 4 
It applies several human 
drivers. 

Incorporates collective 
decision-making levels, from 
local to national 

Considers the temporal range 
of decision making explicitly, in 
determining, for example the 
time period for updating 
changes in land-use types as 
well as minimum economic age 
and rotation length of the 10 
different land-use types 
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Table 3.4 Temporal and Human Decision-Making Characteristics of Each Model 

Model Temporal Scale Human Decision Making 

 Time Step Duration of Model Run Complexity Domain Temporal Range 

4. CLUE-CR 
(Conversion of 
Land Use and Its 
Effects – Costa 
Rica) 
(Veldkamp and 
Fresco 1996b) 

One month One-month time step 
Run 252 times  

Level: 4 
Human demographic drivers 

only  

As above, applied to Costa 
Rica 

As in CLUE, above 

5. Area Base 
Model 
(Hardie and Parks 
1997) 

No 
Cross-sectional study with 

1982 data 
At second stage, 5-year time 

step as pooled 1987 data 

Mostly 1982 to 1987 data  Level: 3 
Land-use proportions are 

modeled as dependent on 
rent from land as well as 
average age, income, and 
population density 

While decision making is 
mostly at landowner level, the 
study explanatory variable, 
land-use proportions, is 
consistent with the county-
level data 

Not considered in this cross-
sectional study 

6. Mertens and 
Lambin 1997 

13 years. Single time step 13 years, 1973-86 Level: 1 
Human decision making not 

included directly 
Implicit in the inclusion of 

variable like distance from 
road and town  

Not considered Not considered 

7. Chomitz and 
Gray 1996 

Cross-sectional analysis, 
hence time period not 
applicable 

Most data collected 
between 1989 and 1992 

Level: 3 
Human decision making 

implicit in the inclusion of 
variables that impact rent, 
distance to market, soil 
quality  

Not considered Not considered 
 

8. Gilruth et al. 
1995 

Two years 
Based on the average 

cultivation period in the 
exterior fields  

1953 to 1989 Level: 4  
Tries to predict location of 

shifting cultivation decisions 
on the basis of biophysical 
variables over time, with 
feedback 

Subwatershed, with a small 
enough scale to capture 
large clearing 

No attempt to model individual 
fields  

Model time step tries to mimic 
the estimated fallow period of 
two years; however, too long a 
period between the base and 
final year - 36 years 
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Table 3.4 Temporal and Human Decision-Making Characteristics of Each Model 

Model Temporal Scale Human Decision Making 

 Time Step Duration of Model Run Complexity Domain Temporal Range 

9. Wood et al. 
1997 

Two steps: Four years (1973-
78) and 12 years (1978-90) 

Will add a third step by 
including 1985 

17 years (1973-90) Level: 1 
Not included 

Mostly at farm and field level, 
while model operates at 
department level 

Considered implicitly, in choice 
of time step, to capture 
agricultural land-use change 
over longer time periods, rather 
than the decision making 
associated with each crop cycle 

10. CUF 
(California Urban 
Futures) 
(Landis 1995, 
Landis et al. 1998) 

Same as duration? 
Not clear from reference 

whether annual data are 
collected 

1990-2010 
Model takes 1990 base data and 

forecasts growth in 2010 

Level: 3.  
Human choice seen as 

determined by market price 
and other environmental and 
zoning constraints 

No feedback, excessive 
demand does not lead to 
increase in prices, in the 
model 

 

Model operates at the level of 
individual parcels, which is the 
level at which decisions are 
usually taken 

Not considered explicitly 
Model run compresses 20 

years into one run 
Such housing decisions are 

often made quickly 
Model uses base-year price 

data 
It may inadequately represent 

exogenous factors in later 
years of the model 

A shorter time step may be 
better 

11. LUCAS (Land-
use Change 
Analysis System) 
(Berry et al. 1996) 

Five Years 
Single time step 

15 years (1975-91) Level: 3 
Human choice modeled via a 

probability function for land- 
cover change, with basic 
socioeconomic determinants 
and no feedback 

Not considered explicitly 
Grid does not include 

ownership, though it is at 
fine enough scale to broadly 
reflect private decision 
making in the USA 

Not considered explicitly 

12. Wear et al. 
1998 

Nine years  18 yrs - 1974,1983,1992 (two 
time steps or three 
observations in forest 
inventory years) 

Level: 2 
Demographic drivers 

determine impact. 

Not considered explicitly 
The impact of individual 

decisions is aggregated to 
county level 

Not considered explicitly 
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Table 3.4 Temporal and Human Decision-Making Characteristics of Each Model 

Model Temporal Scale Human Decision Making 

 Time Step Duration of Model Run Complexity Domain Temporal Range 

13. Wear et al. 
1999 

No 
Cross-sectional, 1990s data 

Single run, no duration Level: 3 
Human choice included at 

basic determinant level 
(population density), along 
with the impact of several 
biophysical factors, on the 
probability of a certain land 
use 

Average population data at 
aggregate county block level, 
correlated with individual plots  

Cross-sectional s tudy, hence 
not considered explicitly 

14. Swallow et al. 
1997 

One year Run of 250 years, sufficiently far 
into the future that heavy 
discounting makes a change in 
the time horizon inconsequential 

Level: 5 
A land management model 
The explanatory variable, 

optimal harvest rotations, 
provides a decision support 
tool 

Focused on multiple stands, 
which is the level at which 
decisions are usually made, 
particularly if there are multiple 
owners  

Land management decisions 
are usually made annually, or 
even more occasionally, 
especially for forests. 

The long time horizon, and the 
annual checking of present 
values under alternate 
possible states of the forest 
makes it a useful forest 
management tool 

15. NELUP 
(O’Callaghan 
1995) 

Economic model uses annual 
data from parish-level 
records  

The time step of the hydrologic 
model was not available 

Economic submodel tested with 
annual data, 1981-88 

Level: 6  
The model overtly models 

choices of farmers, while 
actions of other actors are 
included in the form of 
technology or policy 
constraints  

The main economic model 
treats the whole catchment as 
a macro-farm, thus perhaps 
overestimating factor mobility 

The annual time step 
corresponds to time scale of 
broad agricultural decision 
making 

16. NELUP - 
Extension 
(Oglethorpe and 
O'Callaghan 
1995) 

Annual financial and cost data 10-year period, 1981-82 to 
1991-92 

Level: 5 
This submodel includes 

choices of farmers  
When combined with the rest 

of the NELUP model, it 
would rank at 6 

Also tries to model their risk-
averse behavior 

The model resolution perfectly 
matches the decision-making 
unit - the individual farm  

The annual time step 
corresponds to the time scale of 
broad agricultural decision 
making 
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Table 3.4 Temporal and Human Decision-Making Characteristics of Each Model 

Model Temporal Scale Human Decision Making 

 Time Step Duration of Model Run Complexity Domain Temporal Range 

17. FASOM 
(Forest and 
Agriculture Sector 
Optimization 
Model) 
(Adams et al. 
1996) 
 

Decadal – 10 years  100 years, 1990-2089 
Policy analysis limited to 50 

years, 1990-2039 

Level: 3 
Human choice seen as 

economic rational decision 
making based on returns 
under alternative uses with 
limited feedback from the 
environment 

Accounts for changes in inter-
temporal and price 
complexity  

Demand region: nation 
Factor decision making is 

modeled at subnational 
regional level, with 
aggregation from individual 
landowner level, rather than 
at farm level  

A decadal time step is 
consistent with the slow rate of 
changes  in forest sector, but 
not the annual decision-making 
cycle in agriculture. To 
compensate, the agricultural 
objective function is weighted 
by a factor reflecting the 
harvest of agricultural products 
each year during a decade. 

18. CURBA 
(California Urban 
and Biodiversity 
Analysis Model) 
(Landis et al. 
1998) 

Not apparent 15 years, 1995 to 2010 
Projections made for the latter 

year 

Level: 3 
Human decision making in the 

urbanization context 
implicitly a function of 
highway facilities, natural 
constraints, growth policies, 
and job and population 
growth 

Useful depiction of zoning 
policies  

Calculates impacts at one-
hectare grid level, a bit 
broader than individual 
decision-making levels in the 
urban context 

Also includes the impacts of 
scale decision making, i.e., 
county or subcounty-level 
zoning  

Long enough model period to 
capture longer term shifts in 
urbanization and its 
determinants  

19. Clarke et al. 
1998, Kirtland et 
al. 2000 

Annual 
Used linear interpolation to 

estimate annual changes 
between datasets  

Used about 90 years of data for 
validation to project urban 
growth 100 years from 1990 

Level: 2 
While human decisions not 

explicitly modeled, their 
impact taken into account 

Operates at a broader scale of 
1 sq. km, utilizing the 
aggregate impact of hundreds 
of human decisions that affect 
urbanization 

Annual time step appropriate to 
reflect aggregate changes in 
built area, as most buildings are 
ready in less than a year 



 28 

4. DISCUSSION 
 
In this section we discuss the major issues related to modeling land-use change as determined 
through our model review. In particular, we discuss trends in land-use modeling and the 
theoretical foundations behind these trends. Methodological evolution has allowed 
exploration of new modeling approaches, and we discuss the application of these new 
methodologies to land-use change modeling. Finally, we discuss various constraints facing the 
modeling community and certain opportunities based on the current direction of modeling and 
new methodological possibilities. 
 
Trends in Temporal, Spatial, and Human Decision-Making Complexity 

 
A graphical representation of the temporal time step and duration and the spatial resolution 
and extent of the models (Figure 4.1) facilitates several observations. These diagrams are 
constructed by plotting four values on an x-y plot: time step and duration on the x-axis and 
resolution and extent on the y-axis (see inset in lower left corner of Figure 4.1). The plotted 
area for each model then represents the spatial and temporal scales under which the model 
operates (colors of models in Figure 4.1 simply aid the reader in distinguishing them). Figure 
4.1 shows that the 19 models examined in the report together cover a wide range of scales, 
from less than a day to more than 100 years in time and from less than one hectare to more 
than 1 million km2 in space. Yet this range of scales is not covered by any one model. Clearly, 
models seem to be associated with a particular spatio-temporal niche. Several more temporal-
specific conclusions can be drawn from these diagrams. 
 
Temporal Complexity 
 
Many models with separate ecological modules operate at fine time steps, for example, a day 
or a month (exceptions include certain climate-focused models). This fine temporal resolution 
allows these models to more accurately represent rapid ecological changes with time in 
certain biophysical spheres, e.g., hydrology. Second, models with multiple time steps (e.g., 
models 1, 2, 3, 4, 15, 16) can span both fine and coarse time steps and reflect the temporal 
complexity of different socioeconomic and biophysical sectors more effectively. Third, some 
of the more complex models (CLUE and CLUE-CR) also incorporate time lags and take into 
account the time taken for different crops and other land uses to provide economic returns as 
well as provide a two-year buffer against food shortages by carrying over yield surpluses from 
previous years. 
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1. General Ecosystem Model (GEM) (Fitz et al. 1996) 
2. Patuxent Landscape Model (PLM) (Voinov et al. 1999a) 
3. CLUE Model (Conversion of Land Use and Its Effects) (Veldkamp and Fresco 1996a) 
4. CLUE-CR (Conversion of Land Use and Its Effects – Costa Rica) (Veldkamp and Fresco 1996b) 
5. Area base model (Hardie and Parks 1997) 
6. Univariate spatial models (Mertens and Lambin 1997) 
7. Econometric (multinomial logit) model (Chomitz and Gray 1996) 
8. Spatial dynamic model (Gilruth et al. 1995) 
9. Spatial Markov model (Wood et al. 1997) 

10. CUF (California Urban Futures) (Landis 1995, Landis et al. 1998) 
11. LUCAS (Land Use Change Analysis System) (Berry et al. 1996) 
12. Simple log weights (Wear et al. 1998) 
13. Logit model (Wear et al. 1999) 
14. Dynamic model (Swallow et al. 1997) 
15. NELUP (Natural Environment Research Council [NERC]–Economic and Social Research Council 

[ESRC]: NERC/ESRC Land Use Programme [NELUP]) (O’Callaghan 1995) 
16. NELUP - Extension, (Oglethorpe and O’Callaghan 1995) 
17. FASOM (Forest and Agriculture Sector Optimization Model) (Adams et al. 1996) 
18. CURBA (California Urban and Biodiversity Analysis Model) (Landis et al. 1998) 
19. Cellular automata model (Clarke et al. 1998, Kirtland et al. 2000) 

  
 
Figure 4.1 Spatial and Temporal Characteristics of Reviewed Models 
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Spatial Complexity 
 
More than half of the models provide for spatial interaction and demonstrate the advantages 
of spatially explicit models that move beyond simple spatial representation. These models 
include the impact of variations across space and time of different biophysical and 
socioeconomic factors on land-use change. Figure 4.2 depicts the 19 models as in Figure 4.1, 
as well as displaying which models use a raster or vector approach (or neither). The spatio-
temporal footprint of the Landsat datasets is also included. 
 
Eleven of 19 models are raster based, four are vector based, and four are classified as neither. 
That may change, for example, if model #14 goes beyond the conceptual stage. The 
mechanistic vector models (#10 and #18) are focused at city and county levels and provide the 
finest spatial resolution. Their extent may be limited by availability of data. Most of the raster 
models have spatial resolutions that are larger than 30–80 m, broadly mirroring the pixel size 
of common remote-sensing data (e.g., Landsat TM and MSS). Likewise, the raster models 
generally seem to have extents at or less than the area covered by one Landsat scene (185 km 
x 185 km). 
 
The model with the largest extent (neither a raster nor a vector model) was the continental-
scale FASOM model, with a 100-year time horizon, a good example of a dynamic, 
mathematical programming model that predicts allocation of land between agriculture and 
forestry, and is spatially representative but not spatially explicit. 
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1. General Ecosystem Model (GEM) (Fitz et al. 1996) 
2. Patuxent Landscape Model (PLM) (Voinov et al. 1999a) 
3. CLUE Model (Conversion of Land Use and Its  Effects) (Veldkamp and Fresco 1996a) 
4. CLUE-CR (Conversion of Land Use and Its Effects – Costa Rica) (Veldkamp and Fresco 1996b) 
5. Area base model (Hardie and Parks 1997) 
6. Univariate spatial models (Mertens and Lambin 1997) 
7. Econometric (multinomial logit) model (Chomitz and Gray 1996) 
8. Spatial dynamic model (Gilruth et al. 1995) 
9. Spatial Markov model (Wood et al. 1997) 

10. CUF (California Urban Futures) (Landis 1995, Landis et al. 1998) 
11. LUCAS (Land Use Change Analysis System) (Berry et al. 1996) 
12. Simple log weights (Wear et al. 1998) 
13. Logit model (Wear et al. 1999) 
14. Dynamic model (Swallow et al. 1997) 
15. NELUP (Natural Environment Research Council [NERC]–Economic and Social Research Council 

[ESRC]: NERC/ESRC Land Use Programme [NELUP]) (O’Callaghan 1995) 
16. NELUP - Extension, (Oglethorpe and O’Callaghan 1995) 
17. FASOM (Forest and Agriculture Sector Optimization Model) (Adams et al. 1996) 
18. CURBA (California Urban and Biodiversity Analysis Model) (Landis et al. 1998) 
19. Cellular automata model (Clarke et al. 1998, Kirtland et al. 2000) 

 
  
Figure 4.2 Raster and Vector Characteristics of Reviewed Models 
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Human Decision-Making Complexity 
 
Figure 4.3 (a space–time–human-decision-making diagram) adds the level of complexity of 
human decision making to the graphical representation of temporal and spatial scales. Each 
model’s level of human decision making is listed in Table 3.1. Models at level 3 (7 of 19) 
include significant levels of human decision making beyond demographic drivers, but are 
defined by the lack of feedback; thus, the CUF model allocates land based on cost, but does 
not factor in feedback on prices. At level 4, models incorporate feedback, but most do not 
overtly model a particular kind of actor. Thus, the PLM and CLUE/CLUE-CR models (#2, 
#3, and #4) have well-developed ecological sectors and extensive human decision-making 
elements as well as feedback among sectors, but do not explicitly model different types of 
actors. Model #8 (a land-use model that incorporates shifting cultivation decisions) is ranked 
at 4, based on its overall complexity in portraying human decision making. Models at level 5 
(#14 and #16) and 6 (#15) explicitly model one or more kinds of actors. Model #14 simulates 
harvest decisions and includes both economic and non-economic criteria (e.g., habitat for 
wildlife). The NELUP model extension (#16) is a farm-level model that includes the impact 
of farming decisions on changes in intensity of land use and in land cover. The general 
NELUP model has ecological and economic components and farming decisions, and can 
serve as a decision support tool to provide feedback on the impact of collective- level policies 
(e.g., support prices or conservation programs). These characteristics position the NELUP 
model among the most detailed in terms of model specification in a variety of sectors 
affecting land-use change. However, it should be noted that a highly detailed model is not 
necessarily more suitable than a model with less specificity. The utility of a land-use change 
model can be measured primarily by its ability to demonstrate emergent patterns in land-use 
change processes and, secondarily, as a predictive tool. 
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1. General Ecosystem Model (GEM) (Fitz et al. 1996) 
2. Patuxent Landscape Model (PLM) (Voinov et al. 1999a) 
3. CLUE Model (Conversion of Land Use and Its Effects) (Veldkamp and Fresco 1996a) 
4. CLUE-CR (Conversion of Land Use and Its Effects – Costa Rica) (Veldkamp and Fresco 1996b) 
5. Area base model (Hardie and Parks 1997) 
6. Univariate spatial models (Mertens and Lambin 1997) 
7. Econometric (multinomial logit) model (Chomitz and Gray 1996) 
8. Spatial dynamic model (Gilruth et al. 1995) 
9. Spatial Markov model (Wood et al. 1997) 

10. CUF (California Urban Futures) (Landis 1995, Landis et al. 1998) 
11. LUCAS (Land Use Change Analysis System) (Berry et al. 1996) 
12. Simple log weights (Wear et al. 1998) 
13. Logit model (Wear et al. 1999) 
14. Dynamic model (Swallow et al. 1997) 
15. NELUP (Natural Environment Research Council [NERC]–Economic and Social Research Council 

[ESRC]: NERC/ESRC Land Use Programme [NELUP]) (O’Callaghan 1995) 
16. NELUP - Extension, (Oglethorpe and O’Callaghan 1995) 
17. FASOM (Forest and Agriculture Sector Optimization Model) (Adams et al. 1996) 
18. CURBA (California Urban and Biodiversity Analysis Model) (Landis et al. 1998) 
19. Cellular automata model (Clarke et al. 1998, Kirtland et al. 2000) 

 
  
Figure 4.3 Human Decision-Making Complexity of Reviewed Models 
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Theoretical Trends 
 
Social Drivers of Land-Use Change 
 
Recently, a general consensus has emerged from working groups focusing on social drivers of 
global change, particularly as it relates to land-use change. Building upon the National 
Research Council’s (NRC) report on Global Environmental Change: Understanding Human 
Dimensions (1992:2–3), a Long-Term Ecological Research (LTER) Network working group 
developed a report to the National Science Foundation (NSF), Toward a Unified 
Understanding of Human Ecosystems: Integrating Social Science into Long-Term Ecological 
Research (Redman et al. 2000). In it they have articulated core social science areas that need 
to be studied in order to understand variations in human land-use, production, and 
consumption patterns.  
 
To illustrate this further, we examine the simplified model in Figure 4.4, which describes a 
general, traditional, conceptual framework that many ecologists have used to study 
ecosystems. Although this conceptual model is powerful in its inclusion of both ecological 
and human-based processes, important interactions and feedbacks influencing long-term 
ecosystem dynamics are absent. An activity such as land use, traditionally seen as a driver, 
also can be viewed as the result of more fundamental social and ecological patterns and 
processes. Because many of these missing features relate to the social sciences, incorporating 
greater contributions from these disciplines together with existing biophysical/ecological 
models may greatly enhance our understanding of global change in general, and land-use 
change in particular. 
 

 
Figure 4.4 Traditional Conceptual Framework for Ecosystem Studies 
 
 
In contrast to Figure 4.4, the LTER report proposes a more dynamic framework that explicitly 
links what is often divided into separate “natural” and human systems into a more integrated 
model (Figure 4.5). 
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Figure 4.5. Conceptual Framework for Investigating Human Ecosystems  
 
 
Although disciplinary training and traditional modeling often treat elements of human and 
ecological systems as distinct, this framework emphasizes dynamic linkages by focusing on 
the interactions at the interface of the human and ecological components of any human 
ecosystem. The LTER report defines the following interactions as the specific activities that 
mediate between the human and ecological elements of the broader human ecosystem:  
 

• Land-use decisions 
• Land cover and land-cover changes  
• Production 
• Consumption  
• Disposal 
 

While each of these activities can be examined independently, the report acknowledges their 
strong interdependencies. Though there might be other mediating activities as well, the LTER 
report proposes that the activities listed above are a good starting point, since they are already 
identified by both ecologists and social scientists as prominent and relevant processes. 
 
Having defined a set of specific activities that are at the interface of the human and ecological 
aspects of any human ecosystem, the next step is to develop a perspective on what motivates 
these activities. To integrate the social, behavioral, and economic aspects of human 
ecosystems, the LTER report proposes a list of social patterns and processes. We further 
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propose that this list can be used as a practical guide for modeling land-use change. These 
processes include the following: 
 

• Demography 
• Technology 
• Economy 
• Political and social institutions 
• Culturally determined attitudes, beliefs, and behavior  
• Information and its flow 
 

One may expect that aspects of the last three drivers on the list—institutions, culture, and 
information? will be difficult to integrate with more familiar biological factors. Certain 
aspects of each of these last three drivers (and the first three to a lesser extent) are constrained 
by human perception of the driver and how it is already integrated into the ongoing system. In 
a human ecosystem, all choices are not equally available to everyone; they are conditioned by 
perceptions and preconceptions as well as “physical” constraints. 
 
To guide the development of land-use models that are more inclusive of social patterns and 
processes, we see a need for land-use model developers to consider one broad question and 
three subsidiary questions. 

  
How did the social-ecological system develop into its current state, and how might it change 
in the future? 

 
This question focuses on several critical aspects of the broader system, such as the nature of 
feedback linkages, rates of change, important system components, and the specifics of 
resource use and production. Three subsidiary questions are also important for land-use model 
development: 
 

• How have ecological processes influenced the social patterns and processes that have 
emerged? 

• How have social patterns and processes influenced the use and management of 
resources? 

• How are these interactions changing, and what implications do these changes bring to 
the state of the social-ecological system? 

 
These questions can help guide the development of an integrated land-use model as 
researchers attempt to characterize the fundamental aspects of system composition, system 
trends, and system operation. We recognize that such an integrated approach to modeling 
land-use change may necessitate a collaborative venture among scientists in different 
disciplines, each expanding from a traditional viewpoint. For most social scientists, this will 
mean a greater emphasis on the flows of matter and energy in human ecosystems. For 
ecologists, issues surrounding information flow and decision making may take on greater 
relevance. 
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Current Social Drivers in Land-Use Models 
 
Relevant human-driver variables from all land-use models that were reviewed for this report 
are summarized in Table 4.1 and the Appendix. These drivers can be examined in the context 
of the social drivers identified by both the NRC and LTER reports. While some aspects of 
social drivers are clearly included in several models, such as demography (population size, 
density, growth), markets (land production profits and rent), institutions (zoning, tenure), and 
technology (types of and access to transportation), there was no clear and systematic 
consideration of each type of driver (and the relationships among them) in any one model. 
Certainly not all drivers are equally important over time, space, and at different scales. We 
propose that, similar to ecological models of forest growth (that might include the relative 
effects of nitrogen, water, and light availability and changes in atmospheric carbon on 
different tree species), there is a comparable need for land-use models that can include the 
relative effects of different social drivers on land-use change in the context of space, time, and 
scale. This is particularly crucial for assessing alternative future scenarios and relative impacts 
of different policy choices. We believe it is crucial for developers of land-use models to 
discuss and adopt a more comprehensive and systematic approach to including social drivers 
of land-use change within the context of the NRC and LTER reports and existing social 
science efforts. 
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Table 4.1 Summary of Model Variables That Characterize Relevant Human Drivers  
 

Human Drivers or Social 
Patterns and Preferences 

Model Variables Model #s 

Population Size 2, 3, 4, 10, 15, 18 
Population Growth 2, 3, 4, 10, 18 

 

Population Density 2, 3, 4, 5, 10, 11, 12, 13, 18 
 Returns to Land Use (costs and prices) 2, 5, 10, 14, 16, 17 
 Job Growth 10, 18 
 Costs of Conversion 2, 10 
 Rent 2, 3, 5, 16 
Collective Rule Making Zoning 2, 10, 15, 18 
 Tenure 7, 11 

Relative Geographical Position to Infrastructure: 
Distance from Road 

 
2, 3, 4, 6, 10,11, 18, 19 

Distance from Town/Market 6, 7, 10, 11, 18 
Distance from Village/Settlement 8, 19 

Infrastructure/Accessibility 

Presence of Irrigation 5 
 Generalized Access Variable 13 
 Village Size 8 
 Silviculture 2, 15, 16, 17 
 Agriculture 2, 15, 16, 17 
 Technology Level 3, 4, 17 
 Affluence 3, 4, 5 
 Human Attitudes and Values 3, 4 
 Food Security 3, 4 
 Age  5 

# 8 – population a proxy of village size 
# 9 – measures both distance to downtown San Francisco as well as to the nearest sphere-of-influence boundary 
(as a proxy for infrastructure costs – water, drainage, electricity, etc.) 
#14 – includes wealth and substitution effects of harvesting decisions across stands; includes non-timber 
benefits, e.g., of providing forage and cover to wildlife 
#18 – not clear if economic rent is a variable 
 
 
Multidisciplinary Approaches 
 
Land-cover change is a complex process affected by a wide variety of social and ecological 
processes. The multidisciplinary nature of land-cover change is widely recognized in both the 
social and natural sciences, yet the institutional powers of the disciplines remain strong, and 
multidisciplinary science is still in its infancy. The broad spatial and temporal scales of the 
human dimension of land-cover change (that our reviewed models cross) demand that models 
also cross multiple disciplines. As the dimension becomes broader, more disciplines may need 
to be incorporated. Any model of land-cover change is probably limited by the personnel 
constructing it, in accordance with their disciplinary limits in understanding and funding. 
Some of the models we examined incorporated multiple disciplines; NELUP and GEM/PLM 
incorporated many biophysical disciplines, as well as social sciences and fields of modeling 
methods. Other models, especially the purely statistical ones, were more limited in scope. 
Broadly, the higher the ability of the model to deal with complexity, the more 
multidisciplinary the model is likely to be.  
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Temporal and Spatial Synchrony and Asynchrony 
 
Human decision making does not occur in a vacuum. Rather, it takes place in a particular 
spatial and temporal context. Further, since decision making about land use usually concerns 
some biophysical process, we must include these processes in the discussion. The following 
section discusses the interaction of decision making and biophysical processes within the 
dimensions of space and time. 
 
The spatial extent of human problems is sometimes smaller than key actors and sometimes 
larger. Equivalence between the spatial extent of a given biophysical process and the 
jurisdictional domain of at least one decision-making unit can often help actors make effective 
decisions. A lack of equivalence can present potential problems inhibiting the incorporation of 
all impacts of a process in decision making. In the real world, decisions are made at multiple 
scales with feedback from one scale to another. Also, actors at a finer scale may have evolved 
a decision-making system at a broader scale, without actually having an actor at that scale. 
 
This problem of scale mismatch occurs when the physical scale of an ecological system varies 
substantially from that of at least one organized decision-making system that regulates human 
actions related to that system. Scale mismatch can occur, for example, when the physical 
system is much larger than any human decision-making system that affects it. Most global 
ecological problems currently are characterized by this kind of scale mismatch. These 
mismatches are often characterized as externalities. For example, until an international treaty 
or special regime is created, nation-states are smaller than the stratosphere, but actions taken 
within all nation-states affect the level of greenhouse gases contained in the stratosphere. 
Looking at the ozone in the atmosphere as a shield, substantial progress has been made in 
developing an international regime that has successfully limited the level of 
chlorofluorocarbons (CFCs) that can be emitted, as well as providing a warning system for 
when ozone levels are dangerously low (Sandler 1997:106–115). While stratospheric ozone 
levels are still falling, measurable progress has been made. In regard to global warming, on 
the other hand, while various efforts to achieve an international regime to limit greenhouse 
gas emissions are underway, such a regime is still a long way from being realized (Young 
1999).  
 
Scale mismatch also can occur when the ecological system is smaller (or a dramatically 
different geographic shape) than any relevant decision-making regime. Wilson et al. (1999) 
analyze scale mismatches that occur in fisheries when managers in a large fishery agency 
perceive their task as managing a single large population of fish, when, in fact, multiple, 
small, spatially discrete populations actua lly characterize the fishery. If a fishery is 
characterized by “metapopulations” where local populations of fish are relatively discrete and 
reproduce separately to some degree, then management of the species at a broader scale may 
overlook the protection of specific spawning grounds and allow rapid extinction of local 
populations (Hanski and Gilpin 1996). The extinction of local populations can adversely 
affect the spawning potential of the entire population. Similarly, if urban areas are governed 
only by large units of government, and neighborhoods are not well organized, many 
neighborhood- level functions are overlooked, leading eventually to serious problems 
throughout an urban area (McGinnis 1999). 
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At a regional scale, SO2 emissions from midwestern U.S. coal-burning power plants carry 
downwind and cause high ozone levels (in the lower atmosphere) in several states on the east 
coast. This has led to regional initiatives, like the Ozone Transport Authority Group (OTAG) 
with 34 member states trying to resolve the problem. 
 
Furthermore, missing connections may arise, if potentially effective institutions exist at the 
appropriate scales but decision-making linkages between scales are ineffective. Decisions 
may also be based on information aggregated at an inappropriate scale, even though it may 
exist at the appropriate scale (Cleveland et al. 1996). An example of the latter is the biennial 
national forest cover analysis prepared by the Forest Survey of India. While forest cover is 
assessed at the level of small local units, it is aggregated and reported at the district level, which 
is a larger administrative unit, rather than at the watershed-based forest  division level, at which 
forests are managed.  
 
When human decisions relate to processes which change over time, there may be a temporal 
mismatch between the time step and duration of biophysical processes and the decision-
making time horizons of the human actors. For example, elected officials on three- to five-
year terms may make decisions on issues and processes that have long-term biophysical 
consequences, such as tree species with long rotations, or storage of nuclear waste. (See 
earlier discussion on decision-making time horizons.) 
  
Humans usually use some form of discounting to compare preferences over time. The 
discount rate may be implicit or explicit. Thus, a farmer choosing between growing an annual 
crop and planting trees that are harvestable in 30 years is comparing the flows of costs and 
benefits over different periods of time. Since models do not have the luxury of implicit 
comparisons, they usually use a discount rate to compare such choices. Most models make 
such comparisons by adjusting the value of money as a function of time. However, linking 
biophysical and social models by valuing social, economic, and environmental systems with 
this single parameter involves many assumptions and has been controversial (Lonergan et al. 
1994). 
 
Figure 4.6 represents spatial and temporal interaction of decision-making and biophysical 
processes in a nine-box figure. The boxes in the middle of each row of edge boxes, with bold 
text (a, b, c, and d), represent the four factors whose interaction determines land use—space, 
time, human decision making, and biophysical processes. The corner boxes represent the 
results of the interaction of the two adjacent headings. Thus, box (ii) represents the temporal 
dimension of biophysical processes (i.e., time step and duration), while box (iii) represents the 
spatial dimension of human decision making. The center box represents the problems of 
mismatches between decision making and biophysical processes in the temporal and spatial 
dimensions, as discussed above. 
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Figure 4.6 A Nine-Box Representation of the Interaction between the Three Dimensions 
of Space, Time, and Human Decision Making with Biophysical Processes  
 
 
Land-use models and modeling tools or approaches may be viewed in terms of their 
sophistication or technical ability in portraying processes in each of the three dimensions of 
space, time, and human decision making. In other words, they can be assessed in their ability 
to handle spatial, temporal, and/or human decision-making complexity. 
 
Methodological Trends 
 
Model Types 
 
The models reviewed employ a range of modeling methods (Table 3.2). The CUF and 
CURBA models (#10 and #18) both use a mechanistic GIS simulation, combining layers of 
information with growth projections. Both were noted for their detailed vector resolution. A 
range of statistical/econometric models (#s 5, 6, 7, 9, 12, and 13) applied either raster or 
vector approaches (though at least two used neither) using aggregated county- level data, 
mostly without spatial complexity. Dynamic systems models include the GEM and its 
application, the PLM (#1 and #2). The NELUP model (#15) also utilized a general systems 
framework. Additionally, several other models utilized dynamic approaches (#3, 4, 8, 11, 14, 
and 17). One model (#19) applied a cellular automata approach to analyze urban expansion. 
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Systems Approach 
 
Non-linearities and spatial and temporal lags are prevalent in many environmental systems. 
When models of environmental systems ignore the presence of non- linearities and spatial and 
temporal lags, their ability to produce insights into complex human-environmental systems 
may be significantly reduced. 
 
Statistical approaches using historical or cross-sectional data are often used to quantify the 
relationships among the components of human-environmental systems. In this case, rich 
datasets and elaborate statistical models are often necessary to deal with multiple feedbacks 
among system components and spatial and temporal lags. Model results are often driven by 
data availability, the convenience of estimation techniques, and statistical criteria—none of 
which ensure that the fundamental drivers of system change can be satisfactorily identified 
(Leamer 1983). By the same token, a statistical model can only provide insight into the 
empirical relationships over a system’s history or at a particular point in time, but it is of 
limited use for analyses of a system’s future development path under alternative management 
schemes. In many cases, those alternative management schemes may include decisions that 
have not been chosen in the past, and their effects are therefore not captured (represented) in 
the data of the system’s history or present state. 
 
Dynamic modeling is distinct from statistical modeling, because it builds into the 
representation of a phenomenon those aspects of a system that we know actually exist (such 
as the physical laws of material and energy conservation) and that describe input-output 
relationships in industrial and biological processes (Hannon and Ruth 1994, 1997). Therefore, 
dynamic modeling starts with this advantage over the purely statistical or empirical modeling 
scheme. It does not rely on historic or cross-sectional data to reveal those relationships. This 
advantage also allows dynamic models to be used in more applications than empirical models; 
dynamic models are often more transferable to new applications because the fundamental 
concepts on which they are built are present in many other systems as well. 
 
To model and better understand non-linear dynamic systems requires that we describe the 
main system components and their interactions. System components can be described by a set 
of state variables (stocks), such as the capital stock in an economy or the amount of sediment 
accumulated on a landscape. These state variables are influenced by controls (flows), such as 
the annual investment in capital or seasonal sediment fluxes. The nature of the controls (size 
of the flows), in turn, may depend on the stocks themselves and other parameters of the 
system. Using this approach, models are constructed by identifying, choosing, and specifying 
values and relationships among stocks, flows, and parameters. 
 
Many land-use change models focus on specific processes affected by a defined set of 
variables. An alternative approach is to examine land-use change as one component of a 
socioecological system. In developing this systems approach, one difficulty lies in deciding 
how to incorporate model complexity. Researchers from the social sciences may tend to add 
complexity on the social side while generalizing components on the biophysical side. 
Researchers in the natural sciences may do the opposite. A multidisciplinary team must 
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struggle to find a compromise in complexity, making the model complex enough to operate 
properly and produce reasonable behavior without making any single part of the model overly 
complex. Another struggle is how to incorporate scale issues into this systems approach. A 
number of researchers have developed models that have provided great insight into highly 
complex systems (Voinov et al. 1998; Voinov et al. 1999a). Many of these models operate at 
a set spatial scale, but there may be important processes or relationships that are not evident at 
that particular spatial scale.  
 
Yet once a systems model has been constructed, what-if scenarios can be explored more 
easily than with other modeling approaches that are not systems oriented. In particular, a 
systems approach can examine what feedbacks exist in a socioecological system such as the 
impact of increases or decreases in agricultural productivity on the local market prices of 
those agricultural goods. This scenario-testing ability has proved valuable both to researchers 
and to policy experts in elucidating important relationships in a variety of different systems. 
 
Modularity of Models 
 
The multidisciplinary nature of land-cover change modeling is paralleled by modularity in the 
models themselves. Of the 19 models evaluated for this study, all but four were characterized 
by modular components. In general, modularity may help facilitate modeling land-cover 
change by assigning a particular disciplinary aspect of the model to a separate module. We 
found that the majority of the modular models tended to consider multiple disciplines. This 
was true for those models with explicit biophysical and social components, such as models 1, 
2, 3, 4, and 15. This also held true for the largely biophysical models, which incorporate 
multiple processes in a single model.  
 
The complexity of a model is also related to model modularity. Complex models typically 
involve the interaction of multiple parameters, and their creation and validation can be 
facilitated by utilizing multiple modular components; for example, modularity allows 
different processes to run at different time steps, different actors can be modeled 
simultaneously in different modules, and differences in their decision-making horizons can be 
incorporated by varying the time step of different modules. As we noted previously, there is a 
need for a modular approach to land-use change models that includes the relative effects of 
different social drivers—such as demography; technology; economy; political and social 
institutions; culturally determined attitudes, beliefs, and behavior; information and its effect 
on land-use change—all in the context of space, time, and scale. 
 
Data and Data Integration 
 
Sources and Uses of Data 
 
The explosion in availability of data in recent years has enabled the development of more 
rigorous models. Fundamentally, more data can enable more accurate calibration and 
validation of models. Data for independent variables are used to calibrate model runs and the 
time frame for data availability often determines the time step for particular modules. After 
calibration, models are often validated by comparing outputs of variables being modeled, 
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typically land cover, with actual land-cover data. Model calibration and validation are perhaps 
the most critical and labor- intensive parts of model development. 
 
Data are often differentiated by source and are either primary or secondary. Primary data 
collection can be tailored to specific requirements. If collected extensively at a regional scale, 
the source is spread out by necessity and the data must be very broadly aggregated. If, on the 
other hand, detailed information is collected intensively at a high concentration, say 100-
percent sampling, resource considerations often lead to very localized coverage. Secondary 
data, by definition, are limited to what data are available already but often cover longer time 
scales and broader spatial scales (e.g., U.S. census data are averaged for census blocks, large 
subcity units). At least one model examined here (NELUP) consciously restricted itself to 
publicly available data so the model could be transferable to other locations. 
 
Another issue relates to data form and availability over time. When data are sought covering 
the last several centuries, data sources are often limited and highly aggregated. By 
implication, it is much harder to look at past deforestation processes than current ones. 
Assessing older land-use changes may involve other disciplines (e.g., archeology) to 
understand land cover. Thus, the forest transition in the USA, where deforestation likely 
peaked around the end of the last century (1900), and Brazilian deforestation, which shows no 
signs of peaking yet, are almost always viewed in a different light primarily because of data 
availability.  
 
Satellite images offer an extensive source of land-cover data collected remotely at a cost 
typically significantly lower than manual collection. Several recent data trends are apparent 
here and include higher spatial and spectral resolution and higher frequency of acquisition 
with time. The number of satellites providing imagery has increased dramatically since the 
early use of satellite imagery. In the 1970s, the primary platform for publicly available 
imagery was the Landsat MSS ins trument, while presently there is a wide variety of 
platforms, each with different imaging characteristics, including French SPOT panchromatic 
and multispectral instruments, data from the Indian IRS family of satellites, and radar imagery 
from the Japanese JERS satellite. Data are available at increasingly finer resolutions as well. 
The first satellite instrument used for public land-cover mapping in the 1970s (Landsat MSS) 
provided image data at a spatial resolution of 56 m x 79 m. The current Landsat 7 provides 
much finer resolution at 28.5 m x 28.5 m. The private IKONOS satellite launched in 1999 
provides 1-meter panchromatic data and 4-meter multispectral data. Also, image data are 
available over an increasingly wider spectral range, which includes data in optical, thermal, 
and radar wavelengths.  
 
There are several other trends that complicate the use of satellite data for land-use modeling. 
Satellite imagery is available from the early 1970s. Examining land-use change prior to this 
period requires the use of other remotely sensed data, such as aerial photography or ground-
collected historical information. There are a variety of methodological issues related to 
comparing land-use data derived from different data sources. These considerations complicate 
the study of land-use change processes across long time periods. Perhaps more importantly, 
many land-use change processes are time dependent. For example, timber harvests in many 
areas of the USA are based on an approximately 40-year rotation cycle, while tropical 
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subsistence rotations may be much shorter (five years). These temporal issues have serious 
implications for land-use change analysis in terms of identifying the relationship of these 
land-use changes within the context of varying study durations.  
 
The Landsat system provides an excellent source of land-cover data over a fairly long 
duration (1972–present). However, between 1972 and 1982, only image data from the Landsat 
MSS instrument was available, but acquisition of MSS images was curtailed in 1992, after 
which only Thematic Mapper (TM ) images were available. The difference in resolution 
between the MSS and TM instruments means that the more recent, finer data will have to be 
re-sampled to a broader resolution for comparison. There is also a question of data availability 
outside the USA. Several areas outside the USA have spotty image availability; e.g., from the 
mid-1980s to the early 1990s, there is extremely limited availability for West African Landsat 
TM scenes. This differential availability of imagery is due to market-oriented policies 
following the privatization of the Landsat system in the mid-1980s. Finally, we must consider 
questions of data migration and reading-device obsolescence. Data formats are proliferating, 
and data stored in older formats need to be migrated to newer formats as older formats 
become obsolete along with the accompanying hardware and software. The ability to read 
diverse formats affects data availability and may, in the extreme case, even render archives of 
little use. For example, the earliest Landsat satellites included a higher-resolution instrument, 
the Return Beam Vidicon (RBV), which at the time was thought to be a superior instrument to 
the MSS. However, these image data are stored on magnetic tape format which current data 
providers no longer use; this means the archives do not currently provide RBV data.  
 
Despite the above caveats, the Landsat TM is a useful remotely sensed data source. It has 
global coverage, an excellent dataset for the USA, and could potentially map the entire world 
at 16-day intervals (except for occurrences of cloud cover). Another broader-scale remote 
sensing source is the AVHRR with a lower resolution of 1.1 km, but which provides daily 
data for the entire globe. AVHRR applications include a famine early-warning system 
(operational in a dozen African countries) that maps agricultural production based on land-
cover parameters. 
 
Aerial photographs, another form of remotely sensed data, almost always have a higher 
resolution than satellite images and can provide detailed information on land cover. For 
example, some counties in Indiana use aerial photos to determine land-use categories at 
extremely fine scales for property tax assessment. Aerial photographs have been available in 
the USA for more than half a century. However, they have both geometric and radiometric 
distortions, which make them not directly comparable with satellite images. Aerial 
photographs often vary in scale and season of acquisition; for example, aerial photos in 
Indiana were acquired every five years alternately in summer and winter and usually require 
manual interpretation, a skilled and labor- intensive task with a declining supply of 
interpreters. 
  
Data Integration 
 
Nearly all parameters used in land-cover change models have a spatial dimension, and much 
of the data can be organized effectively using a Geographic Information System (GIS). While 
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some models may use parameters that are spatial in nature, these parameters may not be 
spatially explicit. For example, models 5, 12, 14, and 16 exhibit parameters neither as raster 
(grid cells) nor as vector (points, lines, or polygons). In our survey, these non-spatially 
explicit models may reflect unavailable data at finer scales (see Figure 4.2). 
 
One of the strengths of GIS and spatial representation is the ability to integrate data from 
disparate sources. For example, consider a rural area where population data are collected as 
point data from villages. These point data can be used to create a surface of land-use intensity 
by creating a weighted interpolation surface modified by other community- level variables 
such as the sex ratio, occupation of village residents, and landholdings. This land-use intensity 
surface can be integrated with a land-use map to explore the relationship between land use 
and past land-use changes and to predict future changes. These data transformations are 
enabled by a GIS approach through the development of a spatial representation of the factors 
affecting the land-use system. There are varieties of sources of error associated with these 
data transformations, and researchers must carefully evaluate the contribution of these errors 
to the overall error in the model. However, even given these errors, spatial representation can 
allow relationships between social and biophysical factors to be explored, which would not be 
possible with non-spatially explicit methods of research. 
 
Scale and Multiscale Approaches 
 
We considered scale in three dimensions in this assessment. We also have demonstrated the 
broad equivalence of spatial (resolution and extent) and temporal (time step and duration) 
scales and their echoes in temporal (decision-making horizon) and spatial (jurisdictional 
domain) attributes of human decision making. Mertens and Lambin (1997) hint at the 
importance of both resolution and extent when they recognize the tradeoff between analysis at 
broad scales (where the high level of aggregation of data may obscure the variability of 
geographic situations, thus diluting causal relationships) and fine scales (impractical, if there 
were no possibility of generalizing over large areas).  
 
One of the issues in broader-scale decision-making modeling is that developing such a sector-
level model involved “huge complexities likely to arise while trying to assess behavioural 
characteristics at the sector level” (Oglethorpe and O'Callaghan 1995). Certainly, fine-scale 
models have particular benefits. Oglethorpe and O’Callaghan (1995) conclude that the farm-
level model allows them to project land-use patterns and management practices arising as a 
result of agricultural market and policy changes, while demonstrating the short- and long-term 
consequences for the environment.  
 
The resolution and extent of a model or its submodules are often based on the extent of 
computing power available and the scale at which certain biophysical processes operate. 
Increasingly, there is recognition that different land-use change drivers operate at different 
scales and that interscale dynamics should be included in land-use/cover change models 
(Veldkamp and Fresco 1996a). 
  
The importance and challenge of scale and nested, hierarchical approaches cannot be 
overestimated. The physical, biological, and social sciences are struggling with the issue of 
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scale, and these have implications for appropriate frameworks for collecting and analyzing 
data at different spatial and temporal scales. This issue infuses many activities that influence 
modeling, from data collection to data analyses and interpretation of results. In a “human” 
spatial sense, scales of interest range from individuals to groups or institutions of increasingly 
large size until they encompass global networks. 
 
In a similar fashion, understanding processes acting at varying temporal scales is important to 
understand high-frequency processes as well as those operating over longer time periods. The 
importance of this challenge is even more pronounced when modelers consider integrated 
models. For example, some social and ecological processes may be associated with a 
particular scale, while other processes may occur across multiple scales. Further, ecological 
and social processes may not operate at the same scale, and linkages may have to be 
developed to connect across scales. Finally, it is unknown whether theories that explain 
processes at one scale can be used to explain processes at other scales. To date, no land-use 
model combining social and ecological processes has completed a multiscale approach. Thus, 
fundamental research and modeling paradigms may need to be rethought (Redman et al. 
2000). 
 
We will need to develop a number of capabilities for multiscale approaches and models of 
land-use change. These include the ability to identify the following (Redman et. al. 2000): 
 

• Optimal scale(s) and resolution(s) for modeling underlying social and ecological 
patterns and processes of land-use change 

• Time lags, non-linear relationships, and defining events that affect the responses 
among social and ecological processes of land-use change 

• Spatial characteristics of certain phenomena such as shape, adjacency, and matrix, and 
how they affect social and ecological processes of land-use change 

• Boundary conditions relative to space and time that might affect social and ecological 
processes of land-use change 

• Large-scale data to explain small-scale behavior (ecological inferences) and small-
scale data to explain processes at other scales of land-use change 

• Data associated with one unit of analysis that can be dis- and reaggregated to another 
unit (e.g., from census tracts to watersheds) to model land-use change 

 
Future Directions in Land-Use Modeling 
 
Many of the models reviewed in this report have been under development for a number of 
years. Models that have evolved over a long period of development often have to 
accommodate changes in mission and expansion into new substantive areas important to the 
system being modeled but not originally included in earlier versions of the model. For 
example, the Patuxent Landscape Model (PLM) was originally designed as an ecologically 
based model of the Patuxent watershed in the eastern USA. Subsequent functionality has been 
added to the PLM to incorporate various social-based inputs, including population growth, 
agricultural policy, and land-use management. This new functionality has expanded the 
domain of the model but the social-based inputs are not necessarily optimally accommodated 
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by the modeling framework developed for the original ecologically based components of the 
model. 
 
This is not to detract from the considerable accomplishments of the PLM or the SME 
framework in which the PLM has been implemented. However, developing models in this 
fashion may lead to early design decisions which obstruct the performance of future model 
components added to the base model.  
 
In another example, during a model design workshop in support of the FLORES model, the 
initial conversation among the workshop participants was used to design the overall 
framework for the model: the time step, spatial unit of analysis, and how the model 
components would interact. Certain compromises had to be made by each of the workshop 
groups representing separate components of the model.  
 
Constraints 
 
Availability of data for model validation imposes serious constraints in considering variables 
for inclusion. Models that utilize significant amounts of primary data are constrained in extent 
or duration, or both. Some model development approaches have deliberately restricted 
themselves to publicly available data, for spatial replicability. 
  
Another issue in the land-use modeling community is the dup lication of effort and sharing of 
models. We have observed that several models addressing similar systems are often 
developed independently. This has the advantage of demonstrating unique approaches to the 
same research questions and may produce better models by enacting some form of 
competition between models. Yet, the downside is the considerable documentation needed to 
allow model developers to understand each other’s code such that supplanted code may be 
cannibalized into other models. Issues of intellectual property rights need to be addressed as 
well. 
 
Opportunities 
 
In accordance with Moore’s Law, we have witnessed incredible increases in raw computing 
power. Desktop PCs can now run models that would have required a roomful of mainframe 
computers a decade ago. This development itself is a great enabler and has contributed 
immeasurably to expanding land-use modeling efforts. More computing power gives models 
the ability to expand their extents and durations and, at the same time, make resolutions and 
time steps smaller. 
 
Modeling tools are also getting better: they do more with time and are more user-friendly. 
Development of modeling tools allows us to build more sophisticated models in all three 
dimensions. Various modeling frameworks have been developed that provide model 
developers with a set of tools suited to address common aspects of land-use systems. They are 
easier to learn and use than writing code and often have graphical interfaces. For example, 
STELLA provides a format for dynamic modeling tha t has a very intuitive graphic user 
interface (GUI) and can be used to develop simple student models or complex research 
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models. Another example is the SWARM simulation package, developed at the Santa Fe 
Institute, which has been used for modeling multi-agent systems and the interactions between 
the agents in those systems. A variety of other development tools are available to researchers. 
Many of these tools, such as STELLA, are commercially based, while others, such as 
SWARM, are accessible under various public licensing structures. Of course, many models 
we reviewed still depend on labor- intensive mathematical programming or econometrics for 
their core modeling (5, 13, 14, 15, and 16).  
 
Open Source Approaches 
 
Models involving time, space, and human decision making can be incredibly complex and 
depend upon knowledge from many disciplines. Until now, most models have developed in 
isolation. This is related to the fact that modelers have been funded through grants or focused 
funds from a particular organiza tion with an interest in human-environmental modeling. Even 
in the context of large interdisciplinary research centers like the NSF networks cited 
previously, their efforts have been constrained by funds, staff, and expertise.  
 
In contrast to traditional approaches to model development, recent advances in worldwide 
web technology have created new opportunities for collaboration in the development of 
human-environmental modeling. Recently, “open source” programming efforts have been 
used to solve complex computing problems (see for example, Kiernan 1999; Learmonth 1997; 
McHugh 1998; OSI). Open source programming is based on a collaborative licensing 
agreement that enables people to freely download program source code and utilize it on the 
condition that they agree to provide their enhancements to the rest of the programming 
community. There have been several very successful, complex programming endeavors using 
the open source concept; the most prominent being the Linux computer operating system. 
However, some open source endeavors have failed, but the Linux model has shown that 
extremely complex problems can be tackled through collaboration over the Internet and that 
this kind of collaboration can produce extremely robust results. For instance, Linux is known 
to be a very stable software program and it is largely because of what is referred to as “Linus’ 
Law” (Linus Torvalds is the initial developer of Linux): “Given enough eyeballs, all 
[problems] are shallow” (Raymond 1999). In other words, if we can get enough human eyes 
(and brains) with various skills and expertise working together, many problems, regardless of 
their complexity, can be solved because some individual or a team of individuals will come 
up with elegant solutions.  
 
How is an open source approach to computing connected to human-environmental modeling? 
We propose that a similar approach to the development of human-environmental models 
provides the basis for focusing enough “eyeballs” on important human-environmental 
problems (Schweik and Grove 2000). A similar argument has been made for open source 
endeavors in other areas of scientific research (Gezelter 1999). Initiating such an open source 
modeling effort will require several components: (1) a web site to support modeling 
collaboration (e.g., data and interactions among individuals, such as bulletin boards and 
FAQs); (2) the establishment of one or more modeling “kernels” (core components of models 
using various technologies) that are designed in a modular fashion and allow relatively easy 
enhancements from participants; and (3) the development of mechanisms for sharing model 
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enhancements that encourage participation and provide incentives that are comparable and as 
valued as publishing in peer-reviewed journals. 
 
Over the last year, we have initiated the development of such a web site, called the “Open 
Research System” or ORS (open-research.org). The first step of this effort is to develop a 
web-based metadatabase that allows the open sharing of geographic and non-spatial datasets, 
and references to publications and reports.  If a reader knows of a model not covered in this 
review or in the Appendix, he or she could visit this site, register, and submit a publication 
reference to the system database. This would allow other visitors to the site, through the 
search facility, to find the model publication. The next step of this project is to move toward 
extending the design to allow the sharing of various types of land-cover models in an open 
source approach. 
 
We recognize that the application of the open source programming concept to human-
environmental modeling might appear daunting and even seem radical. However, the Linux 
example shows how extremely complex problems can be solved when enough people work on 
them. Given the complexities involved in modeling time, space, and human decision making, 
the open source programming concept might be a vital modeling approach for creative 
solutions to difficult human-environmental modeling problems. 
 
 
5. CONCLUSION 
 
Land-use/land-cover change is a widespread, accelerating, and significant process. Land-
use/land-cover change is driven by human actions, and, in many cases, it also drives changes 
that impact humans. Modeling these changes is critical for formulating effective 
environmental policies and management strategies. This report details our efforts to inventory 
land-use change models through a review of literature, websites, and professional contacts. 
We then examined in detail 19 of these land-use change models, characterized their structure 
and function, and reviewed how they were applied. The models were compared in terms of 
scale and complexity, and how well they incorporate time, space, and human decision 
making. In this report, we examine the social drivers of land-use change and methodological 
trends exemplified in the models we reviewed. We also suggest some future strategies for 
overcoming modeling problems. 
 
For this review we developed a framework to observe and describe multiple models in a 
single synoptic view. This framework is based on three critical dimensions: time, space, and 
human choice or decision making. These three dimensions can be thought of as three axes on 
a cube. How well a model incorporates these three dimensions (measured by its complexity) 
determines where that model would plot in this 3-D volume. In terms of temporal scale, 
models were characterized by time step (the smallest unit of time for a process to change) and 
duration (the total length of time that a model is applied). In terms of spatial scale, models 
were characterized by resolution (the smallest geographic unit in a model, such as a single 
grid cell in a raster model) and extent (the total area to which the model is applied). Likewise 
for human decision making, models were characterized by actor (the smallest body of humans 
making decisions) and domain (the broadest social organization incorporated in the model). 
Models were also characterized by their temporal complexity (a model’s ability to handle a 
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large number of time steps, a long duration, time lags, and feedback responses) and spatial 
complexity (a model’s ability to handle topological relationships, and be spatially 
representative and interactive). We also created a scale to measure a model’s ability to handle 
human decision-making complexity, a six- level value. A model with a high complexity value 
would be able to handle multiple agents interacting across domains whose choices are overtly 
modeled. 
 
All 19 models we reviewed were spatially representative and most (15) were spatially 
interactive. Eleven of the 19 models are raster based, four are vector based, and four are 
classified as neither. Several vector models were associated with scales of city and county 
levels and provided the finest spatial resolution. Their extent may be limited by availability of 
data. Most raster models have a spatial resolution and extent in the range of common remote-
sensing data, such as Landsat. Many models with separate ecological modules operate at fine 
time steps, which allows models to more accurately represent rapid ecological changes. 
Models with multiple time steps can span both fine and coarse time steps and can incorporate 
temporal complexity of different socioeconomic and biophysical sectors more effectively.  
 
We advocate the use of the LTER Network working group report list of social patterns and 
processes as a practical guide for incorporating social processes in modeling land-use change. 
This list includes: demography; technology; economy; political and social institutions; 
culturally determined attitudes, beliefs, and behavior; and information and its flow. We also 
advocate a more comprehensive and systematic approach to include social drivers of land-use 
change within the context of the NRC and LTER reports and existing social science efforts. 
 
Several problems regarding land-use modeling were discussed. Models which cover broad 
spatial and temporal scales demand that we cross multiple disciplines; however, a model of 
land-cover change is limited by the personnel constructing it and their disciplinary limits in 
understanding and funding. The problem of scale mismatch can occur when the physical scale 
of an ecological system varies substantially from that of the decision making. Furthermore, 
missing connections may arise in modeling if potentially effective institutions exist at the 
appropriate scales but decision-making linkages between scales are ineffective. Also, humans 
usually use some form of discounting to compare preferences over time, and most such 
models make comparisons using the metric of money. However, linking biophysical and 
social models by valuing social economic and environmental systems with this metric is 
problematic.  
 
Different modeling methodologies limit their application. Non-linearity and spatial and 
temporal lags are prevalent in environmental systems, yet statistical models can only provide 
insight into the empirical relationships over a system’s history and are of less use for analyses 
of a system’s future development path under alternative management schemes. Dynamic 
modeling, which uses stocks and flows, is distinct from statistical modeling in that it can 
incorporate phenomena whose aspects in a system are known to actually exist. Of the 19 
models evaluated for this study, all but four were characterized by modular components. 
Modularity may facilitate land-cover change by assigning a particular disciplinary aspect of 
the model to separate modules. We found that the majority of the modular models tended to 
consider multiple disciplines.  
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Data availability can also affect modeling. Primary data collection can be tailored to specific 
requirements, but must be collected either thinly across a broad extent or concentrated in a 
localized coverage. Secondary data by definition are limited to what is available but often 
cover longer durations and broader spatial scales. Some models are deliberately restricted to 
publicly available data, for replicability. Satellite images offer an extensive source of land-
cover data collected remotely at a cost typically lower than manual collection; however, there 
are a variety of methodological issues related to comparing land-use data from different 
sources, which complicate the study of land-use change processes across broader scales of 
time and space. 
 
Nearly all parameters used in land-cover change models have a spatial dimension, and much 
of this data can be organized effectively using GIS technologies. One of the strengths of GIS 
and spatial representation is the ability to integrate data from disparate sources. Increasingly 
powerful computers mean models can run multiple modules at different time steps within 
short periods of time. Modeling tools are also getting better: they do more with time and are 
more user-friendly. Advancing development of modeling tools allows us to build more 
sophisticated models in all three dimensions. Finally, open source modeling, which is based 
on a collaborative licensing agreement that enables people to freely download program source 
code and utilize it on the condition that they agree to provide their enhancements to the rest of 
the programming community, offers additional hope for future modeling. There have been 
several very successful, complex programming endeavors using the open source concept, the 
most prominent being the Linux computer operating system, and these methods might spur 
the development of land-use/land-cover modeling as well. 
 
We would like to conclude with some thoughts about land-use models and policy. 
Increasingly, the policy community is interested in land-use models that are relevant to their 
needs. As Couclelis (2000) notes, this does not mean that land-use models have to be “answer 
machines.” Rather, we expect that land-use change models will be good enough to be taken 
seriously in the policy process. King and Kraemer (1993:356) list three roles a model must 
play in a policy context: (1) it should clarify the issues in the debate; (2) it must be able to 
enforce a discipline of analysis and discourse among stakeholders; and (3) it must provide an 
interesting form of “advice,” primarily in the form of what not to do—since no conscientious 
politician will ever simply do what a model suggests. Further, the necessary properties for a 
good policy model have been known since Lee (1973) wrote his “Requiem for Large-Scale 
Models”: (1) transparency, (2) robustness, (3) reasonable data needs, (4) appropriate spatio-
temporal resolution, and (5) inclusion of enough key policy variables to allow for exploration 
of likely and significant policy questions. 
 
To answer policy questions, policy makers will have to begin to identify the key variables and 
sectors that interest them, their scales of analysis, and the scenarios they anticipate. At the 
same time, land-use modelers should begin discussions with policy makers to understand their 
needs. Given policy makers’ needs, land-use modelers will have to translate those needs with 
particular attention to implicit and explicit temporal, spatial, and human decision-making 
scale and complexity and the interactions between scale and complexity. Further, land-use 
modelers will need to consider the relative significance of different drivers on land-use 
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change within the context of policy makers’ needs. Finally, there is the need to provide a 
framework for collaboration and model development. We propose an open source approach. 
Perhaps there are others. Regardless, we believe land-use change is a sufficiently important 
and complex environmental issue that it urgently needs the collective resource provided by an 
open source approach. 
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APPENDIX: Plots of Human Driver Variables Represented in the Models across Space 
and Time  
 
A graphical representation of the temporal time step and duration and the spatial resolution 
and extent of the models facilitates several observations. These diagrams are constructed by 
plotting four values on an x-y plot: time step and duration on the x-axis and resolution and 
extent on the y-axis (see graphic below). The plotted area for each model then represents the 
spatial and temporal scales under which the model operates. The 19 models examined in the 
report together cover a wide range of scales, from less than a day to more than 100 years in 
time and from less than one hectare to more than 1 million km2 in space. Yet this range of 
scales is not covered by any one model. Clearly, models seem to be associated with a 
particular spatio-temporal niche.  
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GLOSSARY 
 
Analytical model: Quantifies functional relationships and estimates parameters by means of 
empirical data 
 
Area base model: Allocates proportions of a given land base to predefined land-use 
categories 
 
Complexity: The complexity of human decision making refers to the specificity and detailed 
consideration given in a model to the decisions that humans make that affect land-use change. 
We have developed a scale of complexity that ranges from 1 to 6 for this exercise. 
 
Conceptual model: Theoretical description of socioeconomic and physical processes 
 
Control (or flow) variables: System elements that represent the action or change in a state  
 
Discrete finite state model: Model that is discrete (space represented as cells or blocks) and 
finite state (represents an object as being in only a few, finite number of states or conditions) 
 
Duration: The length of time for which the model is applied. The duration of a model’s 
results may be reported as the number of time steps used (e.g., 100 annual times steps), the 
period of the model (100 years), or the model dates (January 1, 1900, to January 1, 2000). 
 
Dynamic systems model: Systems models that attempt to capture changes in real or 
simulated time. 
 
Extent: The total geographic area to which the model is applied 
 
Human Decision-Making: Refers to how models incorporate human elements. Human 
decision-making sections of models vary in terms their theoretical precursors and may be 
simply linked deterministically to a set of socioeconomic or biological drivers, or may be 
based on some game theoretic or economic models. Three attributes of human decision 
making that are important to consider in thinking about diverse models of land-use change are 
complexity, jurisdictional domain, and temporal range. 
 
Jurisdiction: Refers to the spatial scope of human decision making. If desired, a 
jurisdictional domain may be split up to reflect resolution, the decision-making domain for a 
particular actor, and to reflect spatial extent, in this case the total area over which the actor(s) 
has(have) influence, or the jurisdictional range. 
 
Linear planning model: Model that optimizes a linear function subject to several linear 
constraints, expressed as linear inequalities or equalities 
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Markov model: A probabilistic modeling method where model state outcomes rely strictly 
on previous model states. With this modeling technique, cell conditional probabilities are used 
to change cell states through a series of iterative operations. 
 
Resolution: The smallest spatial unit of analysis for the model. For example, in a raster or 
grid representation of the landscape, each unit or cell area is usually treated as a constant size. 
 
Spatial complexity: Refers to the presence of a spatial component of a model or information. 
Spatial complexity may be representative or interactive. 
 
Spatial dynamic model: Models that are spatially explicit and dynamic as well 
 
Spatial interaction: Models are based on topological relationships. Topology is a 
mathematical procedure for explicitly defining spatial relationships, usually as lists of 
features, and using the concepts of connectivity, area definition, and contiguity. 
 
Spatial Markov model: Spatially explicit model that carries over memory from one state to 
the next, but usually from only the last state; e.g., the probability that the system will be in a 
given state (land class) at some time t2, is deduced from the knowledge of its state at time t1. 
 
Spatial representation: Spatially representative models are able to display data as maps. 
However, they do not include topology and spatial interactions. 
 
Spatial stochastic model: Spatially explicit model that is interactive and incorporates random 
changes to determine transition probabilities from one land cover to another.  
 
State variables: Elements that make up the system for which the model is being developed 
 
Time step: The smallest temporal unit of analysis of the model variable 
 
von Thünen:  German landowner Johann Heinrich von Thünen developed a model that 
relates intensity and type of land use to transportation costs and land rent. The model 
(published in The Isolated State, 1826) involves a homogenous plane within which exists an 
isolated city. Land-use patterns around this city are a function of travel cost to the city. Land 
uses producing goods with a relatively high transportation cost (e.g., perishable or heavy 
products) would be produced close to the city, and land uses producing more durable goods 
(with lower transportation costs) would be produced farther from the city. This arrangement 
results in a series of different land-use zones around the city. Many authors have applied and 
expanded upon von Thünen’s initial theory (e.g., Papageorgiou 1990).
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