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Active Nonlinear Tests (ANTs) of Complex 

Simulation Models 

John H. Miller 
Department of Social and Decision Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 

S imulation models are becoming increasingly common in the analysis of critical scientific, 
policy, and management issues. Such models provide a way to analyze complex systems 

characterized by both large parameter spaces and nonlinear interactions. Unfortunately, these 
same characteristics make understanding such models using traditional testing techniques ex- 
tremely difficult. Here we show how a model's structure and robustness can be validated via a 
simple, automatic, nonlinear search algorithm designed to actively "break" the model's impli- 
cations. Using the active nonlinear tests (ANTs) developed here, one can easily probe for key 
weaknesses in a simulation's structure, and thereby begin to improve and refine its design. We 
demonstrate ANTs by testing a well-known model of global dynamics (World3), and show how 
this technique can be used to uncover small, but powerful, nonlinear effects that may highlight 
vulnerabilities in the original model. 
(Testing Simulation Models; Nonlinear Sensitivity Analysis; Validation; World3 Model; Genetic Algo- 
rithms) 

1. Introduction 
Complicated, large-scale computational models are be- 
coming increasingly common in the analysis of critical 
scientific, policy, and management issues. Such models 
are particularly well suited for the analysis of phenom- 
ena that are characterized by high degrees of nonlin- 
earity and enormous search spaces-conditions that 
confound traditional analytic methods. Unfortunately, 
the same conditions that make computational tech- 
niques so appealing, are also ones that make validating1 
such models inherently difficult. For example, judg- 
ments about multivariate sensitivity made on the basis 
of independent univariate sensitivity analysis, require 
linear relationships among the parameters to be valid. 
As an alternative, here we show how a computational 
model's structure and robustness can be tested via a 
simple, automatic, nonlinear search algorithm designed 
to actively "break" the original model's implications. 

1 For a discussion of model validation see Law and Kelton (1991). 

The Active Nonlinear Tests (ANTs) described below 
define a general class of algorithms useful for the ex- 
ploration of complex simulation models. Some potential 
applications of ANTs to management science, include: 

* Multivariate Sensitivity Analysis: uncovering model 
sensitivities to groups of parameters. 

* Model Breaking and Validation: exploring conditions 
under which a model breaks down. 

* Extreme Case Scenario Discovery: finding best or 
worst case scenarios that could result given reasonable 
parameter changes. 

* Policy Discovery: discovering strategies for achiev- 
ing some (un)desirable outcome within the context of 
the model. 

The basic idea behind the ANTs developed here is 
rather simple: use a nonlinear optimization algorithm 
to search across a set of reasonable model perturbations 
with the objective of maximizing the deviation between 
the original model's prediction and that obtained from 
the perturbed model. Of course, by varying the objective 
function for this optimization one can stress the model 
in different ways-the actual choice will depend on 
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what aspect of the model one wants to test, but presum- 
ably it will include those implications of the model that 
are of the greatest importance to the modeler. In a model 
designed to inform a particular policy or management 
decision, the goal might be to reverse the predictions of 
the model that are most in favor of a particular decision. 
In models designed to create theoretical predictions (see 
for example, Holland and Miller 1990), ANTs can find 
conditions under which the derived theory might fail. 
ANTs can also be used to enhance the exploration of 
ensembles of models that incorporate a variety of plau- 
sible underlying assumptions (see Bankes 1993 and 
Bankes and Gillogly 1994). 

Perhaps the simplest application of this methodology is 
in testing a model's behavior vis-a-vis its parameters. If 
the underlying model is highly nonlinear, then informa- 
tion about the impact of altering individual parameters 
may not be useful in determining the effect of changes in 
groups of parameters.2 Because ANTs search across sets of 
parameter values, they are capable of detecting important 
nonlinear relationships among the parameters- 
relationships that typically go unnoticed using standard 
techniques that manipulate parameters in isolation from 
one another. While detecting nonlinearities could be done 
by exhaustively searching over all possible parameter 
groupings, the implied combinatoric explosion makes this 
infeasible for even modest numbers of parameters.3 Thus, 
there is a need for a more directed search mechanism that 
can efficiently seek out groups of parameters that affect the 
model. The use of a nonlinear search algorithm allows 
such a directed search to occur. 

The ANTs developed here automatically probe for 
weaknesses in the model's behavior. While such an ex- 
ercise does not give an estimate of the likelihood of such 
scenarios (existing techniques like Monte Carlo meth- 

2 example, consider the model y(x1, x2) = x1x2. Then, y(x1 + Ax1, 
x2) = x1x2 + x2Ax1 = y(x1, x2) + x2Ax1. Similarly, y(x1, x2 + Ax2) 
= y(x1, x2) + x1Ax2. Yet, y(xl + Ax1, x2 + Ax2) = y(x1, x2) + x2Ax1 
+ x1Ax2 + Ax1Ax2, which differs from the combination of the indi- 
vidual perturbations by the last term, Ax1Ax2. Of course, the linear 
approximation works well if either the perturbations are small or the 
degree of nonlinearity is low. 

'For example, in a model with 100 parameters (each of which could 
either be high or low by a fixed amount), analyzing individual param- 
eters requires 200 runs of the model, while 2 and 3 parameter group- 
ings require 19,800 and 1.3 million additional runs, respectively. 

ods4 can be used for this task), it does give valuable 
insight into the possible extremes of the model. More 
importantly, these searches are a means by which to 
uncover potential weaknesses in the model's formula- 
tion and identify key assumptions. With this informa- 
tion, the model can either be refined or, if it is felt to be 
sound, additional effort can be focused on better esti- 
mating and understanding the behavior of the key as- 
sumptions. Note that the inability to "break" a model 
in this way does not guarantee its quality. For example, 
models that are completely insensitive to their param- 
eters can obviously not be broken in the above 
manner-yet, such models are also not likely to be of 
much value. The tradeoff between the brittleness in a 
model and its responsiveness to parameters will always 
need to be carefully considered. 

The ANTs methodology can be implemented in a va- 
riety of ways. In the next section, we discuss the basic 
elements of ANTs. We then provide an illustration of 
the technique in ?3 by testing a simulation model of 
global population and resource dynamics (the World3 
model developed by Meadows et al. 1974, 1992). Un- 
derlying this model is a large set of uncertain parame- 
ters, for example, current population stocks, technolog- 
ical growth rates, and agricultural productivity. We will 
use ANTs to find new sets of parameters (constrained 
to lie within a narrow range of the original ones) such 
that some of the model's main conclusions about the 
future path of population growth will be most at odds 
with what the original parameters suggest. The use of 
World3 in this section was simply due to its wide avail- 
ability and easy accessibility. Section 4 provides some 
concluding remarks. 

2. Active Nonlinear Tests 
To implement ANTs, we use a nonlinear optimization 
algorithm to search over perturbations in the model's 
formulation, in order to maximize an objective function 
designed to "stress" the model. A wide variety of op- 
timization algorithms are suitable for ANTs, and we 
discuss two possibilities below. Once the optimization 

'For reviews of methods to capture parametric uncertainty see Cox 
and Baybutt (1981), Iman and Helton (1988), and Morgan and Henrion 
(1990). 
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algorithm is determined, the modeler must decide on 
what aspects of the model's formulation and conclu- 
sions to test. There is a lot of flexibility in both of these 
choices, and here we simply illustrate some of the basic 
issues surrounding these choices. The inherent flexibil- 
ity of these choices make ANTs useful for a variety of 
tasks. 

The basic ANT algorithm has the following form: 
1. Let Mh(p) give the implications of the model for 

hypothesis h under assumptions p. The hypothesis, h, is 
any conclusion of interest from the model, and the as- 
sumptions, p, can include the model's underlying pa- 
rameters, structural elements, etc. Let p give the original 
assumptions of the model. 

2. Define Ap to be the set of allowable perturbations 
of the model's assumptions. 

3. Let fI(Mh(p), Mh(P)) be a judiciously chosen objec- 
tive function designed to illuminate the model's behav- 
ior surrounding hypothesis h. 

4. Use an optimization algorithm to maximize 
FI(Mh(p), Mh(p)) over p E Ap?. 

2.1. Two Simple Optimization Algorithms for 
Active Nonlinear Testing 

A variety of existing optimization algorithms are suit- 
able for use with ANTs. Good algorithms for this task 
should be capable of searching over nonlinear objective 
functions while (potentially) confronting noise, discon- 
tinuities, and enormous search spaces. Depending on 
the inherent nonlinearities in the model, the objective 
functions used in ANTs may be ripe with local optima. 
Moreover, discontinuities in the search space may arise 
either due to the nature of a simulation's parameters or 
to the types of allowable model perturbations under 
consideration, say, assumptions about the model's fun- 
damental structures like probability distributions, struc- 
tural equations, etc. Finally, it will often be necessary to 
economize on the number of iterations of the actual sim- 
ulation model, and thus algorithms that can direct their 
sampling and operate with relatively few runs of the 
simulation model will be useful. In the example dis- 
cussed in ?3, we use both a simple hill-climbing algo- 
rithm and Holland's (1975) genetic algorithm (GA). 
Both of these algorithms are fairly robust to the difficult 
search conditions mentioned above. Of course, if the un- 
derlying model is continuous and well-behaved with 

respect to the assumptions that one desires to explore, 
then more classical nonlinear programming techniques 
(see, for example, Glasserman 1991, L'Ecuyer 1990, and 
Luenberger 1984) are likely to be more "efficient" than 
hill-climbing or a GA. The two optimization algorithms 
explored in the examples below are merely for illustra- 
tion of the ANTs technique using a set of fairly robust 
and easily implemented algorithms. Obviously, alter- 
native algorithms may be of use depending on a mod- 
eler's particular situation. 

The hill-climbing algorithm is a simple, widely-used 
optimization procedure. This algorithm works by ini- 
tially choosing a random "solution" within the search 
space as the status quo. At each iteration of the algo- 
rithm, a new solution is randomly chosen from a neigh- 
borhood of the status quo. If the new solution results in 
a higher value of the objective function, it becomes the 
status quo; otherwise the status quo remains un- 
changed. The algorithm continues this process for a 
fixed number of iterations.5 At the end of these itera- 
tions, the status quo is used as the ultimate solution. 

GAs have proven to be an effective search technique in 
complex optimization problems (see, for example, Gold- 
berg 1989). In a GA, a population of "solutions" is initially 
created at random. Each solution is then tested on the 
problem, and receives a measure of "fitness." The GA then 
creates a new population of solutions by both reproducing 
old solutions based on their fitness (with better performers 
being more likely to be reproduced) and creating some 
new solutions through "genetic operators." GAs typically 
employ two genetic operators: crossover and mutation. 
Crossover recombines pieces of existing solutions in a way 
that tends to preserve those parts of solutions that likely 
result in good performance. Mutation randomly makes 
small, unique alterations in a solution and thereby pre- 
vents the system from getting prematurely trapped in lo- 
cal optima. Once a new population of solutions has been 
created, a new "generation" of the algorithm begins, and 
the testing, reproduction and modification stages dis- 
cussed above are iterated. Although the reproduction and 

'Simulated annealing algorithms (see, for example, Otten 1989), use 
a similar approach to hill-climbing. They differ from hill-climbing in 
that they will sometimes accept inferior new solutions with a proba- 
bility that is decreasing in the size of the loss and a "temperature" 
parameter that makes such acceptances less likely over time. 
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modification stages of a GA require very little computa- 
tional power to implement, they result in a sophisticated 
sampling scheme on the key patterns underlying effective 
solutions (Holland 1975). 

2.2. The Search Space 
The optimization algorithm is used to search over a space 
of allowable perturbations in the model's formulation. The 
choice of this search space will determine what aspects of 
the model's formulation are tested. One useful search 
space is a well-defined neighborhood of the original pa- 
rameters used in the model. The extent of the neighbor- 
hood for such a space could be determined by, say, un- 
certainties surrounding the measurement of each param- 
eter. For example, we could assume that all parameters 
are measured with a 10-percent error.6 

While parameter perturbations are likely to be a com- 
mon use of ANTs, other more general notions of model 
perturbations can also be used. For example, ANTs could 
perform searches over different formulations of the 
model's underlying equations. One way to implement 
this idea is to allow arbitrary feedback loops to develop 
in the model by incorporating perturbation terms into the 
rate equations for each state variable. Another alternative 
is to evolve more general functional components using 
techniques like genetic programming (Koza 1992). ANTs 
can also be use to test a model's basic operating assump- 
tions. For example, ANTs could be allowed to search 
over various assumptions concerning underlying prob- 
ability distributions, spatial configurations, or the timing 
of agent activation. The advent of object-oriented simu- 
lation packages, such as Swarm (Langton et al. 1995), 
should facilitate such searches. 

2.3. Objective Functions for ANTs 
For ANTs we need to define an objective function such 
that its optimization, on the search space defined above, 
will provide some insight into the model. By carefully 
choosing the objective function the modeler can employ 
the ANTs for a variety of tasks. Let Mh(p) give the out- 
come of the model for hypothesis h under assumptions 
p, and let Ap give the set of allowable perturbations. For 
example, in a model of world economic and social dy- 

6Additional distribution assumptions are easily accommodated. For 
example, different parameters could have different ranges, etc. 

namics, Mh(p) could concern hypotheses based on the 
predicted population in 2100, the variance of the pop- 
ulation path, the peak population, the timing of a par- 
ticular event like the population exceeding 10 billion, 
etc. One set of useful objective functions are those that 
test the limits of the model's behavior, by maximizing 
(or minimizing) Mh(p). More generally, the model's ba- 
sic predictions can be challenged by maximizing objec- 
tive functions of the form (Mh(p) - Mh(p))2, where pt are 
the original model's assumptions. This objective func- 
tion encourages the ANTs to find perturbed formula- 
tions that most deviate from the original prediction. 

Additional criteria can also be incorporated into the 
objective function. For example, in the objective func- 
tions discussed above, no attempt is made to impose 
parsimony on the number of perturbations. One appli- 
cation where parsimony is useful is when ANTs are 
used to identify particular areas of the model in need of 
further investigation. One way to achieve parsimony is 
to restrict the search space such that only small sets of 
perturbations are admitted at any given time. Alterna- 
tively, we can include a penalty term in the objective 
function that encourages parsimony. Under this ap- 
proach a cost function, 4(p, p), where 4( ) is an increas- 
ing function of the number (and perhaps size) of 
perturbations from the original assumptions, p, is in- 
corporated into the objective function. A more sophis- 
ticated way to focus model perturbations is to use 
known information on the likelihood of a set of pertur- 
bations, and seek those perturbations that lead to high 
expected deviations by maximizing Mh(p)P(p), where 
P( ) gives the local probability density of the pertur- 
bations. Whenever additional criteria are incorporated 
into the objective function, careful attention must be 
placed on properly weighting the various criteria within 
the objective function. 

Obviously, both the flexibility and power of ANTs are 
contingent on a judicious choice of the underlying ob- 
jective function. 

3. An Example 
To illustrate ANTs we apply the above techniques to 
the World3 model,7 scenario 2, developed by Meadows 

'Unlike most large-scale models, World3 is readily available. Model 
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et al. (1974, 1992). World3 emerged from an early global 
systems model (Meadows et al. 1972) and was designed 
to simulate those systems that are of most importance 
to human sustainability, including population, indus- 
trial output, pollution, and agriculture. Hayes (1993) 
provides a basic review of the model's development and 
operation. World3 is used because it represents a con- 
venient example of a large-scale simulation model. 
While many aspects of the model's formulation have 
been critiqued (see, for example, Nordhaus 1973, For- 
rester et al. 1974, and Nordhaus 1992), the issues of 
concern here-testing nonlinear simulation models- 
transcend such controversies. The World3 model has 
approximately 150 equations that link 272 model vari- 
ables. Of these 272 variables, 96 need to be initialized. 
Moreover, there are 508 parameters required to specify 
various functional forms in the model.8 

For the ANTs done here, we focus on the predicted 
world population level as the modeling outcome of in- 
terest. In Figure 1 (and all subsequent figures) the pop- 
ulation path designated as "original" is the one pro- 
duced by the model with no perturbations. As seen in 
the figure, the model predicts that world population 
will peak at about 9.4 billion around 2040, and then ex- 
perience a relatively rapid decline ending with a pop- 
ulation of about 3.9 billion in 2100. Our ANTs will focus 
on the predicted peak at 2040 (presumably, an event of 
great policy importance), and attempt to alter this out- 
come of the model by both amplifying and minimizing 
the peak population. 

We will apply ANTs to this simulation by probing 
the 96 variables that must be initialized. We consider 
perturbations of these variables that are within a range 
of 10 percent of the values used in the original model, 
with the actual perturbations constrained to I - 10%, 
-9%, . . . ,0%, . . . , 9%, 10%}. Thus, a "solution" to 
this problem will be a set of 96 values, each of which 
has an integer value on the range -10 to +10. For ex- 
ample, a solution may decrease the first variable by 5 

kits are available from the Institute for Policy and Social Science Re- 
search, Thompson Hall, University of New Hampshire, Durham, NH 
03045. 
8 Ken Simons kindly provided the Pascal code for World3, as well as 
expertise on the model's structure and parameters. 

percent, increase the second by 8 percent, leave the third 
unchanged, etc. 

The two optimization algorithms previously dis- 
cussed, hill-climbing and GA, are used for these ANTs. 
In addition, to help clarify the performance of the ANTs, 
we also use a random-search algorithm. In the random- 
search algorithm, we randomly generate a fixed number 
of potential solutions and then test each of them in the 
objective function-the best observed of these potential 
solutions is then used as the ultimate solution. 

The hill-climbing algorithm used here begins by ran- 
domly picking a "solution" and designating it as the 
status quo.9 At each iteration of the algorithm a new 
solution is created by taking the status quo and inde- 
pendently and randomly altering each perturbation in 
the status quo with probability 2 / 96, giving an expec- 
tation of 2.0 alterations per solution. When a particular 
perturbation is chosen to be altered, a new perturbation 
value is randomly drawn from {-10%,. . . , 10%}. The 
new solution is then tested, and replaces the status quo 
if it has a higher value in the objective function. Each 
iteration of this algorithm requires a single run of the 
simulation model. 

The GA used here begins with a population of 40 ran- 
dom solutions. During each generation of the algorithm 
newly formed solutions are tested on the objective func- 
tion. Solutions are then reproduced by randomly se- 
lecting two old solutions (with replacement) and keep- 
ing the one with higher fitness (this procedure is known 
as tournament selection). This selection process is re- 
peated forty times for each generation, resulting in a 
biased (by better performance) sample of forty solutions 
drawn from the old population. The 40 new solutions 
are then randomly paired. Each pair is subject to mod- 
ification via genetic operators with a 0.5 probability. If 
modified, each solution in the pair is first mutated using 
the same procedure described above for altering the 
status quo point in hill-climbing, except that the initial 
probability of mutation has an expectation of 5.0 alter- 

9 To create an initial set of perturbations, 96 random values are inde- 
pendently drawn from {-10%, -9%,. . ., 0%,. . ., 9%, 10%}, with 

each of the 21 elements equally likely. This same procedure is also 
used for generating each member of the first population in the GA, 
and the sample points used in random-search and the Monte Carlo 
analysis. 
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Figure 1 Original World3 Model (Scenario 2) Predictions, Monte Carlo (n = 2000) Analysis, and Paths Generated by Various ANTs Maximizing 2100 
Population 
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ations (and is then annealed over time, decaying in half 
every 50 generations). Each pair of solutions subject to 
modification also exchanges randomly chosen se- 
quences of perturbations with one another in a cross- 
over operation. After each pair has a chance of under- 
going modification, a generation of the algorithm is con- 
cluded, the newly formed solutions are tested in the 
simulation, and the procedure is iterated. Each genera- 
tion of the GA creates 20 new solutions, and thus re- 
quires 20 runs of the simulation model. The GA de- 
scribed above is quite robust to various changes in its 
underlying parameters and procedures, and a variety of 
reasonable variants appear to work equally well. 

3.1. Unconstrained Maximization of Predicted 2100 
Population 

The first ANT of the model tries to eliminate the ob- 
served population peak by maximizing the predicted 

population in 2100. In essence, we are seeking a 
worst-case scenario of a maximum population stock 
at 2100, assuming only minimal deviations from our 
expected parameters. The objective function for this 
ANT is Mpop:2100(p), where Mpop:2100(Q) is the model's 
predicted population in 2100. Each method was run 
30 separate times on the problem. For each of these 
30 trials, the algorithms were randomly restarted. The 
resulting population paths for the median performing 
ANTs (among the 30 trials) are shown in Figure 1 for 
the hill-climbing (hc2000.median) and GA 
(ga2000.median) methods, requiring 2000 iterations 
of the simulation model. On average, the hill- 
climbing and GA ANTs find ending population val- 
ues that are about six times higher than predicted un- 
der the original model. The best observed ANT found 
a set of perturbations that leads to a final population 
of around 29 billion, versus the model's prediction of 
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4 billion. The dotted vertical line at 2100 indicates the 
range (the two end points), mean (center tick), and 
one standard deviation interval (upper-middle and 
lower-middle ticks) of values observed in a typical 
Monte Carlo analysis. Note that the ending values of 
the ANTs lie well outside of the range observed in the 
Monte Carlo sample (the average value emerging 
from the ANTs is about 6.5 to 8 standard deviations 
above the Monte Carlo mean). 

The descriptive statistics for the solutions emerging 
from the 30 separate trials (each trail beginning with a 
random restart) across the three search methods are 
given in Table 1. The numbers after each method indi- 
cate the total number of iterations of the simulation 
model used in the method. Thus, each of the 30 random- 
search-1000 trials randomly created 1000 perturbations, 
the best of which was used as the ultimate solution. 
Similarly, each hill-climbing-2000 trial iterated the 
status quo for 2000 steps and used the final status quo 
value as the ultimate solution. Lastly, each genetic- 
algorithm-500 used the best solution observed in the 
25th generation of the GA.10 

A number of conclusions can be drawn from Table 1. 
First, both the hill-climbing and GA procedures signif- 
icantly outperform random search. This implies that 
these two algorithms can exploit some underlying struc- 
tural aspects of the problem during the search process. 
Note that with the exception of genetic-algorithm-500, 
these two methods do better on average than the max- 
imum observed during any of the 30 random-search 
trails. Second, for an equivalent number of iterations, 
hill-climbing outperforms GA in this problem. There is 
no guarantee that this performance difference will hold 
in general, and given that the intent of the above ex- 
ample is to illustrate an application of ANTs, we leave 
further analysis of this issue for future research. Finally, 
note that increasing iterations (computational re- 
sources) increases performance, but at a decreasing 

10 The three iteration levels in the hill-climbing and genetic algorithm 
methods were not generated from independent trials. For each run of 
these procedures, three data points (after 500, 1000, and 2000 simula- 
tion iterations) were collected. This provides some indication of the 
potential performance gain from additional iterations in these algo- 
rithms. 

Table 1 Descriptive Statistics for Solutions Emerging from Various 
Methods Designed to Maximizing 2100 Population 

Method Mean (s.d.) Max Min 

Random-search-500 14.9 (1.0) 19.1 13.4 
Random-search-1000 15.2 (1.2) 18.0 13.3 
Random-search-2000 15.7 (0.8) 18.0 14.0 

ANTS 

Hill-climbing-500 22.4 (2.3) 26.0 17.4 
Hill-climbing-1 000 25.1 (2.2) 27.4 20.7 
Hill-climbing-2000 26.6 (2.3) 29.2 22.5 

Genetic-algorithm-500 17.8 (1.4) 20.4 15.7 
Genetic-algorithm-1000 20.7 (1.5) 23.4 17.7 
Genetic-algorithm-2000 23.2 (1.7) 26.1 20.7 

30 trials of each method, all values in billions. 

rate-a typical observation for such optimization prob- 

lems. 

3.2. Maximization of 2100 Population with 

Parsimonious Perturbations 

The second ANT attempts to maximize 2100 popula- 

tion while simultaneously minimizing the number of 

perturbed parameters. Such an ANT is useful for un- 

covering those parameters of most importance to a par- 

ticular outcome, and in so doing highlighting either 

those parameters that should be most carefully esti- 

mated (if you believe the underlying model) or struc- 

tural areas of the model that may need further inves- 

tigation. 

To impose parsimony, we both restrict the search space 

and implement a penalty on excessive perturbations. To 

restrict the search space, perturbations that are less than 7 

percent in absolute value are not allowed-that is, each 

perturbation is restricted to {-10%, -9%, -8%, 0%, 8%, 

9%, 10%}.11 This modification helps the algorithm by re- 

stricting the potential search space to only extreme per- 

turbations. We also impose a penalty for nonzero pertur- 

bations in the objective function. This is done by including 

a cost that increases with the square of the number of 

"Note, however that we use a random generation procedure similar 
to the one defined above (21 possible values), so that the likelihood of 
a perturbation going from a 0% value to a nonzero one is 30% (6 / 20). 
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Figure 2 Nonlinear Effects of Parametric Perturbation 
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nonzero perturbations in the solution. The actual objective 
function was Mpop:2100(P) - 1084(p, p), where 0(() gives 
the squared number of nonzero perturbations in p. By us- 
ing the squared number of nonzero terms, the addition of 
a new perturbation is increasingly penalized. Note the use 
of a scaling parameter (108) to trade off increases in per- 
turbations with increases in 2100 population. 

Figure 1 shows two of the paths (each labeled by 
the parameters that are perturbed) discovered by the 
hill-climbing and GA ANTs. Both algorithms found 
similar sets of parameters.'2 By altering three param- 
eters the ending population can be increased from 4 
to around 14 billion. Note that encouraging parsi- 
mony lessens the magnitude of the model's breakage 

12 In fact, parameters 75 (the fraction of industrial output allocated to 
consumption) and 83 (the reproductive lifetime of females) emerged 
as key perturbations in many of the tests. 

(this will always be the case since the optimization 
with parsimony is always a constrained version of the 
one without parsimony), yet still results in a very dif- 
ferent outcome from that predicted by the original 
model. 

The solutions found using the constrained procedure 
provide a simple demonstration of the impact of non- 
linear effects. Figure 2 shows the original path along 
with perturbations in various model parameters (each 
line is labeled by the parameters involved). While each 
individual perturbation has an impact, the combination 
of the two simultaneous perturbations results in a much 
more extreme effect. Thus, while altering parameter 75 
increases ending population by about 2.3 billion and 
altering parameter 83 increases it by about 1.2 billion, 
the combination of the two parameters causes a 7.4- 
billion increase. Similarly, while parameter 63 (the life 
expectancy normal) alone increases the ending 
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Figure 3 Original World3 Model (Scenario 2) and Paths Generated by Various ANTs Minimizing Peak Population while Conforming to Original Predictions 
prior to 2000 
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population by only 0.3 billion, when it is combined with 
parameter 75 the increase is 5.6 billion.'3 

3.3. Minimizing Peak Population While 
Conforming Before 2000 

The third ANT we explore attempts to minimize the 
peak population observed during any given run of the 
simulation, while simultaneously avoiding deviations 
from the original predictions during the first 100 years. 
One interpretation of this ANT is that we are seeking a 
best-case scenario while having the model still conform 
to known observations. If we assume that the 96 param- 
eters are, say, policy control variables, then an alterna- 
tive interpretation of this procedure is that we are using 

13 For this demonstration, parameters 63 and 75 were both increased 
by 10%, and parameter 83 was decreased by 10%. 

the ANT to discover useful policies (in this case, finding 
a sustainable population path given our past experi- 
ence). To implement this ANT we minimized the peak 
while penalizing percentage deviations away from the 
predicted path before 2000. We accomplish this by max- 
imizing the following objective function: -Mpeak(p) 
- aYt(Mpopt(p) I Mpop t(p ) - 1)2, where Mpeak is the peak 
population observed, MpopI is the population at time t, 
the summation is conducted for t = 1920, 1940, 1960, 
1980, and 2000, p are the original parameters, and a was 
chosen so that a 1-percent average deviation was equiv- 
alent to a 1-billion drop in the peak population. Using 
this function, the hill-climbing algorithm was run 10 
separate times for both 1000 and 2000 iterations. Figure 
3 shows both median solutions and the best solution of 
the ten from the 2000 iteration run. As can be seen from 
the figure, these ANTs are able to overcome the popu- 
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lation momentum of the system generated before 2000 
and substantially lessen the predicted peak population. 

The above objective functions are only a small subset 
of those likely to yield interesting insights. The ANTs 
indicate that dramatic changes in the predictions of the 
World3 model can result from even minor changes in 
some parameters. As previously discussed, the occur- 
rence of such events does not necessarily imply a faulty 
model-good models must be responsive to their pa- 
rameters. Nonetheless, they do indicate the potential for 
extreme errors, as well as suggest structural areas of the 
model that might require further investigation and re- 
finement. 

4. Conclusions 
The growing reliance on large-scale computational 
models is likely to continue as the cost of computation 
declines and as researchers and policy makers attempt 
to confront ever more sophisticated phenomena. The 
comparative advantage of such models is their ability 
to embrace systems characterized by large parameter 
spaces and rampant nonlinearities. Yet, it is these same 
characteristics that make testing and understanding 
such models inherently difficult. 

ANTs allow a new class of testing to occur on com- 
putational models. Given a particular conclusion of the 
model, an ANT can be easily implemented by defining 
a corresponding objective function and an acceptable 
class of model perturbations. Once initiated, the ANT 
automatically probes the model for weaknesses. Unlike 
standard techniques that often look at perturbations in- 
dependently from one another, ANTs are able to find 
important nonlinear interactions among the model's 
perturbations. Through the use of ANTs better models 
can be developed and refined in this complex environ- 
ment. 

ANTs can also be productively employed in those 
models in which one is confident of the underlying sim- 
ulation's behavior. In these cases, ANTs can be used to 
discover worst (or best) case scenarios and therein give 
the user an idea about which parameters should either 
be altered (if possible) or most closely monitored. For 
example, one could use ANTs to actively try and break 
the operation of, say, a simulated aircraft flight system, 
battle field strategy, complex control system, or a com- 

puter interface or security system. In a model with pol- 
icy control variables, ANTs can be used to discover the 
best policy given the model and a well-defined set of 
policy objectives. Branley et al. (1997) provide a variety 
of examples of such decision oriented applications us- 
ing a related notion called "candle-lighting analysis." 

Tools like ANTs provide a window into the structure 
of complex simulation models. Such a window may al- 
low us to begin to uncover some generic properities of 
these types of models. For example, do complex models 
imply complicated, nonlinear, parameter spaces? How 
sensitive are these models to initial conditions? The in- 
herent flexibility of ANTs allows us to probe these mod- 
els in a variety of ways, and from these incursions begin 
to develop answers to these fundamental questions. 

Obviously, ANTs alone are not sufficient to guarantee 
quality modeling. Careful thought and refinement will 
always be needed on the part of the modeler to insure 
useful models. Tools like ANTs will certainly help in 
this process, but cannot substitute for it. The discoveries 
of ANTs may force changes in the model, closing old, 
and perhaps opening new, vulnerabilities. The active 
probing of the model by ANTs provides input from a 
ready, and tireless, critic. Like ants seeking food at a 
picnic, a variety of avenues are creatively explored, and 
it is only with extreme care and foresight that the meal 
remains untouched.'4 

14 This paper has benefited from discussions with Robert Axelrod, Paul 
Fischbeck, Pierre L'Ecuyer, Murray Gell-Mann, Scott Page, Laura Pain- 
ton, Ken Simons, Sally Sleeper, two anonymous referees, and other 
colleagues at both Carnegie Mellon University and the Santa Fe Insti- 
tute. Research support was provided by the National Science Foun- 
dation SBR-9411025, the Center for Integrated Study of the Human 
Dimensions of Global Change supported by a cooperative agreement 
between the NSF SBR-9521914 and Carnegie Mellon University, and 
the Santa Fe Institute. 
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