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Abstract: The SLEUTH cellular automaton urban growth model was calibrated against historical growth in the
Houston-Galveston-Brazoria Consolidated Metropolitan Statistical Area (Houston CMSA) from 1974-2002. The
Houston CMSA presents an interesting case study of modeling wban growth using SLEUTH. Houston 1s
perhaps the archetypal Sunbelt city and experienced rapid population growth over the calibration period.
Compared to many other United States cities, Houston’s local governments have a laissez-faire approach to
development; in fact Houston is the only major US metropolitan area with no zoning regulations. Calibration
of SLEUTH reveals that over the study period urban growth in the Houston CMSA was dominated organic
growth, with urban expansion occurring at the urban edges of existing urban centers. Lack of zoning regulations
1s thought to play an important role on the outward growth of urbanization in Houston.
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INTRODUCTION

The urbanization has been described as a massive
unplamned global experiment affecting increasingly large
areas of the Barth (Alig and Healy, 1987). Each year, the
world’s urban population 1s mcreasing by approximately
67 million people or 1.3 million every week. By 2030,
approximately 5 billion people are expected to reside in
urban areas and will account for 60% of the planet’s 8.3
billion people (UN, 2002). The increasing global
urbamization 1s mirored within the Umted States. From
1990 to 2000, eight of the United States twenty-five
largest metropolitan areas grew by at least 20%
(TJSCB, 2001). The 11th fastest growing metropolitan area
from 1990-2000 was Houston, Texas. Houston has been
nicknamed the beltbuckle of the Sunbelt (Fisher, 2003)
and 1s unique in that it 1s the only major metropolitan city
that functions without zoning regulations or plans
(Vojnovic, 2003).

Modeling, especially computer modeling is an
essential tool for the analysis and particularly for the
prediction of the urban growth (Silva and Clarke, 2002). In
particular Cellular Automata (CA) models have been
successfully used i modeling wurban
Unfortunately, the successful application of a particular
urban growth model in one particular geographical area

growth.

does not necessarily mean that it will be successful in
another area. This is because of the differences in the
physical and social environments such as =zoning
regulations m Houston, TX. Therefore, before using
urban growth models to mnitate future growth of urban
areas, 1t 18 necessary to test their ability m order to
simulate past observed land transformations of
specific areas (Batty and Xie, 1994, Clarke et al., 1996;
Liand Yeh, 2000).

MATERIALS AND METHODS

Study  area: The  Houston-Galveston-Brazoria
Congsolidated Metropolitan Statistical Area (Houston
CMSA) encompasses three Primary Metropolitan
Statistical Areas (PMSAs) in eight counties on the Texas
Gulf Coast (Fig. 1). In 2000, the total population of the
Houston CMSA’s was 4.67 million making it the 10th
largest US metropolitan statistical area. Most of the
region’s population is concentrated in and around the city
of Houston. The Houston PMSA occupies six counties:
Chambers, Fort Bend, Harris, Liberty, Montgomery and
Waller. The two other PMSAs, Galveston-Texas City and
Brazoria, each occupy a smgle county, Galveston and
Brazoria, respectively. The 2002 population of the
statistical areas and counties is shown in Table 1.

Corresponding Author:

0. Hakan, Department of Industrial Engineering of Forestry, Faculty of Forestry,

Kahramanmaras S. University, Ismetpasa Mahallesi, Kultur Sokak, Kharamanmaras 46100, Turkey
Tel: +90-344-233-7666/368 Fax: +90-344-221-7244
1843



J. Applied Sci., 7 (14): 1843-1853, 2007

Fig. 1: The eight counties comprising the Houston Consolidated Metropolitan Statistical Area (CMSA)

Table 1: Area and population of geographic entities within the Houston CMSA study area

Regions 2000 population* Area (km?)
Houston CMSA 4,669,571 22,736
Houston PMSA 4,177,646 16,328
Brazoria PMSA 241,767 4,138
Galveston PMSA 250,158 2,270
Brazoria county 241,767 4,138
Chambers county 26,031 1,551
Fort Bend county 354,452 2,266
Galveston county 241,767 2,270
Harris county 3,400,578 4,605
Liberty county 70,154 3,004
Montgomery county 293,768 2,704
Waller county 32,663 1,335
City of Houston 1,953,631 1,539

#: US Census, 2001

Houston, Texas, 13 located on the low relief Gulf
coastal plain approximately 50 miles from the Gulf of
Mexico (Fig. 2). In 2000, Houston’s population was
1.95 million making it the fourth most populous city in
the nation, trailing only New York, Los Angeles and
Chicago (US Census Bureu, 2001). The largest city in
Texas, Houston 1s also the only United States city
that functions  without Zoning regulations
(Vojnovic, 2003).

During the 1970°s the region experienced an
economic boom fueled by high oil prices, but with
decliming o1l prices during the 1980°s the area had a severe
economic downturn. However, despite Houston’s 1980°s
economic downtum, its population doubled over the
study period from approximately 2.2 million m 1970 to
4.5 million i 2000 (TSDC, 2003). Figure 3 shows past and
projected population growth in the Houston CMSA from
1960 to 2030.
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Fig. 2: 2002 Land use/land cover map of the Houston Consolidated Metropolitan Statistical Area (CMSA) derived from
Landsat ETM+ images with roads and county lines overlaid
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Fig 3: Past (black bars) and projected (gray bars)
population in the Houston Consolidated
Metropolitan Statistical Area (CMSA). Population
figures and estimates are from The Perryman Group
(2002) and Texas State Data Center (2003),
respectively

SLEUTH requires land use, urban extent, excluded
areas, transportation network and slope themes (layers) to
perform a simulation as well as hillshade image for
visualization (Table 2). For statistical purposes, urban
extent from at least four time periods and transportation
layers from at least two years are required. If land use
change analy=is iz of interest, land use/land cover from at
least two time periods iz alzo required.

The method of the study consisted of three main
steps: 1 DPre-processing of digital images (geo-
rectification), 2 Unsupervised ISODATA (Iterative self-
organizing data algorithm) clustering and 3 Post-
proceszing of digital images (resampling). All input
images were reprojected into Albers Equal Area Conic
Projection using first order polynomial transformation and
nearest neighbor algorithm. After this procedure, subsets
for the study area were extracted from original full-scene
images. All images were resampled into 100 m after the
classification of satellite images was finished. This
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selected spatial resolution represents a balance between
adequate representation of the Houston’s landscape and
the processing (CPU) requirements of the SLEUTH model.
Thus spatial resolution resulted in a model spatial domain
of 184.3 by 210 km (1843 by 2100 pixels) encompassing
approximately 22,736 km’. All necessary resampling was
accomplished using a nearest neighbor techmque. Finally,
all inputs were converted into the grayscale 8-bit GIF
format which is required by SLEUTH.

Urban extent and land cover was obtained from the
Landsat Multispectral Scanner (MSS), Thematic Mapper
(TM) and Enhanced Thematic Mapper Plus (ETM+)
images listed in Table 3. For each time period, a mosaic of
three MSS or TM covered the 8-county
metropolitan area. Four Landsat MSS Triplicate scenes
were obtained from the USGS Land Processes Distributed
Active Archive Center (DAAC). From the triplicates, only
the 1974 MSS and 1984 TM scenes were used which were
augmented by Landsat TM and ETM+ images from 1992
and 2002,

1992 and 2002 Land use/land cover nformation for

the Houston metropolitan area were developed from two

SCEIICS

different sources. Land use for 1992 was obtamned from
the National Land Cover Dataset (NLCD) (MRLC, 2003).
For the SLEUTH modeling, the NLCD’s original land
cover classes were reclassified to match the 2002 land use
classification schema. 2002 Land cover map was obtained
from three Landsat ETM+scenes (Table 3). Each scene
ISODATA
unsupervised classification, the resulting land cover

was individually classified using the
classes were then merged into six general land cover
classes (Table 4).

Finally, the individual land cover maps were
mosaiced into a single map (Fig. 1). The classification
accuracy of the 2002 land cover map was assessed
through comparison with a similar 2002 land cover map
produced by the Houston-Galveston Area Council
(H-GAC). A confusion matrix of the assessment is
presented in Table 5 (Congalton, 1991; Congalton and
Mead, 1983). Compared to the H-GAC map, the overall
accuracy of the classification was 87.3% with a kappa
(Kpe) coefficient of 0.82.The water and agricultural classes
had user’s accuracies in excess of 90% while forest and
urban areas were less accurately classified at 83.8 and
77.8%, respectively. This comparison provides at least a
limited indication that the remote sensing derived urban
extents and land cover, at least for 2002, are of adequate
quality for SLEUTH inputs. Urban extent from 1974 and
1984 was derived wusing the wusing ISODATA
unsupervised classification techmque to segment the

Table 2: Tnput data sources and vears for SLEUTH model

Theme Source Format  Years
Urban Landsat M3S, TM, ETM+  Raster  Approx**1974, 1984,
1992, 2002
Lulc Landsat TM, ETM+ Raster  Approx** 1992, 2002
Road* Shapetiles Vector 1974, 1984, 1990,
2002, 2025
Excluded  Tandsat TM Raster  N/A
Slope National Elevation
Dataset (NED) Raster  N/A
Hillshade National Elevation
Dataset (NED) Raster  N/A

*: Not used for calibration; **: Multiple satellite images were required to
cover the study area shown in Table 3 for all image dates

Table 3: Landsat scenes used in the study

Sensor Path/Row Date

1970s Era

MSS 025/039 1974-07-13; 1974-06-26
MSS 026/039 1974-06-26; 1974-06-27
MSS 025/040 1973-04-01; 1974-06-26
MSS 026/040 1975-10-17; 1976-09-22
1980s Era

™ 025/039 1985-06-01

™ 026/039 1984-07-15

™ 025/040 1985-06-01

™ 026/040 1986-10-17

1990s Era

™ 025/039 1992-07-06

™ 026/039 1990-07-08

™ 025/040 1992-07-06

™ 026/040 1992-10-01

2000 Era

ETM+ 025/039 2002-01-15

ETM+ 026/039 2002-02-23

ETM+ 025/040 2002-01-15

ETM+ 026/040 Not used

Table 4: Land use/Land cover categories determined from the 2002 Landsat
ETM+ and used in SLEUTH and their equivalents in the NLCD
NLCD
Low intensity residential
High intensity residential
Commercial/Tndustrial/ Transportation
Shrub land
Orchards/Viney ards/Other
Grasslands/Herbaceous
Pasture/Hay
Row crops
Small grains
Fallow
Urban/Recreational grasses
Deciduous forest
Evergreen forest
Mixed forest
Open water
Woody wetlands
Emergent herbaceous wetlands
Other Rare rock/S8and/Clay
Quarries/Strip mines/Gravel pits
Transitional

SLEUTH
Urban

Agriculture

Forest

Water
Wetland

individual MSS and TM 1mages (Table 3) into urban/non-
urban classes which were then mosaiced. Urban extent for
1992 and 2002 were obtained from the Landsat TM-
derived land cover maps. Urban extent for all years 1s
shown i Fig. 4. Information concermng which areas
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Fig. 4: Urban extent in the Houston Consolidated Metropolitan Stafistical Area (CMSA) for 1974, 1984, 1992 and 2002

Table 5 Confusion matnx forthe 2002 Land use/Land cover map

Producers Users

Land cover Urhan Aoric, Forest Water Wetland Other Row total accuracy (¥e) accuracy (%6)
Urhan 1 1 1 1] 36 933 Tia
Agriculture 4 0 126 03 929
Forest 7 1] a0 9.3 838
Water 0 0 36 972 972
Wetland 19 536 79.0
Other 0 2
Column total 30 131 7

Ovwerall clagsification accuracy: 87.3%; Kappa (kpe): 0.82

Table 6 Excluded layer wath respective walues to be used in caibration
phase in SLEUTH model

Land cover Area excluded from development (%6
Agriculture 40

Forest 40

Floodplain 40

Wetlands ]

Parks 90

W ater oo

Unclagsified 100

in the Houston CMSA should be excluded from
development was obtained from a variety of sources.
Because flooding iz a major problem in Houston,
floodplaing were specifically excluded as were
parks. For all counties except Harris, floodplain extent

was derived from digital Federal Emergency Management
(FEMA) floodplain maps. Harris County floodplain
maps were obtained from the Texas Coastal Watershed
Program. Park maps were obtained the Texas General Land
Office. Forest, agriculture, wetland and water extents were
determined from 2002 land cover classification. The
percent of each land cover class that was determined to
be excluded from development is shown in Table 6.
Transportation network maps for 1974,1984,1990 and
2002 were constructed as follows. First, vector GIS themes
of the road infrastructure in the Houston CMSA in 1990
and 1999 were obtained from the Houston-Galveston Area
Council (H-GAC). Then using printed Texas Department
of Transportation (TxDOT) highway maps, major
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Fig. 5: Major roads in the Houston Consolidated M etropolitan Statistical Area (CMSA)in 1974, 1984, 1992 and 2002

highways existing during the four years of inferest were
identified and extracted from the original GIS themes. A
vector-to-raster conversion was used to convert the
gelected roads into a raster grid. The route of the planned
TxDOT?s, Trans-Texas Corridor (TTC, 2006) road through
the study area was also identified Thiz Corridor is
planned to be constructed by 2025 and while not used in
the calibration, forms an integral part of the transportation
infrastructure that was used for predictive modeling of
future urban extents. The road network for all years ig
gshown in Fig. 5. Slopes and the hillshade image were
derived using standard GIS techniques from the National
Elevation Dataset (NED) Digital Elevation Model (D EM)
{Gesch et al., 2002) which was obtained from the Texas
Natural Resources Information System (TNRIS, 2006).
The number of recent publications (Batty and
Xie, 1994; Birkin ef ai., 1996; Clarke ¢f af., 1996; Landig
and Zhang, 1998; Silva and Clarke, 2002) describing the
calibration of SLEUTH for metropolitan areas worldwide
attests to the importance of the calibration procedure. The
model’s ability to successfully reproduce observed

growth and predict future growth of the Houston region
depends on the success of the calibration phase.

SLEUTH ufilizes a three phase (coarse, fine and final)
calibration approach. During each phase, the calibration
process identifies the wvalues for the five growth
coefficients that produce the model that best matches the
observed pattern of urban growth over the calibration
period. In this study the calibration period ran from 1974
to 2002 during which urban extent maps were available for
1974,1984,1992 and 2002.

The SLEUTH calibration process is an automated
brute force method in which numerous permutations of
the five control parameters are tested by performing
multiple runs running over the 1974 to 2002 period. For
each of the four comparizons, 13 different measures of the
goodnesz-of-fit measures (Table 7) between the modeled
and the mapped urban extent are used to assess the
accuracy of the simulated urban growth.

While no single metric has been demonstrated to be
the most effective at discriminating the best suite of
coefficients, the Lee-Sallee mefric has been usged to
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Table 7: Metrics that can be used to measure the goodness of fit in the SLEUTH model

Name Description

Product All other scores multiplied together

Compare Muodeled population for final yearfactual population for final year, or TF Pyogreq- Pama { 1 - (modeled population for final year/actual population
for final year)}.

Pop TLeast squares regression score for modeled urbanization compared to actual urbanization for the control years

Edges Least squares regression score for modeled urban edge count compared to actual urban edge count for the control years

Clusters TLeast squares regression score for modeled wban clustering compared to known urban clustering for the control years

Cluster Size Least squares regression score for modeled average urban cluster size compared to known average urban cluster size for the control years

Lee-Sallee

A shape index, a measurement of spatial fit between the model’s growth and the known urban extent for the control years

Slope Least squares regression of average slope for modeled urbanized cells compared to average slope of known urban cells for the control vears
(%) Urban  TLeast squares regression of percent of available grid cells urbanized compared to the urbanized grid cells for the control years

X-Mean Least squares regression of average x_values for modeled urbanized cells compared to average x_values of known urban cells for the control years
Y-Mean Teast squares regression of average v _values for modeled urbanized cells compared to average v _values of known urban cells for the control years
Rad Least squares regression of average radius of the circle which encloses the urban grid cells

F-Match A proportion of goodness of fit across land use classes. {# modeled LU comrect/(# modeled TU correct + # modeled TU wrong)}

describe the replication of the historical datasets, in
other words, as the primary goodness-of-fit measure.

At the end of the coarse and fine calibration stages,
the calibration result metrics are sorted and parameters of
the highest scoring model runs are used to begin the next,
more refined sequences or permutations over the
parameter space. This calibration approach relies on the
availability of significant computing power and benefits
significantly from parallel processing and high
performance computing methods. Both coarse and fine
calibrations were run on a 1.3 GHz Intel Limux
workstation while the final calibration phase was run on
a 16-node Beowulf PC Cluster in the Rocky Mountain
Mapping Center of the U.S. Geological Survey.

During the coarse calibration phase, SLEUTH was
tested values of 1, 25, 50, 75 and 100 for each of the five
control parameters. This required testing of 3, 125 (5%
different parameter sets, each of which required a separate
model run. From all combinations, the three runs with the
highest Lee-Sallee scores were selected to form the
parameter range used in the fine calibration (Table ).

For the fine calibration, same procedure was followed
and resulted in the control parameter values shown in
Table 9. A similar approach was taken during final
calibration which produced the set of control parameters
adapted for the Houston CMSA (Table 10). The
second sections of Table 8-10 list the optimum
values for the diffusion, breed, spread, slope and road
gravity coefficients and shows the narrowing of the range
of parameters for the best-fitting models produced at the
end of each calibration stage.

The calibration process produces coefficient values
that best sumulate historical growth for a region. However,
due to SLEUTH’s self-modification qualities, the values of
the five growth coefficients at the start of the calibration
period may differ substantially from those at the end of
the calibration period.

To achieve the best predictions of future growth mn
the Houston CMSA, it 18 desirable to use the best

coefficients derived from calibrating and running SLEUTH
for the entire historical calibration peried that produces a
single set of finishing date coefficients to initialize
forecasting (Clarke et al., 1997). However, due to the
random variability of the model, averaged coefficient
values taken from multiple Monte Carlo-iterations will
produce a more robust forecasting coefficient set than
those taken from the single best simulation, therefore an
average of the three best simulations was used.

It 18 possible to see that the coefficients that control
urban growth over the calibration period change through
time as it shown for the three comparison years in
Table 11. The increase m the spread coefficient and
decrease in slope resistance over the calibration period
are the most obvious changes. The spread coefficient
jumped from 77 to 100 after self-modification while slope
resistance nearly halved from 40 to 22. One possible
interpretation of these values is that these changes reflect
the economic boom and bust cycles of Houston during
the calibration period. The increase in the spread
coefficient may indicate every increasing growth away
from the study area’s main nucleus-the city of Houston.
Despite its relatively low slopes, as urban areas continue
to expand, less space remains for urbanization. Thus, self-
modification causes slope resistance to decrease.

An additional statistical validation of the models
predictive performance was undertalen by running the
model in prediction mode and using the 1974, 1984 and
1992 urban extents to predict urban extent n 2002. The
modeled urban extent was then compared statistically to
a 2002 urban extent map which was derived from Landsat
EMT+images. This comparison is graphically shown in
Fig. 6.

An error (confusion) matrix (Clarke and Gaydos, 1998;
Congalton and Mead, 1983) and kappa coefficient were
constructed to quantify the degree comparison accuracy
{(Table 12). The results are encouraging and support the
fact that the calibration process resulted mn a suite of
control parameters suitable for predicting future urban
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Table 8: Coarge calibration, 526 rows x 462 columns

Run Product Compare Population Edges Cluster Cluster size Lee-Salee
70 0.00148 0.78558 0.99959 0.89401 0.61675 0.37173 0.54257
66 0.00448 0.78437 0.99950 0.92294 0.62635 0.38578 0.54219
60 0.00753 0.78066 0.99973 0.91913 0.97203 0.45256 0.54217
Diffusion Breed Spread Slope resistance Road gravity

1 1 50 100 1

1 1 50 75 25

1 1 50 50 1

Table 9: Fine calibration, 1051 rows x 923 columns

Run Product Compare Population Fdges Cluster Cluster size Lee-Ralee
167 0.00032 0.64802 0.99942 0.76536 0.89472 0.47960 0.53129
153 0.00462 0.64451 0.99943 0.82819 0.62212 0.57374 0.53115
174 0.00514 0.64463 0.99927 0.82730 0.91520 0.52199 0.53115
175 0.00514 0.64463 0.99927 0.82730 0.91520 0.52199 0.53115
176 0.00514 0.64463 0.99927 0.82730 0.91520 0.52199 0.53115
154 0.00412 0.64626 0.99924 0.82067 0.74215 0.57311 0.53110
Diffugion Breed Spread Slope resistance Road gravity

1 1 60 80 25

1 1 60 60 15

1 1 60 100 1

1 1 60 100 5

1 1 60 100 10

1 1 60 60 20

Table 10: Final calibration, 2100 rows x 1843 columns

Run Product Compare Population Edges Cluster Cluster size Lee-Salee
485 0.00541 0.53550 0.99910 0.84385 0.99834 0.43084 0.51069
226 0.00501 0.53286 0.99927 0.86201 0.99666 0.38350 0.51061
215 0.00502 0.53284 0.99928 0.84%966 0.99898 0.39583 0.51053
Diffusion Breed Spread Slope resistance Road gravity

1 2 77 40 15

1 1 77 35 12

1 1 77 25 15

Table 11: Derived forecasting coefficients results

Year Diffusion Breed  Spread Slope resistance Road gravity
1984 1 2 84 36 15
1992 1 2 91 31 16
2002 1 3 100 23 17

Table 12:  Confusion matrix for predicted urban extent in 2002 in percent

and (number of grid cells)
Measured
Non Urban Urban Row totals
Modeled
Non Urban 98.9(3454104)  15.0 (5663%)  90.7 (3510743)
Urban 1.1(37368) 85.0(32218%) 9.3 (359357
Column totals 90.2(3491472)  9.8(378828) 100.0 (3870300)

Overall accuracy: 97.57%; Kappa coefficient: 0.8593

growth in the Houston area. Overall agreement between
the modeled and measured urban extents 1s 98% with a
K value of 0.86, which according to Congalton (1996)
represents a strong agreement between the two maps.

As 18 evident m Table 12, errors of omission, pixels
for which the model failed to identify areas classified as
urban in the Landsat images are larger (15%) than errors
of commission where the model incorrectly predicted
urbamzed pixels to occur (1.1%). As can be shown in
Fig. 6, the spatial distribution of omission errors 18 not
uniform. The model under-predicts urban extent along the

northwest to southeastern portions of the Houston
metropolitan, along the coast as well as in the Freeport-
Lake Jackson area.

RESULTS AND DISCUSSION

The calibration process has resulted m the
determination of a set of diffusion, breed, spread, slope
resistance and road gravity growth coefficients that
enable SLEUTH to quite accurately simulate the observed
growth in the Houston CMSA over the period 1974 to
2002. The successful calibration process also allows
several conclusions concerning SLEUTH’s ability to
successfully model growth in the Houston Metropolitan
area to be drawn.

First, it 1s important to recognize that compared with
many other cities, urban growth in Houston 1s largely
unimpeded by topography and zoning restrictions.
Second, as is typical with many Sunbelt cities over the
study period the population of Houston has soared,
tripling from 1.5 million m 1960 to 4.5 mullion 1n 2000, This
population growth is projected to continue with the
Houston CMSA’s population estimated at 7.5 million by
2030. The eight-county Houston metropolitan study
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Fig. 7: SLEUTH growth coefficients obtained at the end
of each calibration stage

contains a land area of 20,019 km?® Only 5% was occupied
by urban settlements in 1974, however, by 2002, the
urbanized area accounted for 19% which represents
nearly a quadrupling of urban area over the 28 vear
study period.

The Lee-Sallee metric was chosen our primary
goodnesz of fit measure in szelecting the appropriate
model runs throughout the calibration procedure. If the
model grows in different ways or in different directions
the Lee-Sallee will reflect that. The Lee-Sallee metric
computed by comparing the SLEUTH predicted urban
extent in 2002 obtained after final calibration to an
independently derived remotely-sensed land use/land
cover map was 0.51. Few published SLEUTH results
include output statistics that can provide a context for our
results. Silva and Clarke (2002) modeled urban growth in
Lizbon and Porto, Portugal using SLEUTH urban growth
model. They achieved a Lee-Sallee value of 0.35 for
Lisbon and 0.58 for Porto. Clarke and Gaydos {(1998)
achieved a Lee-Sallee value of 0.30 and they emphasized
that even a 30% match was quite good for their study.
Thus, it appears that the calibration process for Houston
has been successful.

The Houston CMSA presents a very low value of
diffusion and breed and very high spread coefficient and
low slope coefficients (Fig. 7). The high values of the
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spread coefficient (100) relative to diffusion (1) and
breed (3), mdicates that the calibration process has
successfully captured the organic nature of the
Houston’s growth. The spread coefficients found here are
much higher than those found in previously published
studies. Clarke and Gaydos (1998) have modeled urban
growth in San Francisco and Washington/Baltimore,
reported much lower spread coefficients of 19 and 21,
respectively. Yang and Lo (2003) modeled urban growth
i Atlanta, Georgia, using the SLEUTH and reported a
spread coefficient of 41, respectively.

Compared to other areas, the slope resistance
coefficients for this study (22) fall on the lower end of the
range of previous studies. Clarke and Gaydos (1998)
reported slope resistance coefficients of 31 for San
Francisco and 10 for Washington/Baltimore. Yang and Lo
(2003) reported a value of 95 for Atlanta. Houston’s
relatively low slope coefficient is probably due to lack of
topographic constraints on growth in the Houston area.
This gives extra strength to the model’s own ability to
automatically calibrate itself.

The determined road gravity coefficient for the
Houston CMSA was 17. It may be low in part because
highway expansion in the Houston metropolitan area
during the study period present consisted primarily of
upgrading existing roads rather than developing roads in
areas where non existed before. However, a new major
transportation construction, Texas Corridor, 18 plammed to
be finished in 2025 by Texas Department of
Transportation (TXDOT) and will be included in
predicting Houston’s future growth.

CONCLUSIONS

As perhaps the city of Houston has grown rapidly
since the 1970’s, the Houston Consolidated Metropolitan
Statistical Area presents a unique case study in modeling
of urban growth using the SLEUTH cellular automata
model. SLEUTH was found to be well suited in the
historical growth of Houston for the period 1974-2002.
This study is unique in several ways: first, it represents
the first modeling of wban growth of a Consolidated
Metropolitan Statistical Area using SLEUTH. Moreover,
the city of Houston is the only major metropolitan area
operating without a zomng plan and with very little
topographic control on urban expansion. Therefore, this
study represents calibration of the SLUUETH model under
the case where growth is virtually unrestricted by either
natural barriers or governmental controls.

This study describes an exhaustive calibration of the
SLEUTH model to data from the Houston-Galveston-
Brazoria Comsolidated Metropolitan Statistical Area
(Houston CMSA). The derived coefficients are
comparable with the limited published values from other

SLUETH case studies. The coefficient values computed
here during this demandmng calibration phases will be
used 1n predicting urban growth in Houston CMSA and
also land use/land cover change will be simulated
throughout 2030.
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