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Abstract 
 

Temporal Calibration Sensitivity of the SLEUTH Urban Growth Model 

by 

Jeannette Therese Candau 

SLEUTH is a coupled cellular automata model of urban and other land cover 

change. This research focuses only on the urban component of the model. 

SLEUTH was calibrated using historical urban and land cover data that aid in 

obtaining an ideal set of parameters for forecasting land cover change. The oldest 

data sets were used to initialize the model and subsequent, or “control,” data 

were used for goodness-of-fit measurements over time. Due to the considerable 

computation required for calibration, previous research has implemented a “brute 

force” calibration methodology that steps through parameter ranges and spatial 

resolution at different scales in three phases, from rough to fine-grain. The area in 

and around the city of Santa Barbara, California, was used to examine the 

sensitivity of this calibration process to scaling. Urban areas were defined by 

identifying and digitizing built structures from aerial photography for the years 

1929, 1943, 1956, 1967, 1976, 1986, and 1998 in a geographic information 

system. These digitized layers were then converted to raster format at a spatial 

resolution of 30 m. Multiple calibrations of the model were executed by varying 

the temporal and spatial resolution of the input data set. First, it was found that 

SLEUTH calibration is not scalable across image resolutions. Secondly, for Santa 

Barbara, decadal data from the last forty years proved more effective for 

calibration than including the entire historical profile. These findings point to 

more effective and efficient calibration methods of SLEUTH as well as other 

cellular automata based land cover models.  
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C h a p t e r  1  

1 INTRODUCTION 

Over the last century the presence of urbanization on the landscape has increased and 

intensified. Radically altering biotic, hydrologic, and land cover features; urban 

development has intense environmental impacts on local, regional and global scales. 

As a driving force in global change, the need to understand the dynamics of urban 

land use transitions and forecast urban growth patterns in an accurate and efficient 

manner is ever more pressing.  

Urbanization is shaped by top down (environmental, political, socio-economic) 

factors as well as bottom up (personal, local, coincidental) choices. Describing the 

many drivers associated with urban change, and understanding their interrelatedness, 

is a massive and necessarily imperfect undertaking. Models generalize the intricacies of 

phenomena and offer an abstraction of the reality they represent. This abstraction, 

while not as precise as the reality, can offer an accurate, and more easily understood 

picture of a process. By applying models to the structure and complex dynamics of 

urbanization, primary spatial patterns and trends of growth can be simulated and a 

better understanding of the system as a whole may be achieved.  

Urban researchers have used models to explain urban form since the early part of the 

19th century when von Thunen published his classic model of agricultural location 

with respect to market places in 1826. The importance of von Thunen’s observation 

of land use distribution was reiterated by Alonso’s Bid-Rent Theory (1964) that 
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expanded upon von Thunen’s theory by incorporating housing stock and land value 

to explain why particular land use patterns arise. Zipf’s Rank-Size Rule applied to city 

size gave structure to the size distribution of settlements on the landscape. The 

internal structure and growth of cities centered on a central business district was 

examined in Burgess’ Central Zone Theory (1925), Hoyt’s Sector Theory (1939) and Harris 

and Ullman’s Multiple-nuclei Theory (1945). While the models developed from these 

theories are useful in a general sense, their static nature disregards the dynamic 

processes of urban development. 

The quantitative revolution in urban studies of the 1960’s and 1970’s led to the 

development of a diverse array of urban simulation models that explored the process 

of growth (Batty, 1981). A drawback of these models is that they were very 

complicated, and largely driven by technology rather than theory and failed to achieve 

the goals held out for successful urban models (Batty, 1981). Urban growth modeling 

was hindered by the central pursuit of explaining and modeling the origins of 

locational change (Liu, 2001).  

The complex systems approach towards modeling suggests the multitude of 

interactions that take place on a micro scale form the basis of system-wide behavior. 

A methodology developed from complex systems is cellular automata (CA) 

simulation. First introduced by Von Neuman in 1966, CA presented the idea that a 

type of computing machine could not only reproduce itself, but could generate a 

machine of greater complexity than the original through the repeated application of a 

few simple rules. CA’s can function upon a lattice, which make them explicitly spatial. 
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They operate through simple local rules, and are dynamic. In 1979 Tobler made the 

formal link between CAs and geographic modeling. In the last two decades CA have 

proven a useful tool for modeling dynamic urban systems (White et al., 1993; Papini 

and Rabino, 1997) yet literature regarding the calibration of these models remains 

sparse. Mathian et al., (2000) point out that various techniques of modeling dynamic 

spatial processes exist, but methods of calibration have lagged behind in development.  

As a way of simulating the dynamics of urban processes Clarke and Hoppen (1997) 

developed a modified cellular automaton of urban growth. Referring to the names of 

the input data used to initialize the model, Slope, Land-use, Exclusion, Urban, 

Transportation, and Hillshade, the model derives its name: SLEUTH. SLEUTH is a 

portable and scale independent model (Kramer, 1996) that has been applied in the San 

Francisco Bay Area (Clarke and Hoppen, 1997; Clarke et al., 1997), in the 

Washington-Baltimore region (Clarke and Gaydos, 1998), in the EPA designated Mid-

Atlantic Integrated Assessment region (Candau and Clarke, 2000), and in the Middle 

Rio Grande Basin (Hester, 1999). Additionally, outside of the United States, SLEUTH 

has successfully been applied to the cities of Lisbon and Porto, Portugal (Silva and 

Clarke, forthcoming) and Mexico City, Mexico. 

Santa Barbara, like most parts of California, is expecting an increase in population 

over at least the next thirty years. Area leadership has recognized that increased 

pressure to develop limited available lands could jeopardize the high quality of life 

enjoyed by Santa Barbara residents. Because of this, over the last several years an 

aggressive approach has been taken to involve a diverse cross section of the 
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community in discussing the future urban growth of the region and initiating planning 

efforts to protect the many amenities found in Santa Barbara, while maintaining a 

strong and growing economy. This strong interest in growth trends and community 

involvement has initiated the use of several types of urban models to explore and 

visualize future growth scenarios. These modeling efforts include the UGROW 

systems dynamic model, SCOPE systems dynamic model, UCIME integrated 

modeling effort, and SLEUTH.  

The value of a model's predictions is only as good as the model's ability to be 

effectively calibrated (Clarke et al., 1997). Urban CA’s are developed to represent the 

phenomena of urban development in a general way. Through the process of 

calibration, model parameters are refined to accurately represent an instance of that 

phenomena (e.g.; a particular city or region) (Silva, forthcoming). However, calibration 

of urban CA is rare, and testing of CA calibration methods has not been done. The 

need to address this knowledge gap regarding CA calibration is obvious. In an effort 

to better understand and define the efficacy of urban CA model calibration this 

research tests the sensitivity of the calibration methods of SLEUTH to scale and 

temporal input variations when applied to the Santa Barbara area. Lessons learned 

here will apply not only to SLEUTH, but may be transferred to CA calibration in 

general and inform the fields of urban and land use modeling, CA modeling and 

dynamic systems modeling. 

The SLEUTH model is calibrated using historical data layers as controls. Clarke et al. 

(1997) described this methodology of robust calibration by way of visualization and 
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testing of alternative coefficient set solutions. In the implementation of this 

methodology, long-term calibrations that reach far back into the past are difficult and 

costly to assemble. This is due to the difficulty of generating complete data layers, and 

the inconsistency of data sources, classification and quality. Because of the increasing 

availability of remotely sensed data since the mid-sixties, shorter-term calibrations, 

utilizing data acquired from that period to the present, can provide more objective 

and consistent data classifications that will more reliably cover entire regions. In 

previous SLEUTH applications it has been assumed that the more historical data 

layers used, and the longer time period they represent, the better the calibration. This 

research, sponsored by the U.S. Geological Survey’s Urban Dynamics project, 

challenges that assumption, and questions the importance of the temporal structure of 

calibration data. The null hypothesis of this research is: The duration and number of 

years used as controls for calibration of SLEUTH in the Santa Barbara study area will 

have no affect on the calibration results. In testing this hypothesis SLEUTH 3.0 will 

be applied to the Santa Barbara South Coast Region, the efficacy of long-term versus 

short-term calibration data for forecasting urban growth will be tested, the 

effectiveness of a set of SLEUTH calibration metrics for determining a best 

coefficient set will be considered, and the behavior of SLEUTH coefficients during 

calibration and forecasting will be illustrated.  
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C h a p t e r  2  

2 BACKGROUND 

2.1 Urban Theory and Modeling 
The use of models in scientific research is by no means new. This idea comes from 

the way people react with the real world (Liu, 2001). Virtually all systems in the real 

world are very complex. In order to explore the natural world, simplifications of real 

phenomena must be considered; the actual phenomena are too difficult to understand 

in their entirety. Through the development of a model a precise language is given to a 

theory about a system (Liu, 2001). Also, the validity of theory may be tested. This is 

especially advantageous in the social sciences, where controlled testing of theory using 

real world cases is largely impossible.  

The most widespread use of models in urban geography was during the period of the 

quantitative revolution in Geography, which began in the late 1950’s and continued 

until the late 1960’s (Batty, 1981). This revolution was born out of necessity as well as 

convenience. Increasing car ownership during the 1940’s and early 1950’s led to the 

growing realization that cities with traditional physical forms could simply not cope 

with the “new mobility” (Batty, 1976). This led to the formation of transportation 

models in the late 1950’s. Additionally, the development of digital computing 

machines provided a means of working with complex mathematical models which 

previously did not exist. Because planners viewed this group of models as providing 

“artificial laboratories” where otherwise impossible experiments on urban structure 
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could occur, a diverse array of styles, techniques and applications of urban models 

were developed during this period (Dyckman, 1963).  

However, the emphasis of these mathematical models was on the modeling 

techniques rather than their theoretical representations, drawing criticism from many 

researchers in the field; most notably Lee’s Requiem for large-scale models (1973). The 

theoretical shortcomings resulted in a substantial shift of attention in the late 1970’s 

from using mathematical models to qualitative analysis in urban research. This 

emphasis on qualitative analysis continued until the late 1980’s, when study on 

complex and open systems provided alternative ways to understand cities as 

evolutionary and complex systems (Allen, 1997). The development of geographic 

information systems and their integration with urban modeling has also facilitated the 

urban modeling with rich data sources and new techniques. These new developments 

have pushed the efforts of urban development modeling into a new era (Liu, 2001).  

2.1.1 The von Thunen Model 

Early in the 19th century von Thunen developed a model of land use that showed how 

market processes could determine how land uses were spatially distributed over a 

theoretical geographic area (Figure 2-1). It is easiest to explain this model in the 

context of agricultural land use. The model is based on the following limiting 

assumptions: 

•  The city is located centrally within an "Isolated State" which is self-

sufficient and has no external influences.  

•  The Isolated State is surrounded by an unoccupied wilderness.  
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•  The land of the State is completely flat and has no rivers or mountains to 

interrupt the terrain.  

•  The soil quality and climate are consistent throughout the State.  

•  Farmers in the Isolated State transport their own goods to market via 

oxcart, across land, directly to the central city. Therefore, there are no 

roads.  

•  Farmers act to maximize profits.  

In an Isolated State with the above statements being true, von Thunen hypothesized 

that the agricultural land uses would segregate into a spatially hierarchic structure 

(Figure 2-1).  

 

 

 

 

   

 

Figure 2-1: The von Thunen spatial organization of agricultural land uses. 

 

Dairying and intensive farming occur closest to the city. Since vegetables, fruit, milk and 

other dairy products must get to market quickly, they would be produced close to the 

city. Since grains last longer than dairy products and fresh produce they can be located 

further from the city center. Ranching is located in the most peripheral areas 

surrounding the central city. Animals can be raised far from the city because they are 

Rent 

Distance from City Center

tomatoes 

wheat 

cattle 

Central Market Periphery
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self-transporting. Animals can walk to the central city for sale or for butchering. Beyond 

the ranch land lies the unoccupied wilderness, which is too great a distance from the 

central city for any type of agricultural product.  

Even though the von Thunen model is simplistic and created in a time before 

factories, highways, and even railroads, it is still an important model in geography. 

The Von Thunen model is an excellent illustration of the balance between land cost 

and transportation costs. As one gets closer to a city, the price of land increases. The 

farmers of the Isolated State balance the cost of transportation, land, and profit and 

produce the most cost-effective product for market.  

 

2.1.2 Concentric Zone Theory 

Proposed by E.W. Burgess (1926), Concentric Zone Theory evolved as an explanation 

of historical urban land use development in Chicago. Unlike the von Thunen 

approach, Burgess offers a descriptive rather than analytical account of these urban 

dynamics (Harvey, 1996). It is proposed that a city’s land use may be classified as a 

series of concentric zones (Figure 2-2) and that the city grows by expanding these 

zones outward. Zone I is the central business district (CBD) and lies at the center of 

the city. Next is the multi-use transitioning Zone II with some migrant ghetto 

residences mixed with manufacturing. Zone III is characterized as a working class 

neighborhood. Amongst the factories are second-generation immigrants living in 

older homes with few amenities. Zone IV is occupied by middle class commuters. 
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The homes are newer and more spacious than those of Zone III. Zone V is for the 

upper class and is dominated by better quality housing and extensive amenities.  

 

 

1: Central Business District 

2: Transition Zone 

3: Working Class Residential 

4: Middle Class Residential 

5: Upper Class Residential 

 

Figure 2-2: Concentric Zone Model 

 

Like von Thunen, Burgess assumes a generalized geographic space and strict action 

space. Additionally, the important influence of topography and transportation are not 

considered, and the monocentric city is unreasonable for representing real land use 

patterns.  

2.1.3 Central Place Theory 

Central Place Theory was devised by geographer Walter Christaller (1933) in the course 

of studying settlement patterns in Southern Germany. In the flat landscape where 

Christaller lived, he observed that towns of a certain size were roughly equidistant. 

Through this observation Christaller examined and defined the functions of each 

settlement structure and the size of the hinterland. He found it possible to model each 

pattern of settlement locations using geometric shapes such as triangles and hexagons 

(Figure 2-3). The theory defines a central place as a settlement having a number of 

smaller towns at an equal distance away from it. These smaller towns use the central 
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places' shops and services often. The central place offers many more goods and services 

than a smaller town can. This framework bought about simple rules: 

• The larger the settlement, the fewer there are of them. 

• The less there are of a settlement, the larger the hinterland (or sphere of 

influence) of its services.  

The conurbation below is the largest settlement and has a vast hinterland. It also has the 

largest amount of services. Because of this, such conurbations will seldom occur on the 

landscape. The cities, which have fewer services, are more plentiful and have much 

smaller hinterlands. This pattern continues in a hierarchical fashion to include smaller 

settlements of towns and villages. Each type of settlement will place itself in relation to 

the next larger settlement equidistance from settlements of the same size. In this way a 

hexagonal pattern of urban settlements are dispersed across the landscape. 

 

Figure 2-3: Christaller's central place model 
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2.1.4 Sector Theory 

Hoyt (1939) was able to improve upon Burgess’ Concentric Zone model by advancing 

the Sector Theory of urban land use. Based on residential land patterns in the United 

States, the location of business is referred to indirectly. “ The model seeks to explain 

the tendency for various socio-economic groups to segregate in terms of their 

residential location decisions…The model suggests that, over time, high quality 

housing tends to expand outward from an urban center along the fastest travel 

routes” (Torrens, 2000). The sector model (Figure 2-4) considers direction in addition 

to distance as factors shaping residential allocation. Also, it recognizes that the CBD is 

not the only focal point of urban activity (Kivell, 1993). 

 

 

1: Central Business District 

2: Wholesale Light Manufacturing 

3: Lower-class Residential 

4: Middle-class Residential 

5: Upper-class Residential 

Figure 2-4: Sector Model 

 

2.1.5 Multiple Nuclei Theory 

Multiple Nuclei Theory, advanced by C. D. Harris and E. L. Ullman (1945) is based 

on the fact that many towns and nearly all large cities have many nuclei that serve as 

centers of agglomerative growth rather than a simple CBD around which all urban 

activity revolves (Figure 2-5). “Some of these nuclei are pre-existing settlements, 
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others arise from urbanization and external economies. Distinctive land-use zones 

develop because some activities repel each other; high-quality housing does not 

generally arise next to industrial areas, and other activities cannot afford the high costs 

of the most desirable locations. New industrial areas develop in suburban locations 

since they require easy access, and outlying business districts may develop for the 

same reason” (Mayhew, 1997). From this work, the idea of city spatial structure as 

predominantly cellular evolved. This theory surpassed previous attempts at explaining 

the spatial distribution of urban activity by acknowledging important influences such 

as topography, accessibility, and historical trends. Importantly, in recognizing the 

polycentric structure of cities multiple nuclei theory moves closer to explaining why 

urban spatial patterns emerge (Torrens, 2000) instead of only the how.  

 

            Figure 2-5: Multiple-nuclei model 

1: Central Business District 

2: Wholesale Light Manufacturing 

3: Lower-class Residential 

4: Middle-class Residential 

5: Upper-class Residential 

6: Heavy Manufacturing 

7: Outlying Business District 

8: Residential Suburb 

9: Industrial Suburb 

 

2.1.6 Zipf’s Rank-Size Law 

First explained by (Zipf, 1949) the rank-size law of cities has been one of the most 

conspicuous empirical facts in economics, or in the social sciences generally (Gabiax, 

1999). This law links, through a linear relationship, cities’ frequency of occurrence to 
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their unit size. According to Zipf, if the population of a town is multiplied by its rank, 

the sum will equal the population of the highest ranked city. 

To visualize Zipf’s law, we take a country (for instance the United States), and 

order the cities by population: No. 1 is New York, No. 2 is Los Angeles, etc. 

When we draw a graph; on the y-axis we place the log of the rank (N.Y. has log 

rank ln 1, L.A. log rank ln 2), and on the x-axis the log of the population of the 

corresponding city (which will be called the “size” of the city). We take, like 

(Krugman, 1996), the 135 American metropolitan areas listed in the Statistical 

Abstract of the United States for 1991. (Gabiax, 1999) 

The result of such a plot is a strait line with a slope of –1 and an r2 of nearly 1.0. What 

is so surprising about this result is there is no top-down policy that would cause it to 

be so. The pattern is emergent. Further, similar results can be achieved for most 

countries in the modern period (Rosen and Resnick, 1980), for other periods in U.S. 

history (Zipf, 1949; Rosen and Resnick, 1980; Krugman, 1996; Krugman, 1996), as 

well as in other countries for different periods: India in 1911 (Zipf, 1949), and China 

in the mid-nineteenth century (Rozman, 1990). (It must be noted, however, that 

important examples of exceptions to the rule do exist: London, U.K., Paris, France, 

and Tokyo, Japan among others.)  

Many attempts have been made to explain Zipf’s law, but each has had important 

inadequacies (Gabiax, 1999). The debate of its causes is beyond the scope of this 

work, but a recent explanation has been offered by Gabiax (1999) who proposes 

“Zipf’s law derives from Gibrat’s law, where Gibrat’s law means that the growth 
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process is independent of size (Gabiax, 1999)”. A comprehensive review of this 

literature is given by Carroll (1982). What is important to this discussion is that Zipf’s 

law shows that the distribution of cities maintains a linear relationship between city 

size (measured by population) and rank, and this relationship is true across scales and 

time. It is possible to modify this theory to a spatial metric by redefining the unit of 

measure as area of urban cluster (where urban cluster is defined as the amount of land 

contained within a contiguous agglomeration of urban land use) instead of city 

population. The cluster size could then be plotted against its rank to test how well the 

spatial distribution of the city follows the rank size rule. 

2.1.7 Bid-Rent Theory 

Taking the von Thunen model one step farther, the bid-rent theory popularized by 

(Alonso, 1964) offers an explanation of the spatial distribution that von Thunen 

described. Since transport costs rise with distance from the market, rents generally 

tend to fall correspondingly, but different forms of land use (retail, service, industrial, 

housing, or agricultural) generate different bid-rent curves (Figure 2-6). The urban 

land user seeks central locations, but is willing to accept a location further from the 

city center if rents are lower in compensation. The use that can extract the greatest 

return from a site will be the successful bidder. Illustrating bid-rent theory in an 

alteration of von Thunen’s model, (Alonso, 1964) in a study of housing, compared the 

quantity of land needed, and variations in the amount of income used on land, 

transport costs, and on all goods and services. If the amount of goods and services is 

held constant, the price of land should decrease with increasing distance from the 

center and a pattern of housing stock will emerge. The quantity of land that may be 
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bought should increase with distance from the center, but commuting costs will rise 

with distance from the center. From this basic principle Alonso illustrated how the 

well-off will choose the amenities of lower density housing at the edge of the city, and 

pay the price of commuting over distance, while the poor remain in high density 

residences near the city center. Each household represents a balance between land, 

goods, and accessibility to the workplace (Mayhew, 1997).  

                           

Figure 2-6: The Alonso model of housing stock based on bid-rent 

 

The assumptions of von Thunen and Alonso present a greatly simplified geographic 

and decision space that is far from reality. However, their models do reflect some 

aspects of dynamic urban morphology and the bid-rent curves describe how these 

patterns emerge. 

Hedonic price models, a variant of bid-rent models, have been more effective in 

putting into practice some of the factors that weigh into the bid-rent calculation. 

Hedonic price models reduce real estate values into their fundamental elements, each 

of which has an associated value thus enabling extended disaggregation. Two main 

factors trouble the application of the hedonic model: They are weakened by the 
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reliance upon market value for formulating hypotheses about urban dynamics, and 

market value data may be difficult to acquire, especially over multiple time periods, 

due to privacy concerns (Torrens, 2000).  

2.1.8 Theory of automata 

The above theories are based primarily on empirical observation. Many hypotheses on 

how these urban structures arise (such as equilibrium between forces of concentration 

and dispersion, agglomeration of economies, or maximization of social interaction) 

propose a constraint that controls system evolution. However, evidence to support 

such universal constraints has not been demonstrated. Rather, most convincing 

interpretations see macro-scale pattern as arising from the micro-scale interactions of 

the components that make up the system. Pioneers in this approach came not from 

the field of urban research but physics and mathematics. 

In the 1930’s Alan Turing proposed a hypothetical machine with limited specifications 

and ranges of action that was capable of computing anything that could be computed. 

Using simple rules and given an appropriate initial state, this machine, or automaton, 

could evolve into a replica of itself and have the ability to produce further copies. 

Hypothetically, this “Universal Turing Machine” was the one meta-machine needed to 

build any system. “(Turing) figured out that mathematicians, unlike carpenters, only 

needed to have one tool in their toolbox, if it were the right sort of tool” (Stephenson, 

1999). In the 1940’s, inspired by Turing’s work, John von Nuemann (originator of 

game theory and pioneer in set theory and quantum mechanics) in collaboration with 

renowned mathematician Standislav Ulam (who worked on Monte Carlo simulation 

and the Manhattan Project atomic bomb) developed Cellular Automata (CA) as a 
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framework for investigating the logical underpinnings of life. “They were interested in 

exploring whether the self-reproducing features of biological automata could be 

reduced to purely mathematical functions – whether the forces governing 

reproduction could be reduced to logical rules” (Torrens, 2000). 

Von Nuemann (1966) proposed his new “theory of automata” as a coherent body of 

concepts and principles concerning:  

1.  the structure and organization of both natural and artificial systems. 

2.  the role of language and information in such systems. 

3.  the programming and control of such systems. 

An actualization of this theory would be the creation of automata containing a Turing 

machine that is able to compute anything that is computable. This theory was 

expressed in Conway’s CA Game of Life popularized by Gardner in 1970. 

A formal link between CA and geographic phenomena was made by Tobler’s Cellular 

Geography (1979) where the implicitly spatial nature of the transition rules made CA 

“the geographical type of model par excellence” (Couclelis, 1985). In 1985 Helen 

Couclelis presented a simple cellular modeling framework for land use based on 

discrete structure theory. Also during the 1980’s and early 1990’s much work was 

done identifying urban systems as fractal forms and complex systems (Burroughs, 

1981; Batty and Longley, 1986; Batty and Longley, 1987; Batty and Longley, 1988; 

Batty et al., 1989; Longley et al., 1990; Batty, 1991; White and Engelen, 1993; White et 

al., 1993). In the following section, the complex systems approach to urban modeling, 

especially through the methodology of CA, is explored more fully. 
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2.2 Complexity and the Cellular Automata Approach 
Complex systems approaches suggest the multitude of interactions that take place on 

a large-scale, or individual level, form the basis of system-wide, or aggregate, behavior. 

In emergent systems, which are key to the idea of complexity, a small number of 

simple rules applied locally can result in a system that is surprisingly complex but not 

necessarily chaotic (Torrens, 2000). An underlying structure can usually be discovered. 

What is important about this approach is the power of the local agent, without 

reference to any system-wide driver, to generate organized, recognizable, macro-scale 

features that change over time.  

A problem faced by geographers in trying to model human systems is aggregating 

from the actions of an individual to the dynamics of the whole. This is especially 

difficult when the local-scale actions are interdependent. Information cannot simply 

be aggregated to the small-scale generalization of system dynamics. Instead, “an 

understanding of the interactive dynamics that link local-scale and smaller-scale 

phenomena” (Torrens, 2000) needs to be pursued. Essentially, in emergent systems, 

the whole is not a sum of its parts, but a result of the parts’ dynamics. A synthetic 

approach, bringing parts together to form an interactive whole, as opposed to a 

reductionism approach, which separates the whole into its parts, is becoming more 

popular among researchers studying complex, dynamic systems. A way to understand 

the interactions of a system is by applying simple rules to the components, and 

observing how these rules affect the behavior of the individual agents over time, until 

macro scale processes emerge. Learning occurs by bringing the pieces together, rather 

than dividing them into parts. 
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Complexity has much to offer in possibilities, but it is not without its critics, even 

from within the very walls of the Santa Fe Institute where the potentials of complexity 

were first touted. Criticisms from Jack D. Cowan, a mathematical biologist from the 

University of Chicago who helped to found the institute, were quoted in Horgan 

(1995). First among these criticisms is the reminiscence “syndrome” suffered by those 

advocating computational simulation results of complex systems. This condition calls 

attention to how a simulation is reminiscent of a biological or physical phenomenon.  

“They (supporters of complexity) jump in right away as if it's a decent model for the 

phenomenon (because of reminiscence), and usually it's just got some accidental 

features that make it look like something” Cowan in (Horgan, 1995). Reminiscence 

may in fact only be a result of coincidence, without necessitating the discovery of a 

greater understanding of the phenomena being modeled. Also, modification of 

complexity formalisms (i.e.; modification of the simple cellular automata) to better 

simulate a process might produce more relevant results, but runs the risk of creating a 

model so complex, that the simplicity and transparency of the simple rules are lost 

(Couclelis, 1985; Horgan, 1995; Couclelis, 1997). Additionally, while computational 

models are necessarily rule based, and thus lend themselves to the synthetic approach, 

there is no reason to believe that all phenomena in the natural world is rule-based and 

should be modeled as such (Casti, 1997).  

The proponents of complexity have not delivered on everything that was promised, 

not the least of which is an all encompassing “unified theory” of complex systems. 

Some even admit that “we are not even close” to its development (Casti, 1997). But 
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these criticisms should not be enough to cause the dismissal of the complex system 

approach. One thing that is evident is complex systems do not lend themselves to 

simple scientific examination (Horgan, 1995). The field still has much to offer in the 

understanding of interactive and dynamic systems. Cities have several qualities that 

ally themselves with complexity definitions. It must be acknowledged however that 

not all processes of the urban environment will be appropriate for this type of 

examination. 

A first application of complexity methods was introduced from the discipline of 

computer science. John Von Neuman (1966) presented the idea that a type of 

computing machine could not only reproduce itself, but could generate a machine of 

greater complexity than the original. This concept was expressed in the form of a CA. 

The best-known example of a CA is the Game of Life developed by John Conway 

(Gardener, 1972). The formalism of the CA has a few basic tenets: The area of the 

CA, or “game space” is a regular tessellation of cells. A finite number of discrete cell 

states are defined, and a cell may exist in only one state at a discrete period of time (t). 

Transition rules, which applied uniformly across the game space relate a cell’s state to 

that of its immediate neighbors at time (t) to determine its state at (t+1). Cell states are 

updated synchronously to the next time period. In the transitions process, each cell 

acts within the system as an independent agent. Its condition is dictated not through 

outside determinants, but rather, as a result of the current state of a cell and the state 

of its neighbors. Further, since all transitions are impressed upon the game space at 

the same time, change is both spatially and temporally correlated. It was discovered 
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that, depending on the configuration of the initial conditions, complex spatial patterns 

could emerge though repeatedly applying simple behavior rules to the grid. “These 

models demonstrate with powerful immediacy the generally unpredictable dynamic 

relationship between local events and global structure” (Couclelis, 1985). 

CA have several traits that make them seem natural tools for simulating urban 

dynamics. Cells can represent many of the elements that make up an urban system: 

built structures, parcels, census units, automobiles, traffic analysis zones, etc. Similarly, 

cell states may be assigned for the attributes of an urban area. A simple example is the 

binary attributes of urban/non-urban. Various others can be used: population density, 

land use, land cover, etc. The inherently spatial qualities of CA models also make 

them uniquely qualified for applications to geographic phenomena. Neighborhoods 

provide spatial context to influence transitions at discrete locations. Change at each 

cell has a spatial and temporal autocorrelation that imitates the interactive properties 

of urban spatial settlement decisions. The transition rules can be created to mirror 

how real urban systems operate, and then coded as algorithms within the simulation 

(Torrens, 2000). By placing urban elements as attributed cells within a dynamic CA, 

urban processes may be studied as a synthetic system. 

Many good links can be found to attach urban dynamics to complexity and CA 

simulation. Choices made by individuals at the local-scale are interdependent and can 

be aggregated into large-scale, or global phenomena (Nagel et al., 1996). Additionally, 

the physical form of the city exhibits several of the signature characteristics of 

complex systems including fractal dimensionality and self-similarity across scales, 
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emergence, and self-organization (Batty and Longley, 1987; Longley et al., 1990; Batty, 

1991; Torrens, 2000). As stated above, CA are advantageous as models of urban 

systems because of their dynamic and spatially explicit qualities, and expression of 

complex system characteristics. Additionally, the lattice game space utilized by CA 

facilitates integration with GIS and remotely sensed data. Also, the CA lattice format 

is an easily visualized medium that can be compiled into animation for dynamic 

presentation of simulated behavior.  

Informal urban modeling in a cellular space was first demonstrated by Tobler (1970), 

who eventually formalized the approach in his definition of cellular geography 

(Tobler, 1979). Examples of applying CA to various urban systems abound. In recent 

years CA models have been used to study urban and metropolitan growth (Clarke and 

Hoppen, 1997; Sembolini, 1997; White and Engelen, 1997; Clarke and Gaydos, 1998; 

Batty and Xie, 1999; Li and Yeh, 2000; Ward et al., 2000). The dynamics of urban and 

other land cover transitions due to urban development have been explored (Cecchini, 

1996; White and Engelen, 1997; White et al., 1997; Webster and Wu, 1999; Webster 

and Wu, 1999; Candau et al., 2000). A specific systems modeling approach towards 

cities and regions has been applied (Portugali and Benenson, 1995; Sanders et al., 

1997; Sembolini, 1997; White and Engelen, 2000). International social-spatial 

migration patterns (Sembolini, 1997; Portugali, 2000) and the competitive behavior of 

location optimization (Benati, 1997) have been simulated. Polycentric (Wu, 1998) 

urban growth and its stability have been explored. And by using CA to recreate 



 

 24

regional urban growth, a comparison of historical growth trends for different cities 

has been accomplished (Silva and Clarke, forthcoming). 

Most models require a relaxing of the formal CA structure in order to more 

realistically represent real world phenomena. A few interesting examples of the CA 

variations include: an expanded, 112 cell, neighborhood (White and Engelen, 1993), 

non-uniform lattice conditions (Clarke and Hoppen, 1997; White and Engelen, 1997; 

Clarke and Gaydos, 1998), asynchronous transition rules (White and Engelen, 1993; 

White and Engelen, 1997; Wu, 1999), and self-modifying transition rules (Clarke and 

Hoppen, 1997). There are some processes of urbanization, such as planned zoning 

and transportation infrastructure, which do not occur at local scales. The formal CA 

lacks the allowance of action at a distance (Batty et al., 1997), but instances of allowing 

distance influence also exist (Clarke and Hoppen, 1997; White et al., 1997; Ward et al., 

2000). Thus far in CA development multi-dimensional models have been avoided, and 

a preponderance of urban CA models remain in two-dimensional space, in spite of 

the fact that this restriction greatly limits the CA’s applicability to the urban 

environment. This is primarily a result of the coding and computational difficulties 

involved in leaving the flat plane. A notable exception to this is found in Sembolini 

(2000). Similarly, because of source data format and coding difficulties, most urban 

CA have operated on a lattice of regular squares. An exception to this is Sanders’ et al. 

hexagonal cells (Sanders et al., 1997). 

One of the attractions of CA is that by observing actions at the local level, something 

can be learned about the dynamics of the urban system. However, as the formalisms 
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of the CA are relaxed, the behavior resulting from the growth rules becomes more 

complex, generating the possible paradox: While we might be able to simulate a 

simplified urban phenomena using a modified CA, will we be able to derive any 

knowledge about the system itself from the application, or will the modeled behaviors 

be too complicated?  Also, the dependence upon action at a local level assumes a 

closed system, which cities are not. The evolution of an urban system’s configuration 

is a process influenced by a large number of forces both natural to the environment, 

such as wildfires (Goldstein, 2001) and floods, and imposed by human design, such as 

systems of transportation and zoning policies or pressures from economic boom or 

depression. These affects may be global or discrete and act outside of local 

interaction. At present, there is no clear way to solve these issues. Couclelis (1997) 

points out that while the application of CA to urban dynamics seems natural and 

intuitive, that in itself is not a justification for their use, and in fact their most 

appropriate use may be as a metaphor of urban systems rather than a model. 

O'Sullivan and Torrens (2000) offers, “the important criteria for such operational 

models must be the extent to which model behavior is theoretically plausible and 

therefore believable.”  

2.3 Calibration of Cellular Urban Models 
The goal of urban models is to simulate some aspect of the urban system. If a model 

is developed for a specific city or region its applicability to another location is likely to 

be impossible. If this is the case, the model’s use is quite limited. Alternatively, if a 

model simulates characteristics that are general to the process of urbanization, such as 

edge growth and infilling, but allows for adjustment to more realistically portray a 
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specific instance of that process, the usefulness of the model is greatly increased. Such 

a general-purpose model may be applied to multiple cities and is refined for each new 

application through the process of calibration (Silva, forthcoming).   

Parameters affect how a model simulation evolves. The objective of model calibration 

is to determine the numerical values of the model parameters (Giudici, 2001). 

Examples of urban CA models are plentiful, but methods of calibration remain 

sparse. This is due in part to the fact that the computational requirements of CA 

calibration are considerable while forecasts are generated relatively easily. Also, CA 

models are difficult to calibrate because metrics that comprehensively describe the 

dynamic process of urbanization do not exist. Clarke et al. (1997) proposed using 

several spatial and statistical metrics to quantify how well simulated urban extent 

matched historical data gathered from maps and remotely sensed data for several 

periods in time. The model is initialized at some date in the past and then used to 

“predict” current urban land use configuration. This methodology has been used 

successfully in several applications ((Kramer, 1996; Clarke and Hoppen, 1997; Clarke 

and Gaydos, 1998; Candau and Clarke, 2000; Silva and Clarke, forthcoming), and 

others) and is described in detail in section 3.2.3. 
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C h a p t e r  3  

3 THE SLEUTH LAND COVER MODEL 

Several terms specific to SLEUTH will be used in this and the following sections. To 

encourage clarity, the table below lists what group these terms fall into. Also, a type-

font convention for each group is shown in this table and is used throughout the 

remaining text to identify these terms. Most recurring terms are defined in the 

glossary. Equation variables are not listed here, but will be identified with italicized 

Times New Roman font in the text. 

Growth rules Growth coefficients CONSTANTS ASCII files

spontaneous 
new spreading center 
edge 
road-influenced 

Dispersion 

breed 

spread 

slope-resistance 

road-gravity 

CRITICAL_HIGH 
CRITICAL_LOW 
CRITICAL_SLOPE 
BOOM 
BUST 

avg.log

controlstats.log

scenario.file

 

3.1 Modified Cellular Automaton Model 
SLEUTH is a modified CA model of urban extent originally described in (Clarke and 

Hoppen, 1997), and is discussed here as its most recent version: SLEUTHv3.0. 

SLEUTHv3.0 is a C programming language model optimized and restructured by the 

Environmental Protection Agency to run in an optional parallel computing 

environment. The urban growth model is the main component of SLEUTH and the 

subject of this work. The Deltatron land use model is the second component, and it is 

implemented as an optional add-in that is tightly coupled with, and driven by, 
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simulated urban growth. Complete documentation and downloadable code may be 

found at the Project Gigalopolis website: www.ncgia.ucsb.edu/projects/gig. 

In an effort to more realistically portray urban growth, some of the formalisms of 

simple CA have been relaxed. As with a standard CA, SLEUTH begins with an initial 

set of conditions, after that a set of transition rules is applied. The initial conditions 

are defined by input image data. The input data serve as layers of information that 

create a non-homogenous cellular space and influence cell transition suitability. The 

application of transition rules is affected by growth parameters. These coefficient 

values may be altered at the end of each time step by self-modification constants. 

SLEUTH’s self-modification behavior emulates increases and decreases in urban 

growth trends, simulating rapid, system-wide “boom” and “bust” states.  

3.1.1 Initial Conditions  

Raster data defines the initial state of the CA simulation space. SLEUTH uses several 

types of geographic data to generate an initial system configuration and transition 

suitability surface: 

3.1.1.1 Slope 

Topography, in general terms, creates the most basic definition of area available for 

urban development. Because of ease of development, flat expanses are the easiest to 

build upon. Lands get less hospitable as slope increases, and eventually become 

impossible to develop due to structural infeasibility. The point where structures are 

no longer built due to slope constraints is defined as CRITICAL_SLOPE. 
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3.1.1.2 Land-use 

Land-use classes additional to urban may be modeled in SLEUTH. This is an 

optional input, and was not utilized in this application. 

3.1.1.3 Exclusion 

Areas not available to urbanization are included in the exclusion layer. Water bodies, 

parklands, and national forest are all good examples of commonly excluded land-

use types. The exclusion layer is not necessarily binary and may include levels, or 

probabilities, of growth resistance.  

3.1.1.4 Urban 

This is a binary classification: urban or non-urban. How “urban” is defined is 

application dependent. Methods used in the past include digitizing city maps and 

aerial photographs, thresholding remotely sensed images or block densities from 

census data. For calibration, at least four urban layers are required in order to 

calculate best-fit statistics. 

3.1.1.5 Transportation 

A transportation network can have an important role in a city’s developing 

structure. Due to increased accessibility, urban corridors tend to reach out from the 

city core along modes of transportation. The transportation infrastructure expands 

with city growth. To include the dynamic effect of transportation in calibration, 

several road layers that change over time are desirable. SLEUTH is initialized with 

the earliest road layer. As growth cycles, or "time", pass and the date for a more 

recent road layer is reached, the new layer is read in and development proceeds. The 
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roads are not necessarily binary, but may be weighted to simulate one section of 

road’s greater attractiveness to urbanization relative to another section of road. 

3.1.1.6 Hillshade 

A grayscale background image gives context to the spatial data generated by the 

model. It is useful for describing location and scale as well as topography. This layer 

is not an active input for model simulation, but can greatly assist the visual 

examination and analysis of model output image.  

3.1.2 Growth Rules 

The dynamics of urban growth are expressed by four rules: spontaneous, new spreading 

center, edge, and road-influenced Candau et al. (2000). Spontaneous growth simulates the 

occurrence of a new urban settlement on the landscape without necessary relation to 

preexisting infrastructure. New spreading center growth controls the likelihood that one of 

the newly established spontaneous growth settlements will become a center for continued 

growth. Edge growth models outward growth from the city edge as well as urban in 

filling. Road-influenced growth generates spreading centers next to routes of 

transportation and simulates the tendency for new growth to follow lines of 

transportation. These growth rules occur sequentially, and the cell state is updated 

after the application of each rule across the entire space. For a full discussion of the 

SLEUTH growth dynamics see (Candau et al., 2000). 

3.1.3 Growth Coefficients 

Five coefficients, or parameters, affect how the growth rules are applied. Each 

coefficient may be an integer between 0 and 100. Comparing simulated land cover 

change to a study area’s historical data and calculating linear regression, goodness-of-
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fit scores (r2) calibrate these values. The descriptions below outline the five coefficient 

values, which transition rules they affect, and how the applied values are derived from 

the coefficients. 

3.1.3.1 Dispersion Coefficient 

The dispersion coefficient (in previous literature referred to as diffusion coefficient) controls 

the number of times a pixel will be randomly selected for possible urbanization during 

spontaneous growth. 

An applied value is derived from the dispersion coefficient by: 

  ( ) 22*005.0*_ ncolsnrowstcoefficiendispersion_valuedispersion +=  

so that dispersion_value at its maximum (where dispersion_coefficient is defined as 100) 

will be 50% of the image diagonal. 

The dispersion_value is then applied to spontaneous growth by:  

for ( k = 0;  k < dispersion_value;  k++ )  { 
   select pixel (i,j) at random; 
   try to urbanize (i,j); 
} 

The dispersion coefficient also controls how many “steps”, or pixels, make up a random 

walk along the transportation network on a road trip as part of road-influenced growth. 

The dispersion coefficient is applied to road-influenced growth by: 

tcoefficiendispersionvaluerun __ =  

where run_value is the maximum number of steps traveled along the road network. 
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3.1.3.2 Breed Coefficient 

The breed coefficient determines the probability of a pixel urbanized by spontaneous growth 

becoming a new spreading center. 

The breed coefficient is applied to new spreading center growth by: 

Given: a newly urbanized spontaneous growth pixel (i,j).  

if ( random_number < breed_coefficient ) { 
    attempt to urbanize two neighbors*; 
} 

The breed coefficient also determines the number of times a road trip will be taken 

during road-influenced growth. 

The breed coefficient is applied to road-influenced growth by: 

for ( k = 0;  k <= breed_coefficient;  k++  ) { 
    head off on a road trip; 
} 

3.1.3.3 Spread Coefficient 

The spread coefficient determines the probability that any pixel that is part of a 

spreading center (a cluster of pixels of three or more in a nine cell neighborhood) will 

generate an additional urban pixel in its neighborhood. 

The spread coefficient is applied to edge growth by: 

if ( random_number < spread_coefficient) { 
   attempt to urbanize neighboring pixel; 
} 

3.1.3.4 Slope Coefficient 

                                                 
* In this growth rule algorithm two neighbors are urbanized because the following growth rule, 

edge growth, will look for urban clusters of three or more, and increase the number of urban 
pixels of such a cluster in subsequent growth cycles. In this way some urban clusters (<3) will 
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The slope coefficient affects all growth rules in the same way. When a location is being 

tested for suitability of urbanization, the slope at that location is considered.  

                           

 

 

Figure 3-1: Affect of the slope resistance coefficient 

 

Instead of enforcing a simple linear relationship between the percent of slope and urban 

development, the slope coefficient acts as a multiplier. If the slope coefficient is high, 

increasingly steeper slopes are more likely to fail the slope test. As the slope coefficient 

gets closer to zero, an increase in local slope has less affect on the likelihood of 

urbanization (Figure 3-1). 

Creating a lookup table that relates actual slope values to slope coefficient-influenced 

probabilities enforces this dynamic relationship. 

                                                                                                                                       
remain small, non-agglomerating elements while others (>=2) will become new spreading 
centers. 
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The slope coefficient is used to calculate slope weights by first calculating: 

0.2/__/_ RESISTANCESLOPEMAXtcoefficienslopeex = co 

where MAX_SLOPE_RESISTANCE set to 100 and ex is an influencing exponent value. 

Using the ex value, a lookup table is then built by: 

for ( i = 0; i < lookup table size; i++ ) { 
   if ( i < critical_slope ) { 
      ( ) SLOPECRITICALiSLOPECRITICALval _/_ −=  
      lookup_table[i] = 1.0 - valex;      
   } else { 
       lookup_table[i] = 1.0; 
   } 
} 

3.1.3.5 Road Gravity Coefficient 

During road-influenced growth the maximum search distance from a pixel selected for a 

road trip for a road pixel is determined as some proportion of the image dimensions. 

The applied value is derived from the road gravity coefficient (rg_coef) by: 

( ) ( )0.16/*__/__ ncolsnrowsVALUEROADMAXcoefrgvaluerg +=  

where MAX_ROAD_VALUE is defined as 100, and nrows and ncols are the row and 

column counts respectively. So rg_value at its maximum (when rg_coef equals 100) 

will be 1/16 of the image dimensions. If the rg_coef is less than 100, then the 

rg_value will be some proportion less than 1/16 of the image dimensions.  

Rg_value is then applied to road-influenced growth by: 

( )valuergvaluergindexsearch _1*_*4_max_ +=  

where rg_value defines the maximum number of neighborhoods from the selected 

urban pixel to search for a road. 
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The first neighborhood (rg_value == 1) is made up of the selected urban pixel's 

adjacent 8 cells. The second neighborhood (rg_value == 2) would be the 16 pixels 

outwardly adjacent to the first neighborhood, etc. In this way the outward search for a 

road will continue until (a) a road is found, or (b) the search distance is greater than 

MAX_SEARCH_INDEX. 

3.1.4 Self-Modification 

A growth cycle is the basic unit of SLEUTH execution. It begins by setting each of 

the coefficients to a unique value. Each of the growth rules is then applied to the 

raster data. Finally, the resulting growth rate is evaluated. If the growth rate exceeds or 

falls short of limit values, model self-modification is applied. Self-modification will 

slightly alter the coefficient values to simulate accelerated or depressed growth that is 

related with system-wide boom and bust conditions in urban development. 

To apply self-modification, the first step is to determine if the system is in a growth or 

stable period of development. A “boom” state occurs if the growth rate exceeds the 

CRITICAL_HIGH value and indicates a period of accelerating growth. Each of the 

coefficients is increased to encourage the continuation of this trend. A “bust” state 

occurs when the growth rate is less than the CRITICAL_LOW. In such an instance the 

coefficients will be lowered in order to decrease the rate of growth throughout the 

system. 

The algorithm used to apply self-modification to the coefficients is given below:  

Given: 

100*___/___ pixelsurbannumbertotalpixelsgrowthnumberrategrowth =  
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( )
( )







−−
+

=
pixelsexcludedpixelsroadpixelsnumbertotal

pixelsroadpixelsurbannumbertotal
urbanpercent

____
/____*100

_  

where number_growth_pixels is the number of newly urbanized pixels from the 

current growth cycle, total_number_urban_pixels is the amount of urban pixels from 

the current and previous growth cycle, road_pixels is the number of road pixels used 

for the current growth cycle, and excluded_pixels is the number of pixels in the 

exclusion layer with an absolute exclusion value. 

if (growth_rate > CRITICAL_HIGH) { 
( )YSENSITIVITSLOPEurbanpercentressloperesslope _*___ −=  

( )YSENSITIVITGRAVROADurbanpercentgravroadgravroad __*___ +=    
if (dispersion < MAX) { 

   dispersion = dispersion * BOOM; 
   breed = breed * BOOM; 
   spread = spread * BOOM;  
   } 
} 

where CRITICAL_HIGH is the growth rate threshold above which a boom state exists 

for the system. Slope_res, road_grav, dispersion, breed, and spread represent the 

coefficient values slope_resistence, road_gravity, dispersion, breed and spread respectively. 

SLOPE_SENSITIVITY, ROAD_GRAV_SENSITIVITY, and BOOM (as well as BUST used in the 

bust state) are used to modify the coefficient values and are defined in the application 

scenario file. MAX is the maximum value of a coefficient. 

if (growth_rate < CRITICAL_LOW) { 
( )YSENSITIVITSLOPEurbanpercentressloperesslope _*___ +=  

( )YSENSITIVITGRAVROADurbanpercentgravroadgravroad __*___ −=           
if (dispersion > 0) { 

      disperson = dispersion * BUST; 
      breed = breed * BUST; 
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      spread = spread * BUST; 
   } 
} 

where CRITICAL_LOW is the lower limit for growth_rate, below which the system 

enters a bust state.  

3.2 SLEUTH Calibration Approach 
3.2.1 Fitting Historical Data 

A major tenet of SLEUTH application is: by calibrating how a region has changed in 

the past, a reasonable forecast of future change can be made (Clarke et al., 1997). 

Following this assumption, the model is calibrated by fitting simulated data to 

historical spatial data collected from maps, aerial photography or other remotely 

sensed data. Input requirements are discussed in detail in Section 3.1.1. SLEUTH is 

initialized with the earliest data (signifying the date furthest in the past) and growth 

cycles are generated. It is assumed that one growth cycle represents one year. As 

growth cycles complete, “time” passes. Dates where historical data exist are referred 

to as control years. When a completed cycle has a corresponding control year, an 

image of simulated data is produced and several metrics of urban form (see Section 

5.2.2) are measured and stored in memory.  

3.2.2 Monte Carlo Averaging 

Due to the high amount of randomness present in each growth cycle, growth 

simulations are generated in Monte Carlo fashion to bring a greater amount of 

stability to modeled results. Monte Carlo averaging reduces dependence upon initial 

conditions and stochasticity. When a coefficient set has completed a defined number 

of Monte Carlo simulations, the metric values stored to memory are summed and 
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divided by the number of Monte Carlo iterations. These averaged values are then 

compared to the control data metrics and linear regression, best-fit statistics are 

calculated.  

3.2.3 SLEUTH Brute Force Calibration 

SLEUTH utilizes five coefficients that may range independently between zero and 

100. This poses a large set of possible solutions and a daunting number of computer 

processing unit (CPU) cycles required to explore the multidimensional coefficient 

space. As a way to reduce the number of solution sets but still search the range of 

solutions, the methodology of brute force calibration has been utilized to derive 

parameter values. Instead of executing every permutation of possible coefficient sets, 

each parameter range is examined in increments. For example, the range {0-100} may 

be stepped through in increments of 25 resulting in the values {0, 25, 50, 75, 100} or 

55 simulations being implemented in order to cover the range. In this way, the model 

may be calibrated to the data in steps, successively narrowing the range of coefficient 

values. Generally, this process is accomplished in three phases here referred to as 

coarse, fine and final. 

3.2.3.1 Coarse Phase 

In the initial, coarse phase of calibration, the entire range (0 – 100) of the five 

coefficients is explored using large increments (e.g.; for each coefficient, value = {0, 

25, 50, 75, 100}) and a small number (4) of Monte Carlo iterations are used. 

3.2.3.2 Fine Phase 

Using the best-fit values found in the control_stats.log file produced in the 

coarse calibration phase, the range of possible coefficient values is narrowed. 
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Ideally, the ranges will be narrowed so that increments of 5 - 10 may be used while 

still only using about 5-6 values per coefficient (e.g.; for a single coefficient, value = 

{25, 30, 35, 40, 45, 50}) and a larger number of Monte Carlo iterations are used (6). 

3.2.3.3 Final Phase 

Using the best-fit values found in the control_stats.log file produced in the 

fine calibration phase, the range of possible coefficient values is narrowed. Ideally, 

the ranges will be narrowed so that increments of 1 - 3 may be used while still only 

using about 5-6 values per coefficient (e.g.; for a single coefficient, value = {4, 6, 8, 

10, 12}) and a larger number of Monte Carlo iterations are used (8). 

3.2.3.4 Calibration Scalability Experiment 

Even with the employment of the brute force methodology, the computational 

requirements of running SLEUTH may still be quite large due to the number of 

historical years being simulated and image size of the input data. As a way to reduce 

this computational overhead, and maintaining the absolute scalability of the model, 

previous model applications have used resampled, or coarsened data in the initial 

phases of calibration to further reduce the CPU cycles required.  

In order to test this assumption of scalability of the calibration process pre-

application testing of this methodology was executed. The Santa Barbara data set 

used for this research was resampled to ¼ of its full image resolution. A coarse 

calibration scenario (section 3.2.3.1) using the statistical control years {1967, 1976, 

1986, 1998} was then executed on the full and ¼ resolution input. The calibration 
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results were then scored and sorted as described in sections 5.5.2 and 5.5.3 

respectively. A summary of the scoring results is given in Table 3-1.  

Full Resolution Results     1/4 Resolution Results   
      Range           Range     
Coeff Best start stop step Count  Coeff Best start stop step Count
disp 50 26 50 6 5  disp 50 40 60 5 5 
breed 25 25 49 6 5  breed 1 0 12 3 5 
spread 100 76 100 6 5  spread 50 40 60 5 5 
slope 100 76 100 6 5  slope 75 65 85 5 5 
road grav 50 0 50 10 6  road grav 1 0 50 10 6 

 

          Table 3-1: Coarse calibration results for full and 1/4 resolution input data 

 

Results of this experiment showed that SLEUTH is not scalable across image 

resolutions. For all of the coefficients except dispersion the top scores different 

between the two calibrations. More importantly the range selected for the next phase 

of calibration using the ¼ data was not only different, but in some cases excluded the 

range selected from the full resolution calibration. Using resampled data as a 

methodological portion of brute force calibration will necessarily exclude the set of 

coefficients that would best apply to the full resolution data.  

This difference is primarily due to the action of the spread_coefficient upon edge growth. 

Edge growth will propagate from an urban cluster no more than one neighborhood’s 

distance in a single growth cycle. If the full resolution grid is 30 m, the ¼ resolution 

will be 120 m. That means that in a single growth cycle for the full resolution data, 

edge growth occurs at a rate of 30 m per growth cycle while the resampled simulation 

spreads at 120 m per growth cycle. Given a similar goal of urban extent from the 

initial conditions, the resampled data simulation is able to reach the goal in the same 



 

 41

time period as the full resolution simulation by applying a lower spread coefficient 

value.  

       

Figure 3-2: Difference in neighborhood extent between 1/4 and full resolution data. 

 

 

 

Figure 3-3: Simulated growth for full (top) and 1/4 (bottom) resolution data. 

 

This difference in neighborhood spread-effect is easily illustrated in the data, as seen 

in Figure 3-3 where the yellow areas in the images represent modeled urban extent. 

These two simulations were initialized with the same parameters, except that one 

used 30 m data and the other used 120 m, and were run for 31 growth cycles (1967-

1998). The ¼ resolution simulation shows much more growth to the East and West 
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of Santa Barbara (or the right and left of the image). Because the calibration process 

showed sensitivity to scaling the use of multiple image resolutions in the phases of 

coefficient search was abandoned. This application used full resolution data entirely 

to test SLEUTH temporal sensitivity to calibration controls. 

3.2.4 Forecast Methodology 

As stated above, SLEUTH forecasts rely on replicating growth trends from the past. 

Once a coefficient set is found that can best describe how urban change has occurred 

over time, these values are used to forecast future growth. The calibration process 

produces initializing coefficient values that best simulate historical growth for a region. 

However, due to SLEUTH’s self-modification qualities, coefficient values that initialize 

the model for a date in the past may be altered by the simulation end date. Therefore, 

for forecast run initialization, the coefficient values at the simulation end date are used to 

initialize a new simulation into a future date. Using the best coefficients derived from 

calibration to run a large number of Monte Carlo simulations will produce a single set 

of averaged coefficients for the simulation end date. Using the BSS parameters derived 

from the simulation end date, a forecast run may be initialized. 

For the image data, the most recent urban layer (the one that defined the calibration end 

date), the most recent transportation layer, and the exclusion and slope layers used in 

calibration, in addition to the background hillshade are used to initialize a forecast run. 

Growth rules are then applied to the data for a defined number of years. Forecasts are 

run in Monte Carlo fashion with 100 or more iterations. In addition to generating 
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annual urban growth probability maps, a log of coefficient and metric values may be 

written to a file as output. 
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C h a p t e r  4  

4 THE SOUTH COAST REGION 

 

Figure 4-1: The South Coast study area detailed within California's Santa Barbara County. 

 

The portion of Santa Barbara County used for this study, from here forward referred 

to as the South Coast, is located in coastal southern California about ninety miles 

northwest of Los Angeles (Figure 4-1). It extends from Rincon Point westward 

towards Gaviota and is bound by the Santa Ynez Mountains to the north and the 

Pacific Ocean to the south. It covers about 120 square km of Santa Barbara County. 

The nature of the area in which “the mountains meet the sea” has encouraged human 

development to occur laterally between steep slopes of the Santa Ynez and the coastal 

bluffs and beaches of the Pacific. The cities of the South Coast, Carpinteria, Santa 

Barbara, and Goleta, have grown up out of the more gently sloping areas in between 

the two along Highway 101, which runs centrally from east to west through the area. 

A large portion of the South Coast is part of the Los Padres National Forest and is 

protected from urban development. Because of the protected forest lands, the steep 
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slopes of the Santa Ynez, and the obvious building constraints of the ocean, the 

amount of land available to additional urbanization is quite limited.  

4.1 Urban Centers 
Santa Barbara is the county seat and center of the South Coast study region. The City 

had a population of about 89,600 in 2000. The economy is supported primarily by 

high tech industry, manufacturing, and tourism and retail business. Carpinteria is a 

small coastal community approximately 15 miles east of the City of Santa Barbara. 

The local population was over 14,000 in 2000. The predominant economic activity is 

greenhouses and other agriculture, high technology manufacturing, and tourism. Eight 

miles west of Santa Barbara, the newly incorporated city of Goleta has a population of 

approximately 87,000. The University of California at Santa Barbara and Santa 

Barbara Airport are primary employment sources in the area, followed by high 

technology, research and development, manufacturing, agriculture, and retail markets 

(SBCAG, 2001). 

The South Coast experienced its first population boom in the decades following 

WWII. Brought on by the Baby Boom, average population growth rates from the 

1950’s through the 1960’s, averaged 64%. The growth rate slowed dramatically in the 

1970’s to 13%, experienced an increase in the 1980’s to 24% and fell again to 11% in 

the 1990’s. The rate of urbanization of non-urban lands, on the other hand, 

experienced a more gradual decline. It’s high occurred from the 1950’s through the 

1960’s at 39%. In the 1970’s it began to decline through the next decades to 36%, 

22% in the 1980’s and ending at 18% in the 1990’s.  The urbanization growth rate did 

not begin as high as the population growth rate, and decreased more slowly, indicating 
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a historic trend towards less dense residential housing stock as time goes on (SBCAG, 

2001). 

Santa Barbara County faces a demand for additional housing for between 104,000 and 

247,000 people in the next 30 years (DOF, 2000). Buildout is the maximum planned 

capacity of an urban area based on its county designed current General Plan. At 

current growth rates, South Coast residential buildout accommodates less than 8 years 

of population growth. After that, if population growth rates remain stable, more land 

will need to be converted to residential uses unless housing density and/or household 

sizes increase significantly (SBCAG, 2001). 

Several influential factors that will shape the growth rate of the South Coast over the 

next 30 years are already in place. The City of Santa Barbara historically has taken an 

anti-growth approach towards population expansion. This is especially evident in the 

affluent and low-density areas of Hope Ranch and Montecito. The North County of 

Santa Barbara on the other hand, with an abundance of open range and agricultural 

land, has always welcomed urban development. The newly incorporated city of Goleta 

will be hungry for the tax dollars a growing population can bring, but in this semi-arid 

and drought prone region, providing a secure water supply for an expanding populace 

is increasingly difficult. Finally, UC Santa Barbara, long the largest employer in the 

county, has reached its student capacity. Unless another type of industry or business 

experiences large and stable expansion, a primary source of employment opportunity 

in the area has stabilized.        
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C h a p t e r  5  

5 METHODS 

5.1 Spatial-Temporal Data Base 
In a geographic information system (GIS) database, input data for model calibration 

was compiled. GIS assisted in the generation, classification and formatting of the 

required data layers. Unless otherwise noted all GIS processing was completed using 

ESRI’s Arc/Info. Data of varying types and dates were georeferenced to create a 

profile of urban development in the Santa Barbara region over space and time. The 

common geographic projection was Albers Equal Area. Specifics of classifying and 

formatting types are described below. After each data type was classified correctly, 

they were clipped to the same map extent and transformed to raster grids at 30 m 

resolution. Because the elevation data used was 30 m resolution, and the only 

inherently raster data source, this resolution was used for all data layers. The grid 

dimensions were 2074 columns by 486 rows. Representations of input data are 

included in Appendix A. 

5.1.1 Urban 

Aerial photographs of the Santa Barbara study area for the years 1929, 1943, 1954, 

1967, 1976, 1986 and 1998 were scanned and georeferenced using ESRI’s ArcView. 

Using on-screen digitization, the extent of built structures was digitized. This polygon 

data was then converted to raster at a resolution of 30 m, forming binary grids of 

urban/non-urban classes. 

5.1.2 Transportation 
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The United States Census Bureau’s TIGER 1999 line files of roads were downloaded 

from the TIGER website (http://www.census.gov/geo/www/tiger/) for the South 

Coast. These data were used as a starting point for assembling the weighted 

transportation layers. The classes highway, state route, and primary road were grouped 

together in the class Primary Road. Data of the Primary Road class were given a value 

of 100. The TIGER secondary road classification was also used and given a value of 

50. Non-road data had a value of zero. This classification structure formed the 1998 

roads layer.  

Hardcopy transportation maps and aerial photography from the years 1929, 1943, 

1954, 1967, 1976, and 1998 were used as ancillary data to create historical roads layers. 

Working back through time, the absence and classification of roads were noted and 

deleted from the layer if not present or demoted in value if its classification had 

changed. Dates selected for transportation input were intended to match urban layers 

as closely as data would allow. 

5.1.3 Topography / Slope 

The United States Geological Survey’s 30 m digital elevation model (DEM) data were 

used as source data for the slope layer. The DEM was transformed to percent slope 

and then truncated to integer values (from floating point.) This truncation of values 

was performed so that the values found in the slope data would not exceed the 256 

allowed by model input image format requirements. 

5.1.4 Non-Urban / Excluded 

The exclusion layer relied primarily on the Santa Barbara County Assessor’s Office 

parcel map (1997) and Santa Barbara County government ownership map to identify 

http://www.census.gov/geo/www/tiger/
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areas where urbanization would not occur. Los Padres National Forest, park lands, 

and privately held lands designated as preserves, as well as “waste” lands were selected 

for this category. In addition to the Pacific Ocean, the terrestrial water classes of 

rivers and reservoirs were excluded from urban growth. These classes were grouped 

together to form a binary excluded / non-excluded layer.  

5.1.5 Background Hillshade 

The hillshade layer is used as a background image for model image output and was 

derived from the same DEM used to generate the slope layer. Using the default 

settings for the Arc/Info command HILLSHADE, the DEM was transformed into a 

grayscale hillshade raster depicting South Coast topography. 

5.2 Input Image Formatting 
SLEUTH requires grayscale Graphic Image Files (GIF) as input. Because GIF is not 

an export option from Arc products, raster data were transformed first to TIF and 

then, using the xv image tool, were reformatted as GIFs. For all images, 0 is a null 

value, while 0 < n < 256 is a "live", or existing, value.  

Format standards for all data types: 
• Grayscale GIF images 
• Images are derived from grids in the same projection 
• Images are derived from grids of the same map extent 
• Images have identical dimensions (row x column count is consistent) 
• Images follow the required naming format  

 
 
5.3 Calibration Scenarios 
Three calibration scenarios were defined using the database’s seven urban layers and 

are illustrated in Figure 5-1. By varying the input data, the number of control points 

for statistical comparison (or density) was altered. Also, in doing this, the number of 
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years being simulated (or duration) was changed to look at the efficacy of short-term 

and long-term historical databases. 

5.3.1 Scenario 1(All__data) 

The first scenario (All_data) used all seven of the urban inputs {1929, 1943, 1954, 

1967, 1976, 1986, 1998} as control years for calibration and executed a long-term, 

“high density” control year calibration. This scenario calibrated the model for a 

duration of 69 years, from 1929 to 1998. The number of years between data layers 

ranged from 14 years to 9 years with an average of 11.5 years.  

5.3.2 Scenario 2 (Recent_data) 

The second scenario (Recent_data) executed the briefest calibration duration of 31 

years by utilizing only the four most recent control years {1967, 1976, 1986, 1998}. 

This series of input also dropped the average duration between control years to 10.3 

years.   This scenario represents a short-term calibration utilizing data acquired from 

the mid-sixties to present. 

5.3.3 Scenario 3 (Sparse_data) 

The third scenario (Sparse_data) had the same duration as the first (from 1929 to 

1998) but only four control years were used {1929, 1954, 1976, 1998}. By selecting 

only every other control year from the entire set the requisite four control points was 

achieved but the average duration between control years increased from 11.5 years to 

23 years. 
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                    Figure 5-1: Calibration scenario temporal input composition 

 

5.4 Self-Modification 
The values used in the process of self-modification inherited from previous 

calibrations of the model (Clarke et al., 1997) were held as constants. These 

constants, used to determine if the system is experiencing accelerated or decelerated 

growth, as well as the values applied in self-modification, are defined in the scenario 

file. The values used for this application are listed in Appendix B. 

5.5 Calibration  
The brute force calibration process of previous SLEUTH applications is described in 

detail in section 3.2.  

5.5.1 Pseudo-Parallel Processing 

SLEUTH 3.0 version is written to run in a parallel computing environment. However, 

such an environment was not available for this research. Due to the large amount of 

computing power required to run the multiple calibrations required for this 

applications, a pseudo-parallel processing environment was created.  

Since each run for a unique coefficient set is initialized with the same random number 

seed, an entire calibration scenario could be parsed into jobs and delegated to separate 

machines. Fourteen Silicon Graphics O2 workstations were available, on a shared 

basis, for this work. For each phase of calibration, the three scenarios were divided 
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into multiple jobs, and these jobs were dedicated to workstations, one job per 

workstation. When the jobs were finished, the statistic files were concatenated by 

scenario and sorted. 

5.5.2 Simulation Score Sorting 

SLEUTH generates best-fit statistics for eleven metrics. These metrics are:  
 

compare: compares the amount of modeled urban area to known urban area for 
the stop date year where Pmodeled is the modeled urban area and actual area for 
final year is (Pactual): 

if (Pmodeled < Pactual) { 
   compare = (Pmodeled  / Pactual) 
}else{  
   compare = 1 - (Pmodeled  / Pactual) 
} 
 

pop: least squares regression score for modeled urban area compared to actual 
urban area for the control years 

 
edges: least squares regression score for the modeled amount of urban perimeter , 

or edge, compared to actual urban perimeter for the control years 
  
clusters: least squares regression score for modeled number of urban clusters 

compared to known number of urban clusters for the control years 
 
cluster_size: least squares regression score for modeled average urban cluster size 

compared to known average urban cluster size for the control years 
 
leesalee: a shape index, a measurement of spatial fit between the model's growth 

and the known urban extent for the control years 1 being a perfect match and 0 
representing a spatial disconnect: 

      ( ) ( )BABAs ∪∩= /  
      where A is modeled and B is actual urban area. 
 
slope: least squares regression of average slope for modeled urbanized cells 

compared to average slope of known urban cells for the control years 
 
%urban: least squares regression of percent of available pixels urbanized compared 

to the urbanized pixels for the control years 
 



 

 53

xmean: least squares regression of average longitude (calculated using column 
values) for modeled urbanized locations compared to average longitude of 
known urban locations for the control years 

 
ymean: least squares regression of average latitude (calculated using row values) 

compared to average latitude of known urban locations for the control years 
 
rad: ( )22

yx stdstd +  is a measure of urban dispersal 
 

These metrics are generated for each control year. The simulated data is then 

compared to the metrics of the historical data and linear regression values are 

calculated. These best-fit values are written to the control_stats.log output 

file. The control_stats.log file is the primary file used to score the many runs 

executed during calibration.  

The greater the number of metrics used for calibration, the more difficult it is to 

isolate and describe the factors that influence a successful calibration score. One of 

the objectives of this research is to describe calibration metric values and model 

coefficients, and explain how they affect model behavior. For this reason, a subset of 

five metrics was selected in order to decrease the number of influencing values that 

affect calibration. The four calibration metrics used in Clarke et al. (1997) (population, 

number of edges, number of clusters and Lee Sallee) were applied here with one 

addition: average cluster size. For Santa Barbara, these five metrics best captured the 

physical dynamics of urban expansion over the data period. The metric regression 

scores were weighted evenly and multiplied. Their products supplied a score of 

simulation performance for each coefficient set, and were sorted in descending order.   
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5.5.3 Coefficient Range Selection rules 

A series of rules formed a guideline for selecting top calibration scores and narrowing 

the range of best performing coefficients. These rules were followed hierarchically: 

1. Decrease coefficient range from previous phase (e.g.; from {0 - 100} to {0 - 
25}) 

2. Decrease step increment from previous phase (e.g.; from increment = 25 to 
increment = 5) 

3. Keep range increments between four and six, five being the goal, while being 
“true” to range (e.g.; {0 - 25 x 5} has six increments. Alternatively, {0 - 24 x 6} 
has five increments and is preferable. The trade-off here is CPU vs. solution space 
resolution. If the previous phase of calibration has narrowed the range (e.g.; to {0 
- 25}) decreasing the number of increments while still covering almost all of the 
range is optimal. 

4. Focus on top three sorted scores 

5. If step increment does not exactly hit all top scores in range, give precedence 
to best score (i.e.; If, from a coefficient set of {0, 25, 50, 75, 100}, 0 and 25 
defined the range for a coefficient’s top three sorted scores, but 25 did better than 
0, then an appropriate range and increment selection for the next phase would be: 
{1 - 25 x 6} rather than {0 - 24 x 6}.) 

6. If a single coefficient value shows very strongly, search around that value (e.g.; 
for a coefficient, all top scores = 25. In the next phase, range and increment 
would be {15 - 35 x 5}) 

5.5.4 Multiple Scenario Calibration 

The three calibration scenarios All_data, Recent_data, and Sparse_data were executed 

in pseudo-parallel on SGI O2 workstations. Concatenated control_stats.log 

files were brought into Microsoft Excel as spreadsheets. Macros were used to multiply 

the selected calibration metrics: population, edges, clusters, cluster size, and Lee 

Sallee, and sort the resultant scores. Using the coefficient range selection rules, top 

performing coefficient sets were identified and the solution space of each coefficient 

was decreased before commencing the next phase of calibration.   
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Through the three phases of brute force calibration (coarse, fine, and final) a single set 

of coefficients for each calibration scenario were identified as best simulating the 

historical urban layers used in their respective scenario. By setting the 

WRITE_AVG_FILE flag to “YES” in the SLEUTH execution (scenario) file, these 

runs wrote to output file avg.log averaged metrics and coefficient values for each 

control year. These avg.log files were brought into Excel for analysis. An average 

of each scenario’s ending coefficient values, or best solution set (BSS) were used to 

initialize a forecast.  

5.6 Multiple calibration Scenario Forecasting 
The three calibration scenarios each produced a BSS. Each set was used to initialize a 

run of simulated growth in SLEUTH from 1998 to 2030. 100 Monte Carlo 

simulations were used in each run. The avg.log files were used for analysis. 

Classified annual urban probability images were brought into ArcInfo Grid for spatial 

analysis. These maps were also brought into Adobe Photoshop for image processing 

as final products.  
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C h a p t e r  6  

6 RESULTS AND SUMMARY 

6.1 Calibration 
6.1.1 Metric Behavior 

In order to measure the success of modeled growth, a simulation must be compared 

to historical urban data. The averaged metric types used for calibration (population, 

edges, clusters, cluster size, and Lee Sallee) were noted in the derive runs of the three 

calibrating scenarios. These values are recorded in Appendix C. In the metric graph 

series (Figures 6-1 through 6-4) these values are plotted against the control year data, 

or base statistics. The Lee Sallee (Figure 6-5) is not plotted against the base statistics 

since the control compared to itself would always have a perfect r2 of 1.0. The 

Sparse_data scenario only had the years 1929, 1954, 1976 and 1998 as statistical 

controls during calibration. However, during the derive run, r2s of the years in 

between (1943, 1967, 1986) can be produced and are included in these graphs to give 

additional information on the dynamics of that scenario’s simulation. 

6.1.1.1 All_data Scenario 

The population metric (Figure 6-1) slightly overestimated growth in the first control 

years 1943 and 1957 and underestimated in the later years of the simulation.  All_data 

did little to capture the variation in the number of urban edges and consistently 

underestimated their value (Figure 6-2). The number of urban clusters was most 

closely simulated in this scenario, with only small underestimation in the years {1956, 

1967, 1976} and a larger underestimate in the final year when the base statistics 
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experienced a sharp increase (Figure). Similarly, the average number of pixels within 

each urban cluster was modeled closely until the final control years where the base 

statistics increased and then decreased sharply (Figure 6-4). The simulation followed a 

middle ground between these two by under and overestimating 1986 and 1998 

respectively. The Lee Sallee (Figure 6-5) shape metric was at its best (0.6) when 

measured at the first control year. After that it decreased, leveled off, and then 

increased moderately in the final years to finish at 0.51 for an overall r2 of 0.47. 
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Figure 6-1: Urban area metric (pop) for 
calibration 
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Figure 6-2: Urban metric (edges) for 
calibration 
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    Figure 6-3: Number of urban clusters metric  

                         (clust) for calibration 
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Figure 6-4:  Average urban cluster size 
metric (clust_size) for calibration 
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           Figure 6-5: Lee Sallee shape metric  

                    (leesal) for calibration 

 

6.1.1.2 Recent_data Scenario 

Following the almost linear growth in the final thirty years of the simulation, 

Recent_data slightly overestimated population for 1976 and 1998, and fit 1986 almost 

exactly (pop r2=0.94) (Figure 6-1). Number of edges is underestimated, but the steep 

decrease and increase of values in the final years is modeled fairly well (Figure 6-2). 

Recent_data begins with an overestimate of number of clusters that seems inversely 
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related to the control data for 1976 and 1986. The final year, 1998, is also 

overestimated, but the rate at which the value increases closely follows the control 

data trend (Figure 6-3). Average cluster size is underestimated and the model is unable 

to capture the 1986 peak in the control data (Figure 6-4). Recent_data generated the 

best Lee Sallee scores with a low in the final year of only 0.67 (Figure 6-5). However, 

unlike the scenarios that ran for a longer duration, an improvement in the score over 

time was not seen. 

6.1.1.3 Sparse_data Scenario 

While the third calibration generated a nice “S-curve” for the population metric 

(Figure 6-1) it consistently overestimates the number of urban pixels. Number of 

edges is moderately overestimated for this scenario (Figure 6-2), but the largest 

deviation from the control data comes in 1986 where the model misses the dip in the 

control data trend. Number of clusters (Figure 6-3) is largely overestimated for the 

duration of the simulation, but the final control year is almost an exact match. 

Average cluster size (Figure 6-4) follows a similar trend as All_data, but the control 

data is consistently underestimated until 1986 when the control data takes a sharp 

decline and is consequently overestimated. The Lee Sallee reached a low of about 0.3 

in 1957 and then consistently improved for the remainder of the simulation to finish 

at 0.5 (Figure 6-5). 

6.1.2 Metric Regression Scores 

The products of the five calibration metrics best-fit scores were used to sort and 

identify the best performing coefficient sets and are recorded in Appendix C. The top 

product values across the three phases of calibration are shown in Figure 6-6. The 
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regression scores of each calibration metric that made up the top product score are 

illustrated in Figure 6-7 through Figure 6-11. The phases of calibration, coarse, fine and 

final are indicated on the graphs as 1, 2 and 3, respectively. 

6.1.2.1 All_data Scenario 

Of the three scenarios, All_data generated the least successful simulations when 

considering the product of the five calibration metrics used for sorting (Figure 6-6). It 

was able to improve consistently through the calibration phases, but scores remained 

lower than the other two scenarios. All_data population scores (Figure 6-7) were high 

and remained around 0.98 through the three phases of calibration. The number of 

edges (Figure 6-8) and average cluster size (Figure 6-10) both decreased in 

performance in the fine phase and then leveled off for the final phase. Lee Sallee 

(Figure 6-11) on the other hand, increased  from 0.39 to 0.47  from  the coarse to fine  
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Figure 6-6: Calibration metric product 
score 
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Figure 6-7: Urban area (pop) regression 
scores 



 

 61

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3

 Calibration Phase

R
eg

re
ss

io
n 

Sc
or

e

 

Figure 6-8: Urban (edges) regression 
scores 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3

 Calibration Phase

R
eg

re
ss

io
n 

Sc
or

e

 

Figure 6-9: Number of urban clusters 
(clust) regression scores 
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Figure 6-10: Average size of urban 
clusters (clust_size) regression scores 
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Figure 6-11: Lee Sallee (leesal) regression 
score 

phase before leveling off from fine to final. This was the largest improvement of any 

scenario for the Lee Sallee. The average number of clusters (Figure 6-9) remained 

stable through fine calibration and then increased in the final phase. 

6.1.2.2 Recent_data Scenario 

Recent_data calibration product scores (Figure 6-6) improved steadily through the 

three phases of calibration from 0.54 to 0.64. For the population regression scores 
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(Figure 6-7), Recent_data performed least well of the three scenarios beginning at 0.92 

from the coarse phase and finishing at 0.95. The number of urban edges regression 

also improves through the phases of calibration increasing from 0.96 in the coarse 

phase to 0.99 in the final (Figure 6-8). The average number of clusters improved from 

0.87 to 0.96 in the fine phase and then increased only slightly to 0.97 in the final phase 

(Figure 6-9). Average cluster size was just under a score of 1.0 after the coarse phase 

and then dropped to 0.93 before improving to 0.98 in the final phase. Recent_data 

had little variation in the Lee Sallee score maintaining a score around 0.71 for the 

three phases. 

6.1.2.3 Sparse_data Scenario 

Unlike the other two calibrations, after improving from the coarse to fine phase of 

calibration, the Sparse_data product score leveled off from the fine to final phase 

topping out at 0.4 (Figure 6-6). The population regression score got consistently 

worse from a high of 0.99 to 0.97 in the final phase (Figure 6-7). The number of 

urban edges improved greatly between a coarse phase value of 0.83 to fine at 0.95 and 

finished at 0.97 (Figure 6-8). The average number of clusters increased slightly after 

the coarse phase to level off at 0.99 (Figure 6-9). The average cluster size decreased 

after the fine phase from 0.94 to 0.91 (Figure 6-10). The Lee Sallee improved little 

through the phases of calibration and remained close to 0.46 (Figure 6-11). 

6.1.3 Coefficient Solution Space 

Each of SLEUTH’s five coefficients may range between {0 – 100}. The process of 

selecting a set of coefficients for each of the three calibrations created a unique 

solution space for each parameter (Figure 6-12 - Figure 6-16). These values are listed 
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in Appendix A. Because each coefficient began with a range of {0 – 100} in the 

coarse phase of calibration, this range is assumed and not represented in the diagrams. 

Instead, the first values on the graph indicate the range used to initialize the fine phase 

of calibration after selecting the top scores from the coarse run. 

 

Figure 6-12: Dispersion calibration 
space 

             

 

Figure 6-13: Breed calibration 
space 

 

 

Figure 6-14: Spread calibration space 
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Figure 6-15: Slope resistance 
coefficient space 

 

Figure 6-16: Road gravity space 

 

6.1.3.1 All_data Scenario 

The dispersion coefficient solution space for All_data narrowed easily (Figure 6-12). 

The coarse phase revealed a tendency for the coefficient to be low, so a range of {1-

12, 4} (start-stop, step) initialized the fine run and {1-5, 1} set up the final run. A 

dispersion value of 1 performed the best throughout all phases of calibration. Coarse 

results for breed (Figure 6-13) showed that the breed coefficient wanted to remain at 

the high end of the range. A range of {75-99, 5} initialized the fine phase and this was 

adjusted upwards again for final calibration {87-99, 3} with a best final value of 90, 

which was used to initialize the derive run. The spread coefficient range (Figure 6-14) 

was narrowed to the middle portion of its range through coarse calibration: {25-75, 

10}. A best value of 69 was derived from the final calibration phase range of {66-75, 

3}. For All_data slope resistance proved to be the most difficult coefficient to select a 

best value for Figure (6-15). After coarse calibration its range was still large ({25-100, 
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15}) and that was only narrowed by the fine phase to {35-75, 8} from which a best 

score of 51 was derived. Road gravity (Figure 6-16) had a range of {51-75, 6} after 

coarse calibration and {57-69, 3} after fine. From final calibration a best score of 57 

was selected. 

6.1.3.2 Recent_data Scenario 

A range of {26-50, 6} was selected for the dispersion coefficient after the coarse 

phase of calibration (Figure 6-12). This range was further narrowed to {26-34, 2} for 

the final phase which selected a best value of 30. For the fine calibration phase, the 

breed coefficient had a range of {25-49, 6} which was reduced to {25-33, 2} (Figure 

6-13). From the final phase, 31 was selected as the best coefficient value. The spread 

and slope resistance coefficient both produced best performance ranges of {76-100, 

6} after the coarse phase (Figure 6-14). 96 was selected as the best performing value 

for the spread coefficient after narrowing the range to {88-96, 2} for the final phase. 

From a final range of {76-84, 2} for the slope resistance coefficient a value of 76 was 

selected (Figure 6-15). The road gravity range (Figure 6-16) could only be reduced by 

half after the coarse phase to {0-15, 10}, but this was narrowed to {10-20, 2} by the 

final phase which generated a best performing coefficient value of 14.   

6.1.3.3 Sparse_data Scenario 

The dispersion coefficient easily narrowed to a best value of 11 from a range of {0-12, 

4} in the fine phase and {8-12, 1} in the final phase (Figure 6-12). The breed 

coefficient range was more difficult to reduce (Figure 6-13). After the coarse phase 

only a small part of the range was excluded leaving the values {0-75, 15} to be 
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examined. This led to a final phase initial range of {45-75, 6} which generated a best 

breed coefficient value of 63. The spread coefficient remained at the high end of the 

range producing a best value of 88 for the derive run (Figure 6-14). The slope 

resistance coefficient was narrowed to the first quarter of the range for the fine run 

{1-25, 6} and then remained at the top of that range with 25 being selected as the 

initial value for the derive run (Figure 6-15). After narrowing the road gravity 

coefficient to  {1-25, 6} after the coarse phase of calibration, the range could not be 

further narrowed for final calibration (Figure 6-16). Consequently, the step increment 

was decreased in order to explore the range at a finer scale: {0-25, 5}. The final phase 

generated a best road gravity coefficient value of 25.  

6.1.4 Coefficient Behavior 

The self-modification qualities of SLEUTH make it probable that coefficient values 

will not remain static throughout a simulation. Averaged coefficient values taken from 

the derive runs (Figure 6-17 - Figure 6-21) illustrate the dynamic behavior of the 

parameters during model execution. 

6.1.4.1 All_data Scenario 

All_data maintained a low dispersion coefficient value for the duration of the 

simulation beginning at 1 and finishing at 2 (Figure 6-17). The breed coefficient 

(Figure 6-18) increased from 90 to a maximum value of 100 by the first control year in 

1943 where it remained for the duration of the simulation. The spread coefficient 

(Figure 6-19) also steadily increased from 66 to reach 100 by 1967 where it remained. 
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Figure 6-17: Dispersion coefficient 
values for calibration 
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Figure 6-18: Breed coefficient values 
for calibration 
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Figure 6-19: Spread coefficient values 
for calibration 
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Figure 6-20: Slope resistance 
coefficient values for calibration 

0

20

40

60

80

100

1920 1940 1960 1980 2000

year

ro
ad

_g
ra

v 
co

ef
fic

ie
nt

 v
al

ue

 
Figure 6-21: Road gravity coefficient 
values for calibration 

  
 

Figure 6-20 shows how, as the other coefficients increased, slope resistance decreased 

from 51 to reach a minimum value of 1 by 1976. Note how the rate of decrease 

lessens for the period of 1967 to 1976. This change corresponds to the leveling off of 

the spread coefficient value. The road gravity coefficient increases steadily throughout 

the simulation to go from a value of 57 at initialization to 70 at the simulation stop 

date (Figure 6-21).   

6.1.4.2 Recent_data Scenario 

The dispersion coefficient (Figure 6-17) steadily increased at a moderate rate from 30 

in 1967 to 40 in 1998. The breed coefficient (Figure 6-18) followed a similar trend and 

increased from an initial value of 31 to 41 in the final simulation year. Beginning at 96, 

the spread coefficient (Figure 6-19) quickly reached its maximum value of 100, where 

it remained. The slope coefficient (Figure 6-20) decreased steadily to reach its 

minimum value of 1 by the final control year. Road gravity was initialized at 14 and 

then increased to a value of 24 by 1998 (Figure 6-21). 
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6.1.4.3 Sparse_data Scenario 

Sparse_data, unlike the other two calibration scenarios, went from a BOOM to a 

BUST state in the historical, or calibration phase of simulation. The others did not 

experience this state change until the forecasting phase. The dispersion coefficient 

(Figure 6-17) increased at a moderate rate through 1986 and then dropped off quickly 

by 1998. The breed coefficient (Figure 6-18) increases to the year 1976 when it 

reached 100 and leveled off at this maximum until dropping sharply to a value of 38 

in 1998. The spread coefficient (Figure 6-19) reached its maximum by the second 

control year where it remained until dropping to 38 in the final control year. Similarly, 

the slope resistance (Figure 6-20) reached its minimum by 1957 and remained there 

until the shift to the BUST state after 1986, and rising to 49 by 1998. Road gravity 

(Figure 6-21) increased from an initial value of 25 in 1929 to a high of 39 in 1986 

before descending to 34 in 1998. 

6.2 Forecasting 
6.2.1 Metric Behavior 

In order to observe the dynamic behavior of forecasted urban growth, a simulation 

must be compared to historical urban data. The averaged metric types used for 

calibration (population, edges, clusters, and cluster size) were tracked in the forecast 

runs of the three calibration scenarios. In the metric graph series (Figure 6-22 through 

Figure 6-26) these values are plotted every five years until the temination date 2030. 

The Lee Sallee and metric regression scores could not be measured because there is 

no control data for the future that the simulation could be compared to.  

6.2.1.1 All_data Scenario 
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The number of urban pixels increased steadily in the first portion of the simulation 

before leveling off at ~ 200,000 pixels in 2020 (Figure 6-22). After an initial brief 

increase, the number of urban edges gradually decreased to 19,607 in 2030 (Figure 6-

23). Initialized at 611 in 1998, the number of urban clusters (Figure 6-24) experienced 

a radical increase to 944 by the year 2000. Here it peaked out and decreased just as 

dramatically until it reached 585 in 2010, at which point the rate of decrease began to 

slow for the duration of the simulation. Average urban cluster size on the other hand 

(Figure 6-25) decreased sharply in the first years of the simulation and then increased 

quickly from 166 in the year 2000 to 392 in 2015 when the rate of increase began to 

slow to end at 445 in 2030.  

6.2.1.2 Recent_data Scenario 

The Recent_data forecasted number of urban pixels (Figure 6-22) increased quickly 

from ~148,500 in the first half of the simulation and gradually began to level off 

through the end of the simulation to generate an averaged value of ~210,000 for the 

year 2030.  After a small dip, the number of urban edges (Figure 6-23) increased 

moderately from its initial value of 20,300 to finish at 22,143. In a similar trend as 

with All_data, the average number of clusters (Figure 6-24) experienced a radical 

increase from the initial value of 611 to 988 in the first few years of the forecast. This 

value began to decrease after 2005 at a moderate rate to reach 791 by the stop date. 

The average cluster size (Figure 6-25) increased at a steady rate rising from 243 in 

1998 to 265 in 2030.   
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All_data forecast Recent_data forecast

Sparse_data forecast Base Stats
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Figure 6-22: Urban area metric (pop) for 
forecasting 
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Figure 6-23: Urban metric (edges) for 
forecasting 
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Figure 6-24: Number of urban clusters 
metric (clust) for forecasting 
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Figure 6-25: Average size of urban 
clusters metric (clust_size) for 
forecasting 

 

6.2.1.3 Sparse_data Scenario 

The number of urban pixels (Figure 6-22) increases by less than 1000 pixels in the 

over thirty simulated years of the forecast, from 148,548 to 159,167. The number of 
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edges (Figure 6-23) increased from 203 to 212. The average number of clusters  

(Figure 6-24) increased less radically than the other two calibrations and plateaued at 

about 875 in 2015. The average cluster size (Figure 6-25) decreased from 243 to 179 

by 2010 where it remained for the duration of the simulation. 

6.2.2 Coefficient Behavior 

6.2.2.1 All-data Scenario 

The dispersion coefficient maintained a value of about 1 for the duration of the 

forecast simulations (Figure 6-26). The breed and spread coefficients remained at 100 

until 2010 and then decreased rapidly to a value of 15 by 2030 (Figure 6-27 and Figure 

6-28respectively). Slope resistance had a value of 1 until 2010 at which time it began 

to increase to reach a value of 100 by 2030 (Figure 6-29). Road gravity increased 

moderately through 2010 and then in 2015 began to steadily decrease (Figure 6-30). 

6.2.2.2 Recent_data Scenario 

As during the derive run over the historical data, the dispersion and breed coefficients 

followed very similar trends during the forecast (Figure 6-26 and Figure 6-27 

respectively). They began with a value of ~40, increased moderately to a high of ~44 

through the simulation date 2010, and then began a slow descent to ~38 in the stop 

year 2030. Spread maintained its maximum value of 100 until 2015 when it began to 

moderately decrease to reach a value of 85 at the end of the simulation (Figure 6-28). 

The slope resistance coefficient (Figure 6-29) remained at 1 until the simulation date 

2015 at which time it began to rapidly increase to arrive at 93 by the stop date. Road 

gravity (Figure 6-30) showed moderate change attaining a high of 28 in 2010 before 

moderately descending to a value of 19 in 2030. 
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Figure 6-26: Dispersion coefficient values 
for forecasting 
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Figure 6-27: Breed coefficient values for 
forecasting 
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Figure 6-28: Spread coefficient values for 
forecasting 
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Figure 6-29: Slope resistance coefficient 
values for forecasting 
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Figure 6-30: Road gravity coefficient 
values for forecasting 
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6.2.2.3 Sparse_data Scenario 

The dispersion coefficient (Figure 6-26) decreased from 7 to a value of 1 by 2015 

where it remained for the duration of the simulation. Breed and spread (Figure 6-27 

and Figure 6-28respectively) decreased from an initial value of 37 to the minimum of 

1 by the stop date of 2030. The slope resistance coefficient (Figure 6-29) was 

initialized at 49 and reached its maximum of 100 by 2015. The road gravity coefficient 

steadily decreased from 34 to 20 in the final year (Figure 6-30). 

6.2.3 Multiple Scenario Forecast Maps 

The probability forecast maps were brought into ArcInfo for simple image analysis. 

The images were classified by probability. The pixel counts of each of these 

probabilities are listed in Table 6-1.  

 

All_data Recent_data Sparse_data
100-95% probability 44127 49799 178
  90-95% probability 2160 1715 705
  80-90% probability 2294 1930 2376
  70-80% probability 1548 1415 2288
  60-70% probability 1227 1431 1986
  50-60% probability 1032 1726 2101  

                  Table 6-1: Pixel counts for 2030 urban forecast (excluding 1998 urban extent). 
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Forecast maps of simulated growth for the year 2030 were generated from the three 

forecast scenarios  All_data,  Recent_data  and Sparse_data.  These  

forecast runs were initialized  with  the  

calibrated BSS for each scenario and run for 

100 Monte Carlo iterations. Two drawn boxes 

on the primary maps (Figure 6-31 – Figure 6-

33) reference the detail figures located above 

the primary map. 

 

 95 – 100% probability  
  90 – 95% probability 
  80 – 90% probability 
  70 – 80% probability 
  50 – 60 % probability 
  1998 urban extent 
  background hillshade 
  ocean 
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6.2.3.1 All_data 

The All_data scenario forecasted that over 60,000 currently non-developed 30m pixels 

will be urban by the year 2030 with a probability of 90% or greater (Figure 6-31). With 

a very high degree of probability, urbanization spread across most of the available 

land with moderate topography, especially evident in the area around Carpinteria 

(Figure 6-31a). Development also followed Hwy 101 West of Goleta, along the 

Gaviota Coast (Figure 6-31b). Mild development spread into the gently sloped canyon 

areas North of Goleta and outside of Carpinteria. Moderate in-filling in Goleta and 

Carpinteria was forecast, but a substantial area East of Carpinteria is still shown as 

open land. 

6.2.3.2 Recent_data 

The Recent_data scenario, with over 52,000 non-developed 30 m pixels forecasted as 

urban in the year 2030, produced the most aggressive forecast of urban growth 

(Figure 6-32). The importance of urban-infilling in this scenario is illustrated in 6-32a. 

All of the available flat land, most of which is surrounded by already urbanized lands, 

has a greater than 50% probability of urban development. Importantly, a large 

majority of these transitions are forecasted with a probability of 90% or greater. 

Outward or edge growth also played a large role in this application. In the areas north 

of Goleta and along the Gaviota Coast (Figure 6-32b) high probability urban 

transitions spread outward from existing urban settlements. The lesser affect of road-

influenced growth in this scenario is also illustrated in (Figure 6-32b). Moderate to 

low probability urbanization surrounds both Hwy 101 and Cathedral Oaks Road, (a 



 

 80

primary transportation route) between existing- and high-probability urban centers. 

The Recent_data scenario forecasted growth in the foothill areas as topography 

allowed. 

6.2.3.3 Sparse_data 

The Sparse_data scenario produced a virtual “no growth” forecast for the South 

Coast Region (Figure 6-33). In the over thirty growth cycles applied to the input data, 

less than 900 30 m pixels were forecast as urban transitions with a probability of 90% 

or greater. Most of this development occurred as infilling in the most densely urban 

spaces. The remaining portion of highest probability transitions occurred at the 

immediate edge of currently existing urban areas. The other four probability classes 

averaged about 2200 pixels each.  These transitions were also attached to currently 

existing urban areas with the highest probabilities being the closest to current 

settlements and descending as distance from the settlements increased. Growth was 

so minimal that roads and slope had no evident effect.   

6.2.4 Forecast Difference Maps 

In a GIS values of 50 or greater from unclassified probability values (that ranged from 

0 to 100) were selected from each forecast map (Figure 6-34 – Figure 6-36). These 

maps were then compared by subtracting one map (the first) from another (the 

second). The resultant maps values give spatial context for the difference of 

forecasted probabilities. A value of 0 at a location indicates agreement between the 

first and second maps, or two forecasts. The larger the value, the greater the first 

forecast “over estimated” urban growth with respect to the subtracted map. Similarly, 

a large negative number indicates urban probability favored by the second forecast 
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map. The values were grouped into decadal classes and color classified in grayscale 

from 0 – 255. 

 

 

Figure 6-34: Per class pixel count for the forecast difference maps 
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6.2.4.1 All_data – Recent_data 

Figure 6-35 illustrates Recent_data’s aggressive edge growth shows as overestimates 

on the urban fringe areas throughout the region. Also, topography appears to be more 

of a constraint in the All_data scenario, as Recent_data contains more urban 

transitions in the steeply sloped foothill areas. The strong affect of Hwy 101 in this 

scenario can be seen in the agglomerations of dark cells in the Gaviota area (Figure 6-

35b) that hug the highway route along the coastline.  

6.2.4.2 Recent_data – Sparse_data and Sparse_data – All_data 

The number of transitions in the Sparse_data scenario was so few that the 

comparisons with All-data (Figure 6-37) and Recent-data (Figure 6-36) essentially read 

like mirrors of the comparison maps. Probability differences located immediately 

adjacent to currently urbanized lands have slightly lower values than the probabilities 

of All_data or Recent_data alone, but this is the only significant patterning, which is at 

best negligible. 

6.2.5 Computational Time 

The amount of required computer processing unit (CPU) time is of great concern to 

model calibration. SLEUTH methodology, in an effort to minimize this overhead, 

implements hierarchical brute force calibration. Additionally, since a true parallel 

processing environment was not available for this research, calibration jobs were run 

in a pseudo-parallel environment as described in Section 5.5.1. Each calibration job 
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was divided and delegated to shared workstations. The timings for each of these jobs 

were assembled and are displayed by scenario and execution phase in table Table 6-2. 

 

 

 

    
            

Scenario    
            All_data           Recent_data            Sparse_data 
Phase hours coef sets hours coef sets hours coef sets 
Coarse 285.45 3125 93.23 3125 218.98 3250 
Fine 342.15 3600 79.28 3125 133.28 3000 
Final 353.62 3000 96.75 3750 232.27 4500 
Derive 8.80 1 1.95 1 6.32 1 
Predict 4.75 1 2.90 1 2.33 1 
Total 994.77 9727 274.12 10002 593.18 10752 
average time:   6.14   1.64   3.31 
(in minutes)       
 Table 6-2: Computational time required for SLEUTH calibration and forecasting 

  

All_data required largest amount of CPU time (almost 995 hours) for all phases of 

execution, with an average time for a single simulation of 6.14 minutes. Sparse_data 

required only 593 hours (average single simulation time 3.31 minutes), even though 

the same number of growth cycles (from 1929 – 1998) was required for both runs. 

Recent_data, with 32 growth cycles, needed roughly half of Sparse_data’s requirement 

at 274 hours and an average single simulation time of 1.64 minutes.  
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C h a p t e r  7  

7 CONCLUSIONS 

7.1 Temporal Input Efficacy for Calibration and Forecasting 
This research was driven by the lack of knowledge regarding the calibration of urban 

CA models. In order to add information to the fields of urban and land use modeling, 

CA modeling, and complex and dynamic system modeling, an examination of an 

urban CA (SLEUTH) to test calibration sensitivity to temporal controls was 

performed. The null hypothesis guiding this work was: The duration and number of 

years used as controls for calibration of SLEUTH in the Santa Barbara study area will 

have no affect on the calibration results. To prove or disprove this statement three 

separate calibration scenarios were run, each achieving different measures of success 

(Figure 6-6 - Figure 6-11). It was found that by varying the density or temporal 

duration of the control data, calibration scores were affected and the number of 

control years used in calibration does make a difference. Further, the second scenario, 

Recent_data, consistently performed the best in calibration, given the ranking and 

sorting methodology used in this application.  

Recent_data’s product scores were much higher through the three phases of 

calibration (Figure 6-6) than the other scenarios. The Recent_data calibration utilized 

the four most recent temporal images (from 1967-1998) to initialize growth and 

generate regression scores, as opposed to the other two calibrations that initialized in 

1929. Recent_data consisted of short-term, high-density historical data. Therefore, for 
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this application, the forecasts from a short-term, high-density calibration can be given 

a greater degree of certainty for short-term forecasting than a calibration using older, 

long-term data, even if several more control years are added to the long-term 

database. 

This finding – that a temporal database of 33 years most accurately calibrated urban 

change for the study area – benefits urban model calibration in four ways. First, the 

time required to generate the urban input layers will be greatly reduced. The further 

back in time from the present a temporal GIS database reaches, the more difficult it is 

to locate and assemble accurate data layers. Often different products, such as aerial 

photography and hardcopy maps, from various sources need to be used. These data 

often exist in formats that are time consuming to enter into a GIS acceptable format. 

Using data available from the mid-sixties to the present to calibrate urban change, as 

Recent_data did, minimizes these time consuming tasks. For most regions in the 

United States, and many other parts of the world, four or more satellite or aerial 

photographic images from the last three decades can be acquired to accurately 

calibrate urban change.  

The second benefit of short-term calibration is the older data-source products often 

use different methods of classification that can make consistency between data layers 

difficult, if not impossible. The further back in time the historical layers go, the greater 

the uncertainty regarding their accuracy. The classification of modern data will be 

more consistent than relying on aged hardcopy maps and other forms of historical 

information. Third, complete coverage of large areas, especially for one time period, is 
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often difficult to find for older dates. Satellite data sources provide a greater 

probability of providing continuous, consistent datasets that cover large areas over 

several time periods, enabling regional modeling as opposed to only city or county 

based.  

The fourth benefit from the success of Recent_data pertains to the computer 

requirements associated with calibration. For computational models that require a 

great deal of computer processing units (CPUs) for calibration (such as SLEUTH) any 

reduction in the number of years that a region must be calibrated for is valuable. 

While there must be some minimum number of years that must be simulated in order 

for a calibration to be valuable, it can at least be said that 33 years is better than 69. 

For the South Coast that means cutting the CPU time required for calibration by at 

least half. 

While the benefits listed above are clear contributions this research provides, the 

geographic and historical profile of the South Coast presents a particular urban 

growth profile. Santa Barbara’s limited potential for continued growth due to 

geographic limits and specific urbanization pressures dictated calibration, and of 

course play a role in the generalizability of these results to other SLEUTH 

applications. Areas with less topographic constraints or waning growth pressures 

might derive alternative conclusions. However, many costal or mountain communities 

with a history of attacting growth will certainly find these results quite applicable.  

It also must be noted that a calibration with fewer control points will tend to produce 

higher r2 values simply because there are fewer data points to fit. A trade off occurs 
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between the robustness of a historical profile, and a less successful regression score 

due to increased variance. This could be why the Sparse_data scenario performed so 

much better than the All_data scenario, but produced a forecast that could not 

possibly represent Santa Barbara’s future urban growth. All_data, on the other hand, 

produced a more believable forecast, that is also similar to Recent_data’s. Though 

Sparse_data and Recent_data each used four control years, Recent_data maintained a 

higher product score than the Sparse_data scenario for calibration.  It could be that 

the duration of time between control years is more significant to a good calibration than 

control year density, or the period of time over which the calibration occurs.  

 

7.2 Calibration Metric Effectiveness 
The population metric is a completely non-spatial measurement and was the easiest 

curve to fit for calibration. Population regression scores for all calibrations were 

greater than 0.92 and final calibration scores were all above 0.95. The average number 

of urban edges, average number of clusters, and average cluster size are peripheral 

attempts to quantify the spatial structure of urban growth. These measurements 

showed variation in their scores across the calibration phases and in most cases did 

not consistently improve or decline in performance. Even so, these regression scores 

achieved 0.85 or better by the final phase, with the exception of All_data’s edges 

metric witch leveled off at r2=0.78. It is especially difficult to achieve high performing 

results with the Lee Sallee metric so 0.47 is considered a fairly good fit. Recent_data’s 

best score was r2=0.70, and All_data and Sparse_data never did better than 0.47. 
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However, the Lee Sallee is vital as an indicator because it is the only explicitly spatial 

metric implemented by SLEUTH.  

For this application, calibration metrics were ranked using the product of five evenly 

weighted metrics. These five metrics gave an indication of how well SLEUTH 

simulated urban change for the South Coast, but were found to be lacking in a few 

ways. The large disconnect between calibration and forecasting values calls into 

question how well future growth is being simulated. Figure 7-1 was created by 

graphing Figure 6-3 and Figure 6-24 together, and shows the continuum of metric 

behavior from historical through forecasted change.  
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               Figure 7-1: Average number of clusters for calibration and forecasting 

 

An especially confusing instance is illustrated by graphing the average number of 

clusters over the processes of prediction and calibration (Figure 7-1). The erratic 
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behavior of this metric during the first years of forecasting is unusual, but exemplify 

the kind of disconnect that occurs when the simulation is initialized with new data 

between the calibration and forecasting phases. The introduced seed year is so 

different than the simulated configuration that the types of growth can change 

radically when applied to the new environment. This variable behavior demonstrates 

the adaptive qualities of CA to current lattice conditions, but does little to encourage 

faith in the calibrated solution set for forecasting. The compare metric is a measurement 

of the final control year population compared to a simulation’s population count in 

the final year. Such a metric emphasizes the state of the “current” urban extent in 

simulation success. Including the compare metric, or others like it, into the product 

score could minimize this problem. By rewarding runs that simulate current 

conditions in addition to historical change especially well, transitioning between 

calibration and forecasting will be less abrupt. It is not clear from this work if one or a 

set of the metrics should be given precedence (weight) over the others, or that one 

metric is any more useful from the others used. Not knowing which or in what 

combination to use various metrics is a great difficulty of calibration, and a limitation 

to urban CA efforts. By graphing simulated metric values against the base statistics 

(Figure 6-7 - Figure 6-11), and considering their related regression values, other 

limitations of the metrics are revealed. Using the population metric as an example 

(shown below as Figure 7-2), it would appear that of the three scenarios, 

Recent_data’s values are closest to the base statistics.  
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                                       Figure 7-2:  Population metric for calibration 

 

However, All_data has a regression score of 0.97, while Recent_data’s score is only 

0.95. By using only the linear regression score to grade simulation metrics, the trend 

rather than the actual metric values are being rated. This can result in a coefficient set 

that misses the base statistic values by a large but constant quantity, outscoring 

another set whose values are closer to the control data, but whose trend is off. This 

occurs because the shape of the line is being rewarding without respect to its context. 

As a response to this, measurements of the offset and slope of the line, instead of 

only the line itself, should be used to characterize metric behavior. 

7.3 Coefficient Behavior 

Using data written to the avg.log file during the derive and forecasting runs, a 

detailed view of coefficient behavior was generated. Using these data, the critical 

system wide phase changes of boom and bust can be identified. Each of the derived 

coefficient sets followed the same pattern of exhibiting a boom state for a period of 

time, and then entering a bust state until the completion of the simulation. Because 

more than one coefficient affects each growth rule, it is difficult to establish a direct 
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relationship between the metric and coefficient values. In general, the metrics (Figure 

6-7- Figure 6-11 and Figure 6-22 - Figure 6-25) increase in rate or actual number more 

rapidly in the first half of the run and then decrease or decelerate in the second half, a 

trend that corresponds with the coefficients’ boom and bust states. However, with the 

exception of Sparse_data, the onset of the bust state did not match the timing of the 

South Coast’s rate of urban expansion. The population count for the base statistics 

(Figure 6-1) shows a large boom period between 1954 and 1967 and a smaller one 

from 1976 – 1986, with slowed growth between these periods. From these results it 

appears that the self-modification values inherited from calibration of the 

Washington-Baltimore at 120 m are not appropriate for application to the South 

Coast data. This is not entirely surprising since the scale and development history of 

the two areas are very different. 

The minimum and maximum limits of the coefficients have an effect upon coefficient 

dynamics. In the coefficient graphs for calibration (Figure 6-17 - Figure 6-21) and 

forecasting (Figure 6-26 - Figure 6-30) it can be seen that for long periods of time 

coefficients are forced into static values due to these limits. The breed coefficient in 

All_data for example remained at a value of 100 for 72 out of 101 years of simulation. 

Given a period of time and a constant self-modification state (e.g.; boom) several 

coefficients may reach a limit, but at different times. When the self-modification state 

changes (e.g.; from boom to bust) these coefficients will be adjusted from an identical 

value, in the same time period. (See breed and spread coefficient values for All_data 

and Sparse_data). The persistence of the coefficients at limit values, coupled with the 



 

 94

self-modification rules, enforces what could likely be an unrelated correlation between 

coefficient behavior. Additionally, these limits maintain a static coefficient value in a 

still dynamic system. A modification of the self-modification functions so that these 

limits are not reached so quickly would lessen these problems. 

The different brute force calibration paths taken by each scenario are illustrated in the 

coefficient solution space graphs (Figure 6-12 - Figure 6-16). While coefficients within 

a scenario occasionally narrowed immediately to a small range (The All_data and 

Sparse_data dispersion values shown in Figure 6-12 for example.) none of the 

scenarios or coefficients exhibited a particular ease in identifying a set of best-fit 

values. This shows that none of the scenarios had a particular time saving benefit of 

quickly identifying best-fit coefficients without going through the three phases of 

calibration.  

Most applied cellular models are constrained to generate particular numbers of cells in 

each state, with the target cell numbers determined exogenously, usually by another 

model (White and Engelen, 2000). In contrast, SLEUTH allows the simulated city to 

evolve without growth restrictions. Urban forms emerge solely from the configuration 

of the initial conditions and application of the transition rules, which is a strength of 

the model. However, it assumes that the study area is a closed system, which it is not.  

7.4 South Coast Forecasts 
SLEUTH3.0 was successfully calibrated to the Santa Barbara study area at the local 

level using 30m data using three different calibration scenarios. Each scenario 

generated a unique BSS that was used to initialize forecasts of urban growth from 

1998 to 2030 (Figure 6-31 – Figure 6-33). Even though the BSS for All_data and 
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Recent_data were quite different, their forecast maps for 2030 are similar, especially 

when compared with Sparse_data’s “no growth” forecast. 

Recent_data produced the most aggressive new growth forecast of the three forecast 

scenarios. Most of the newly urbanized pixels were transitions from outward growth 

at the urban edge. The number-of-urban-pixels graph (Figure 6-22) shows that 

All_data and Recent_data supported similar urban growth rates until the year 2015, 

when they begin to diverge. At this point in time both scenarios enter into a “bust” 

phase. The spread and breed coefficients for All_data (Figure 6-28) drop sharply, and 

the population quickly flattens for the remainder of the simulation. The same values 

for Recent_data however, decrease at a more moderate rate. The reason for this very 

different reaction between scenarios is not clear, but illustrates the importance of self-

modification to simulation evolution and reiterates the importance of this behavior to 

modeling dynamic urban systems (Clarke and Hoppen, 1997; Clarke et al., 1997; Silva 

and Clarke, forthcoming).  

The sluggish urban growth produced by the Sparse_data forecast is also a result of 

coefficient self-modification. The bust state entered into after 1986 caused a crash in 

coefficient values that the system could not recover from. At the initialization of the 

forecast runs, the very influential spread coefficient values of All_data and 

Recent_data were both 100. The spread_coefficient value of Sparse_data was only 38. 

The other values in Sparse_data’s BSS were not enough to encourage growth upon 

commencement of the forecast run. The pattern of Sparse_data’s coefficient bust is 

not unlike that experienced by All_data in the forecast period after 2015 that had the 
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same affect of leveling off the growth rate. If the self-modification parameters would 

have been calibrated for this scenario, the affect of the critical bust could have been 

lessened. Sparse_data was calibrated using four control years with an average 

difference of 22 years between each data point. The fact that this scenario’s best 

calibration score was produced from a simulation that generated a fatal bust to the 

system further illustrates the duration of time between control years is of great 

importance to a “believable” calibration. 

The importance of transportation system development to urbanization dynamics is 

illustrated nicely in the All_data and Recent_data scenarios. In the early period of 

Santa Barbara’s development primary transportation systems played an important role 

in carrying new growth east and west from the city center. Through calibration, the 

All_data scenario captured this dynamic by selecting a high road_gravity value. The 

resultant road_gravity coefficient selected by Recent_data, however, was relatively 

low. By the mid-sixties to present most primary roads were already surrounded by 

urban infrastructure and a preponderance of new development claimed lands at the 

suburban edge instead of escaping along major transportation routes. Emphasizing 

road gravity influences in such a scenario did not benefit the calibration. These 

calibration behaviors carried through into the forecast simulations and are illustrated 

in Figure 6-31b and Figure 6-32b. In the All_data forecast (Figure 6-31b) the 

curvilinear pattern of high probability growth along the coast follows Hwy 101, the 

major highway through the South Coast area. Recent_data’s emphasis on growth 

from the urban edge instead of routes of transportation produced clustered organic 
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growth around urban settlements (especially in the 95 – 100% probability range) with 

lesser probability transitions occurring with equal likelihood along Hwy 101 and 

primary roads.  

The road_gravity coefficient for Sparse_data was lower than of All_data’s, but  higher 

than Recent_data’s throughout historical simulation. It could be that the 

road_influenced growth from the early control years of the Sparse_data scenario 

(1929 and 1954) were not of great enough affect compared to the large amount of 

organic growth that occurred by the next control year (1976). As with the Recent data 

scenario, edge growth took precedence and Sparse_data selected a very high spread 

coefficient and only a moderate gravity coefficient. 

In addition to calibration, the quality of model prediction or forecasting may be seen 

as a function of the degrees of freedom defining the solution space. When a model is 

executed on a homogenous, infinite plane, as is the case with a formal CA, any growth 

pattern is, in principle, possible. In such an instance, generating the correct future 

state of a system from an initial configuration gives a very high degree of confidence 

in the model’s predictive ability. As model constraints are added (exclusion layers, 

topography, etc.) the number of possible growth patterns is drastically reduced, and 

the value of the prediction is accordingly reduced. In the case of the South Coast 

there exists the additional constraint of limited available space for new urban 

development. This aerial limitation influences prediction so that the number of 

possible growth patterns is also reduced over time. At the limit, any model will predict 

the correct pattern if there’s only one place for growth to occur. This is perhaps why 
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the All_data and Recent_data forecasts are so similar. The real value of a predictive 

model is the unexpected knowledge it provides. The predictive goodness of a model 

may decrease as the time passes simply as a function of system entropy. This could be 

seen as a limitation of the study area as much as the model.  

7.5 CPU Usage 
Table 6-2 lists the number of computer processing hours required to complete this 

work. The total computational time spent by each scenario is not directly comparable 

because the total number of simulations completed by each scenario varies due to 

increment values used for brute force calibration. These total-values were normalized 

by the total number of simulations per scenario. Not surprisingly, the Recent_data 

scenario required the fewest hours because the number of growth cycles per 

simulation was only 32, compared to 69 growth cycles per simulation for All_data and 

Sparse-data. With the same number of control years (4), Sparse_data’s average 

simulation time at, 3.31 minutes, was roughly twice that of the 1.64 minutes used by 

Recent_data. What was surprising was how much overhead the three additional 

control years would add in increased statistical computation. At 6.14 minutes, 

All_data required almost doubling the time used by Sparse_data due to calculating 

calibration statistics for three additional periods. 
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C h a p t e r  8  

8 FUTURE WORK 

The urban dynamics SLEUTH simulates, and calibration attempts to capture for a 

specific study area, are general to urban growth patterns: over time urban areas amass 

more land, spread out from urban edges and in independent settlements, are attracted 

to routes of transportation, and are resistant to steepening terrain. While many lessons 

learned from this research can be directly applied to our specific methodology, they 

can also be transferred to the more general problems of calibrating dynamic system 

models, specifically CA models representing urban and land use transitions.  

8.1 Scaling Influences 
The testing of scaling influences upon brute force calibration methodology was 

carried out as a precursor to temporal sensitivity testing. It was found that while 

SLEUTH itself is scalable, in that it can be effectively applied to different urban 

systems at various scales, the process of calibration is not. The process of resampling 

control data for calibration can actually exclude the optimum coefficient set selected 

by the full resolution data. While (Silva and Clarke, forthcoming) illustrated interesting 

findings regarding urban characteristics revealed by examination of coefficient 

behavior between different resolutions during calibration, it could well be these results 

are “reminiscent” of urban dynamics rather than capturing real scaling processes. 

Continued research on the dynamics of urban systems at multiple scales will shed light 

on these initial findings. 
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8.2 Intra-period Duration 
Through this research the trade-off between a high statistical calibration score and a 

more robust (and even believable) calibration is evident. Sparse_data is an excellent 

example of how something can go wrong with a good calibration method. The model 

was fit to the historical data, and had a much better score than the All_data scenario, 

which covered the same historical period. However, the “great depression” of 

coefficient self-modification at the very end of the calibrated simulation “busted” the 

system and made the forecast solution set ineffectual to generate continued urban 

transitions. The large amount of time between control points allowed for extreme 

system shifts (beyond what was found in the control data) that did not negatively 

affect in a significant way the calibration’s final score.  

While the need for greater control and calibration of CA self-modification parameters 

is evident, in order to avoid such unexpected behavior in calibrated results, an average 

intra-control year duration of 23 years (that of Sparse_data) should be considered a 

maximum for historical calibration. A shorter intra-period duration of ~11 years (that 

of All_data and Recent_data) can at least be recommended, as both scenarios 

produced forecast results that seemed reasonable for short-term prediction. However, 

if calibration data is only available with long duration periods, mapping the behavior 

of metric and parameter values using the methods introduced here is critical to a) 

avoid selecting a coefficient set that allows a terminal system crash, and b) inform 

forecasting results by illustrating historical behavior. 
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8.3 Calibration Duration 
The short-term, high-density scenario executed in the Recent_data application has 

advantages over the long-term, high density scenario of All_data in two primary ways. 

First, Recent_data’s overall performance score was better than All_data’s. However, it 

is possible that a high-density calibration with fewer data points will always return a 

better score because of fewer points to fit. Additional research will shed light on this 

affect. Second, assembling and calibrating a short-term temporal GIS is less costly, 

and more reliable in terms of time, dollars, and accuracy. This second point offers 

enough benefits in decreased cost to make the short-term, high-density calibration 

more preferable than the long-term, high-density scenario. 

8.3.1 Long-term calibration for long-term prediction? 

In defense of the All_data scenario it could be argued that the longer historical 

calibration will provide a better basis for long-term forecasting. This argument stems 

from our knowledge of events in the past and future. The state of being that we can 

be most certain of is the present. The further away from the present a given state is 

known the greater the uncertainty regarding that information, simply because time has 

passed, allowing for state change to occur (Figure 8-1). Similarly, if a prediction is 

made, the further into the future something is described, the less certain we are of the 

prediction proving to be accurate. 
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  Figure 8-1: Graphic representation of the temporal relationship of uncertainty 

 

Though imperfect, historical databases provide placeholders of previous conditions. 

These “reality points” act as anchors for historical simulations and help minimize the 

uncertainty associated with past states. An accurate calibration of the dynamics that 

influenced a system’s past provides more knowledge about that system than its 

current state. With the knowledge of system dynamics provided by calibration, the 

uncertainty regarding a system’s future state can be reduced (Figure 8-2). So perhaps 

profiling a longer history during the calibration process will capture a richer range of 

behavior, and provide a better source for forecasts that range far into the future 

(Figure 8-3). 

 

Figure 8-2:Graphic representation of the temporal relationship of uncertainty when short-
term data is added. Note how, in the future, after the temporal period for which calibration 
was performed has been surpassed, the uncertainty is no longer reduced. 
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Figure 8-3: Graphic representation of the temporal relationship of uncertainty when long-
term data is added. Note how uncertainty in the future is reduced for a longer time than 
when short-term data is used for calibration. 

8.4 Trend Characterization 
There is a difference between best generating a present condition from some former 

state, and accurately simulating a trend. The possibility that the best calibration was 

derived from the most recent data could be a coincidence of data collection, and not 

necessarily the best representation of the South Coast’s historical growth dynamics. 

The finding that the most recent data best characterizes present day Santa Barbara 

makes intuitive sense: a composite of an individual’s portrait photographs from the 

past ten years will look more similar to his/her present condition than a composite of 

pictures from infancy to adulthood. Similarly, we derive the best simulation of an 

urban area’s morphology to a current state by modeling its most recent change, 

instead of a longer history. However, this reasoning is only appropriate if change is 

more or less linear. (As is assumed in the hypothesis presented in section 8.3.1). If 

rapid change occurs over brief periods of time, the linear assumption breaks down 

and will not be able to accurately describe the growth trend.  

The task of calibration is to identify and reproduce properties of a multi-dimensional 

space that best represent an actual urban growth trajectory with the greatest amount 
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of efficacy. If there are significant non-linearities in this trajectory, the timing and 

spacing of control data points becomes critical to the curve-fitting methodology. This 

leads back to the issue of density and duration in the control data series and the 

question: are the temporal properties of growth being captured, or is an important 

cycle falling through the cracks? Since SLEUTH is a trend extrapolation model, the 

quality of its predictions depends heavily on (a) how well calibration was able to 

capture the trend, and (b) how smooth that trend is for the particular urban area. As 

these historical trends can only be discerned from the amount of data available, it is a 

bit of a chicken and egg problem. However, as accurate spatial data becomes ever 

more available at smaller temporal intervals, these issues can be explored more fully. 

8.5 Calibration Metric Effectiveness 
The subset of metrics used in this application successfully calibrated the model to the 

data. However, limitations to their efficacy were found. By only using 5 metrics, instead 

of a possible 11, the process of describing why a particular simulation performed better 

than another was simplified. However, the inter-related behavior of the coefficients and 

metrics is still complicated, and it is not clear from this work if one or a set of the 

metrics should be given precedence (weight) over the others, or that one metric is any 

more useful from the others used. What was found is that a need to create a smooth 

transition from historical simulation to forecasting will greatly improve the believability 

of forecasted results. To that end, metrics that reward accurate prediction of present 

conditions during calibration are recommended. Not knowing which, or in what 

combination, to use various metrics, is a great limitation to urban CA calibration. 

Testing the ability of metrics to capture spatial patterns and defining their relative 
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importance will streamline calibration efforts and bring more confidence to forecast 

results. 

Additionally, by using only linear regression scores to grade simulation metrics, the 

trend rather than the actual metric values are being rated. What this can amount to is a 

coefficient set that misses the base statistic values by a large, but constant, quantity 

may outscore another set whose values are closer to the control data, but whose trend 

is off. This occurs because the shape of the line is being rewarding without respect to 

its context. As a response to this, measurements of the offset and slope of the line, 

instead of only the line itself, should be used to characterize metric behavior. 

8.6 Portability of Self-Modification Values 
The boom and bust states involved in SLEUTH’s self-modification behavior had very 

important influences on simulation results. However, these state changes missed the 

periods of boom and bust experienced by Santa Barbara in both time and scale. It 

follows that calibration success could be greatly improved by calibrating self-

modification values for a data set. The basic self-modification values applied in this 

research were inherited from calibration of UGM1.0 (a previous version of the 

SLEUTH urban growth model) to the Washington-Baltimore area. The Santa Barbara 

temporal GIS is very different than that used to calibrate Washington-Baltimore in 

both scale and temporal duration. These differences alone might have been enough to 

determine the non-portability of self-modification values. However, several changes in 

the influence of coefficient values upon the transition rules in SLEUTH v3.0 make it 

very likely that the influences of self-modification values do not have the same affect 
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as in previous model versions. With six additional variables, calibration of these self-

modification values will increase CPU time substantially. However, new theory or 

methodology could lessen this additional overhead. 

Here, modification of SLEUTH brute-force calibration methodology is proposed: 

The best product scores for each of the scenarios did improve through the phases of 

calibration (Figure 8-4). However, how significant the improvement was, is uncertain. 
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                            Figure 8-4: Product score of calibraton metrics for each scenario  

 

Derive and forecast runs can be performed on the best coefficients selected from 

coarse calibration and final calibration phases. It might be found that the calibration 

and forecast produced in the coarse phase generates satisfactory results, especially 

when the trade-off in saved CPU time is considered. Additionally, a greater degree of 

improvement might be achieved by refining the self-modification values. To test this 

hypothesis, a coarse calibration, without self-modification, could be executed. From 

this run, the best performing coefficients are selected and held as constant. Using this 

set of coefficients, a coarse run through the self-modification values would be 
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performed (Limits to values would have to be decided). Would the results be better 

than the three phases of calibration of the behavior coefficients? If this methodology 

is effective both behavior coefficients and self-modification parameters are calibrated 

for a data set, simulation accuracy is improved, and the amount of CPU required for 

calibration has not been increased.  

Alternatively, the portability of SLEUTH v3.0 self-modification parameters could be 

tested. This examination could be performed in two ways. A robust calibration of 

SLEUTH v3.0 self-modification values for a region could be performed and then 

applied to another data set. In such a case the parameters from the previous data set 

might prove sufficient for other applications. A more empirical approach may be 

taken, and is described in more detail in Section 8.7.2. By studying the patterns of 

boom and bust in temporal GIS databases, theory about the dynamics of these phase 

changes can be developed and implemented in model self-modification behaviors. 

While the parameters that of such implementation would still require fine-tuning for 

an individual data set, the underlying functionality is defendable and more transparent 

than its current realization. 

8.7 Pseudo-parallel Processing 
While not a perfect system, the pseudo-parallel processing calibration methodology 

was very useful to the completion of this work. 30,000 CPU hours were required to 

calibrate and forecast the three scenarios. By dividing up the scenario into parts and 

assigning the job to one of 14 workstations, the actual time required for calibration 

was only one tenth of the total CPU time. The configuration, while infinitely helpful, 

did have its problems. The workstations were in an open lab. Since lab use during the 
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execution of this research was low (summertime) the machines were generally 

completely available for calibration applications. However, if even one additional job 

was started up (e.g.; Netscape), the CPU was immediately cut in half for the 

calibration job. This caused some uneven timing in the completion of phases, but 

didn’t effect the results (unless a workstation was shutdown, in which case that job 

would be re-initialized.) 

8.8 Urban CA Dynamics 
8.8.1 Theoretical examination 

A criticism of urban CA models is that as the formal rules are relaxed, the dynamics 

of the model become more difficult to understand and results become less clear. This 

study found the inter-relatedness of SLEUTH coefficients in the application of the 

transition rules, and the dynamics of self-modification may mimic the complex 

dependencies of real urban systems, but muddles the description of the underlying 

dynamics. Describing the relatedness of coefficient values to metric behavior is 

difficult, especially in the context of a complicated urban system. Starting with the 

transition rules SLEUTH proposes, how well real urban processes (road attraction, 

new spreading centers, slope resistance) are modeled in a theoretical environment can 

be investigated. The previous (and current) research efforts of SLEUTH have been 

application centered. However, a more theoretical examination of the model functions 

can describe and explain behaviors generated under the simplest conditions. Lessons 

learned from such work would have at least two immediate benefits: 1) it will lead to 

the illumination of simulation dynamics on more complex or “real” data 2) Results 
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could indicate simplifications of the transition and self-modification rules that would 

lead to greater transparency of coefficient application effects.  

8.8.2 Real world dynamics 

The U.S. Geological Survey’s urban dynamics program has compiled temporal GIS 

databases for urban systems all over the country. Study regions include San 

Francisco–Sacramento, Portland-Seattle, Middle-Rio Grande, Detroit-Chicago, and 

Chesapeake Bay. These databases contain the historical information that SLEUTH 

simulations use as controls for calibration of urban growth dynamics. By applying the 

methodology of mapping metric values for historical databases that was introduced in 

this research, a cross regional study of these databases to examine their behavior will 

provide a testing set to examine urban theory, and produce new theories about the 

evolution of urban structure.  

For example, Zipf’s Rank-Size Rule defines the log linear relationship between city 

population and rank. Using the temporal GIS databases, the Rank-Size rule can be 

applied to urban area instead of population, and studied across scales and over time. 

Results from this research will increase knowledge about the evolution of urban 

spatial patterns over time, and can inform, or even serve as a measure for geographic 

models of urban dynamics. “The importance of (Zipf’s) law is that, given very strong 

empirical support, it constitutes a minimum criterion of admissibility for any model of 

local growth, or any model of cities” (Gabiax, 1999). 

The persistence of the coefficients at limit values, coupled with the self-modification 

rules, enforces what could likely be an unrelated correlation between coefficient 

behaviors. Additionally, these limits maintain a static coefficient value in a still 
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dynamic system. A modification of the range so that these limits are not reached so 

quickly would lessen these problems. 

Additionally, by examining how the structure of urban systems evolves historically, 

new hypothesis of urban evolution may be developed. For instance, in the Santa 

Barbara historical data, the number of clusters increases in the early part of the data 

set, begins to decrease, and then displays a sharp increase. The trend of this metric 

could describe a pattern of cyclic behavior regarding urban cluster size over time. This 

examination of temporal cycles could lead to additional hypotheses about the nature  

 

                      

                         Figure 8-5: Hypothesis of size of urban clusters boom and bust cycles. 

of boom and bust states of urban systems which is treated in SLEUTH through self-

modification (Figure 8-5). Such hypotheses can be generated through the examination 

of historical data, tested with CA models, and can improve the theoretical basis of CA 

application. In turn, results will inform the fields of dynamic urban and CA modeling, 

provide a foundation for continued research and lead to the development of improved 

measurements to describe urban dynamics.  
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GLOSSARY 

Avg.log. a SLEUTH output file. It contains measured values of simulated data 
averaged over Monte Carlo iterations for every run and control year. 
Base statistics. The measurements taken from the control year data. 
Best solution set. (BSS) The goal of model calibration. The average of each of the 
five coefficient values from the final simulated year of the derive run. These are used 
to initialize a forecast run. 
BOOM. Self-modification parameter applied to the dispersion, breed and spread 
coefficients when the system is in a boom state. 
Boom state. A state of accelerating urban growth entered into the when the urban 
growth rate exceeds the CRITICAL_HIGH. 
BSS. See (Best solution set). 
BUST. Self-modification parameter applied to the dispersion, breed and spread 
coefficients when the system is in a bust state. 
Bust state. A state of decelerated urban growth entered into the when the urban 
growth rate goes below the CRITICAL_LOW. 
Coarse phase. See Calibration phase.  
Calibration Mode. An automated process of searching through the model coefficient 
space to find a set which best describes historical urban change for a study area. 
Coefficient sets are generated using the coefficient start, step and stop values defined 
in the scenario file. Each set initializes a run.  
Calibration phase. One of three steps in brute force calibration (coarse, fine, and 
final) through which coefficient ranges are narrowed. See section 3.2 for more 
information. 
Coefficient start value. Initial coefficient value for a model run. The low value of a 
coefficient range. 
Coefficient step value. In calibration, an increment value which is added to the start 
value iteratively for all possible permutations of given ranges and increments. 
Coefficient stop value. Final coefficient value for a model run. The high value of a 
coefficient range. 
Control year. A date for which urban data exists in the historical database. An urban 
layer from the historical database. 
CRITICAL_HIGH. The threshold for the urban growth rate above which a boom state 
exists for the system and self-modification will be applied to the coefficients. 
CRITICAL_LOW. The threshold for the urban growth rate below which a bust state 
exists for the system and self-modification will be applied to the coefficients. 
Derive run. Initialized with the set of best coefficients selected from the calibration 
phases, a large number of Monte Carlo simulations are used to simulate growth for 
the time period represented in the historical database. From this run, averaged values 
of the calibration metrics and coefficient values for the control years may be derived 
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for analysis. Most importantly, the averaged coefficient values from the final control 
year (BSS) are used to initialize a calibrated forecast run.  
Final phase. See Calibration Phase. 
Fine phase. See Calibration Phase. 
Forecast mode. Initialized with the most recent image data, will perform a single run, 
in Monte Carlo fashion, using the calibrated BSS for initialization. 
Growth Cycle. The basic unit of SLEUTH execution. It begins by setting each of the 
coefficients to a unique value. Each of the growth rules are then applied. Finally, the 
resulting growth rate is evaluated. If the growth rate exceeds or falls short of the 
CRITICAL_HIGH or CRITICAL_LOW values, model self-modification is applied. Self-
modification will slightly alter the coefficient values to simulate accelerated or 
depressed growth that is related with boom and bust conditions in urban 
development. 
Prediction Mode. See forecast mode. 
ROAD_GRAV_SENSITIVITY. A change value that is applied to the road gravity 
coefficient during self-modification. 
Run. An execution of SLEUTH that begins with a single set of coefficient values, and 
performs a designated number of Monte Carlo iterations. May be followed by another 
run (as in calibration) or finish at the end of the Monte Carlos (as in forecasting). 
Scenario file. The SLEUTH execution file.  
Self-modification. A process of slightly altering SLEUTH coefficient values to 
simulate accelerated or depressed growth that is related with system-wide boom and 
bust conditions in urban development.  
SLOPE_SENSITIVITY. A constant value that is applied to the slope resistance 
coefficient during self-modification. 
Start date. The first year represented by SLEUTH simulation. In Calibration this date 
corresponds with the date of the earliest (most historical) urban layer. In Forecasting 
it will correspond to the START_DATE value defined in the run’s scenario file, which 
must also be the date of the most recent urban layer.   
Stop date. The final year represented by SLEUTH simulation. In Calibration this date 
corresponds with the date of the most recent urban layer. In Forecasting it will 
correspond to the STOP_DATE value defined in the run’s scenario file. 
Simulation. A simulation is a series of growth cycles that begins at a start date and 
completes at a stop date. 
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APPENDIX A 

 

 

 

Examples of input data for the South Coast GIS database 
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urban 1929 

 
urban 1943 

 
urban 1954 

 
urban 1967 

 
urban 1976   
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urban 1986 

 
urban 1998 

 
 

 
roads 1929 

 
roads 1943 
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roads 1957 

 
roads 1967 

 
roads 1976 

 
roads 1986 

 
roads 1998 
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slope 

 

 
exclusion 

 

 
hillshade 
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APPENDIX B 

 

 

 

SLEUTH initialization values from all phases of the three calibration scenarios: 

Self-modification constants and coefficient range/interval selection tables 
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Self-modification Constants
CRITICAL_LOW 0.97
CRITICAL_HIGH 1.3
BOOM 1.01
BUST 0.9
SLOPE_SENSITIVITY 0.1
ROAD_GRAV_SENSITIVITY 0.01  
 
Cal1, Cal2 Cal3 Coarse set-up

Range
Coeff start stop step Count

disp 0 100 25 5
breed 0 100 25 5
spread 0 100 25 5
slope 0 100 25 5
road grav 0 100 25 5  
 
Cal1 Fine Set-up

Range
Coeff Best start stop step Count
disp 1 0 12 4 4
breed 75 75 99 6 5
spread 25 25 75 10 6
slope 100 25 100 15 6
road grav 75 51 75 6 5  

Cal1 Final Set-up
Range

Coeff Best start stop step Count
disp 1 1 5 1 5
breed 87 87 99 3 5
spread 75 66 75 3 5
slope 65 35 75 8 6
road grav 57 57 69 3 5  

Cal1 Derive Set-up/Results
Coeff initial completed
disp 1 2
breed 90 100
spread 69 100
slope 51 1
road grav 57 70

      

Cal1 Forecast 
Coeff initial completed
disp 2 1
breed 100 15
spread 100 15
slope 1 100
road grav 70 65
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Cal2 Fine Set-up
Range

Coeff Best start stop step Count
disp 50 26 50 6 5
breed 25 25 49 6 5
spread 100 76 100 6 5
slope 100 76 100 6 5
road grav 50 0 50 10 6  

 
Cal2 Final Set-up

Range
Coeff Best start stop step Count
disp 26 26 35 2 5
breed 31 25 33 2 5
spread 88 88 96 2 5
slope 82 76 84 2 5
road grav 20 10 20 2 6  
 
Cal2 Derive Set-up/Results
Coeff initial completed
disp 30 40
breed 31 41
spread 96 100
slope 76 1
road grav 14 23

      

Cal2 Forecast 
Coeff initial completed
disp 40 38
breed 41 39
spread 100 85
slope 1 93
road grav 23 19

 
 
Cal3 Fine Set-up

Range
Coeff Best start stop step Count
disp 1 0 12 4 4
breed 75 75 75 15 6
spread 100 100 100 6 5
slope 1 25 25 6 5
road grav 25 25 75 6 5  
 
Cal3 Final Set-up

Range
Coeff Best start stop step Count
disp 8 8 12 1 5
breed 75 45 75 6 5
spread 100 76 88 3 5
slope 25 9 25 4 6
road grav 19 0 25 5 6  
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Cal3 Derive Set-up/Results
Coeff initial completed
disp 11 7
breed 63 38
spread 88 38
slope 25 49
road grav 25 34

      

Cal3 Forecast 
Coeff initial completed
disp 7 1
breed 38 1
spread 38 1
slope 49 100
road grav 34 20
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APPENDIX C 

 
 
 
 
 
 

SLEUTH calibration regression scores from the derive runs of All_data, Recent_data, 
and Sparse_data. 

 



 

 129

 
Cal1 Regression Scores

Coarse Fine Final
pop 0.98 0.98 0.98
edges 0.84 0.78 0.78
cluster 0.92 0.92 0.92
cluster size 0.93 0.86 0.86
Lee Salee 0.39 0.47 0.47
Product 0.28 0.29 0.29

Cal2 Regression Scores
Coarse Fine Final

pop 0.92 0.94 0.95
edges 0.96 0.98 1.00
cluster 0.87 0.96 0.97
cluster size 1.00 0.93 0.99
Lee Salee 0.70 0.71 0.71
Product 0.54 0.59 0.64

Cal3 Regression Scores
Coarse Fine Final

pop 0.99 0.98 0.97
edges 0.83 0.95 0.98
cluster 0.99 1.00 1.00
cluster size 0.94 0.91 0.91
Lee Salee 0.46 0.47 0.47
Product 0.35 0.40 0.40  
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