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Abstract. Despite the recognition of cellular automata (CA) as a � exible and
powerful tool for urban growth simulation, the calibration of CA had been largely
heuristic until recent eVorts to incorporate multi-criteria evaluation and arti� cial
neural network into rule de� nition. This study developed a stochastic CA model,
which derives its initial probability of simulation from observed sequential land
use data. Furthermore, this initial probability is updated dynamically through
local rules based on the strength of neighbourhood development. Consequentially
the integration of global (static) and local (dynamic) factors produces more realistic
simulation results. The procedure of calibrated CA can be applied in other
contexts with minimum modi� cation. In this study we applied the procedure to
simulate rural-urban land conversions in the city of Guangzhou, China. Moreover,
the study suggests the need to examine the result of CA through spatial, tabular
and structural validation.

1. Introduction
The de� nition of the CA rule remains a research issue, despite the emergence of

CA as a powerful visualisation tool in urban growth simulation (Batty 1998). As an
iterative computational procedure, CA characterise the change in geographical space
as state changes and simulate the state changes through a neighbourhood that
interconnects immediately neighbouring cells. Despite many appealing features of
the CA approach, such as its abilities to simulate bottom-up dynamics and to capture
self-organising processes, urban CA are developed largely through trial and error.
The models are essentially heuristic. Various CA models have been successfully
developed, especially in land use simulation (Batty and Xie 1994, Batty et al. 1999,
Clarke et al. 1997, Clarke and Gaydos 1998, Li and Yeh 2000, White and Engelen
1993, White et al. 1997, Wu and Webster 1998, Wu 1998b) . Nevertheless, calibration
and validation of CA models had been two neglected issues until recent eVorts to
develop CA as a reliable procedure for the application of urban development simula-
tion. Batty et al. (1999), for example, formalise the CA simulation by embedding CA
rules in simulation software. The conceptual basis of the software is Xie’s model of
urban spatial extension (Xie 1996). Wu and Webster (1998) use multicriteria evalu-
ation (MCE) to de� ne the parameter values of CA models. Clarke et al. (1997 )
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validate the simulation results through visual tests. Clarke and Gaydos (1998)
develop a more elaborated approach, which uses intensive computation to � nd the
best � ts out of numerous combinations of parameter values. Recently, Li and Yeh
(2001) used neural networks (NN) to determine parameter values for CA simulation.
Speci� cally the parameter values from the training of NN are imported into the CA
models. The diYculty in � nding the parameter value of CA simulation is partially
due to the complexity of urban development (Batty et al. 1999). However, calibration
and validation are two critical issues to be fully researched to develop CA as a
reliable procedure for urban growth simulation.

Because CA are transparent, � exible and open procedures, model builders can
de� ne state transition rules that sound plausible. In essence the rule de� nition relies
on an intuitive understanding of the process of cell state change, though some
relationships between variables and cell states can be found through empirical studies.
The number of transition rules is virtually unlimited. While it is interesting to see
that simple rules, derived from uncoordinated local decision-making processes, can
give rise to a structured global pattern, it is often diYcult to identify such a rule
among millions of alternative ones. In the Game of L ife, originally developed by
John Conway (see Gardner 1970, for an initial report and Batty 1997, for its relevance
in urban simulation) , if one changes the rules, the interesting pattern would disappear.
Indeed it is notably diYcult to propose a rule that can lead to a desirable urban
form. For complicated urban development processes, this is particularly problematic,
as there is no standard procedure to specify a rule. Various rules have been de� ned
under the umbrella of CA (White and Engelen 1993, Batty and Xie 1994, Portugali
and Benenson, 1995, Batty 1998, Clarke and Gaydos, 1998, Wu and Webster 1998,
Li and Yeh 2000). Unlike a standard procedure used in multivariate regression, the
procedure of rule de� nition in CA models is highly � exible and basically applies
various microscopic rules to manipulate cell states in grid-based data.

The heuristic approach of urban CA is not wrong in itself. In fact, it is because
the process of urban land development is so complicated and ill-de� ned that it is
impossible to propose a universal law that would control the process in diVerent
places. This is in sharp contrast with many physical space-time dynamics such as
the dispersion of plants, the predator-prey process, and surface runoV in catchments
(Burrough 1998). However, the complexity of the built environment essentially
requires a simulation approach because, without actually building a model, it is hard
to test hypotheses about the complex behaviour of urban land development. The
heuristic model is confronted with a severe computational constraint. For example,
Clarke et al. (1997) applied various visual comparison methods to � nd the parameter
values. In an automatic parameter calibration, Clarke and Gaydos (1998) use several
hundred hours of high- performance workstation to search for the best combination
of parameter values. Therefore it would be useful to use a procedure that can extract
the initial values of some parameters. In a sense, the calibration of an initial
probability surface for stochastic CA is important.

Classical formalisation of CA is proposed by Wolfram (1984). In the domain of
geographical space, Takeyama and Couclelis (1997) proposed a geo-processing lan-
guage to formalise CA simulation. Similar eVorts have been made through the
conceptualisation of the urban diVusion process (Batty and Longley 1994, Batty and
Xie 1994), the generic simulation model (Xie 1996) and operational CA application
software (Batty et al. 1999). Formalisation helps to develop a framework to address
the diversity of rule de� nition. Moreover, it is useful to develop a calibrated method
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to reduce the complexity of the model, as this will allow model builders to concentrate
on characterising the process itself rather than constructing model structures.

At the core of urban CA is an understanding that urban development is neither
the purely local process used by classical CA, T he Game of L ife, nor is it a purely
global process modelled in classical urban models like the Lowry model. Couclelis
(1997) elaborated a conceptual framework that extends universally applied local
interaction to complex interaction across geographical space. The extended CA
framework is more appropriate to modelling geographical phenomena, as ‘geography’
means exactly the heterogeneous space. The integration of simple abstraction of CA
with heterogeneous geographical space requires calibration, which determines the
parameter values from observed processes of state change.

The design of an appropriate simulation strategy of land development should
consider that urban growth could be best articulated through the combination of
global and local factors. This can be achieved through parameterisation of factors
that aVect the development. The advantage of parameterisation is that the balance
of global and local processes can be explicitly addressed. The parameterisation of
the urban cellular model, however, imposes an enormous challenge to the identi� ca-
tion of appropriate parameters. So far, calibration has been achieved through intens-
ive computation—for example, repetitive running of the same model with diVerent
combinations of parameter values (Clarke and Gaydos, 1998)—and through auto-
matic training by NN (Li and Yeh, 2001). As Clarke and Gaydos (1998) demonstrate
in their San Francisco and Washington/Baltimore model applications, the calibration
is computationally intensive, which requires high performance computation facilities.
Li and Yeh’s (2001) NN-CA approach is interesting in that it can automatically
retrieve the parameter values. However, the meaning of the parameter values might
be diYcult to interpret, which is not a problem of CAs but rather a feature of NNs.

Validation of the CA model is still a challenge to CA applications. Most of the
CA models to date have used visual comparison to con� rm the simulation results.
The measure of model performance itself is a controversial issue. Because of the
property of emergence in complex self-organising systems, CA models should be
assessed on the basis of plausibility (Batty 1996) rather than one-to-one correspond-
ence or correlation measures. This requires that the model should be validated in
terms of whether the model can capture the basic features of urban land use, for
example the structural similarity between simulated and actual land development.
Clarke and Gaydos (1998) used four statistical measures to assess the model perform-
ance. These included a series of r-squared � ts between actual and predicted develop-
ment and between urban edges, and a modi� ed Lee-Sallee shape index. The validation
of the results of numerous combinations of parameters is, therefore, very time
consuming, as all these performance indicators need to be calculated in each of the
combinations. Li and Yeh (2001) use a conversion matrix to assess the accuracy of
simulation, while Wu (1998a) explores the coeYcients of the density function, Moran
Index and fractal in model validation. However, considering that a new structure
may occur in a CA simulation, the validation is dependent upon the purpose of the
simulation. In other words, the measure of performance is related to the speci� c
aspect that we wish to simulate. In the rest of the paper the application of calibrated
stochastic CA in rural-urban land conversions is discussed.

2. Rural-urban land conversions
Rural-urban land conversions are by no means randomly distributed. The

general characteristics of land use conversions can be revealed through a series of
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development pro� les such as the plotting of the quantity of land use conversion
against distance from the city centre. Urban land use models clearly show that land
development is constrained by location and geographical conditions. More precisely,
urban economics establishes development propensity/probability through regression
methods. Logistic regression or the multinomial logit model, for example, can be
used to examine the relationship between land use changes and their locational
characteristics (McMillen 1989).

However, the regression method is essentially static. While it re� ects the global
distribution of land use conversions in the metropolitan area, the method does not
reveal the self-organising nature of land development, i.e. the clustering of land uses
at a local scale or the level of development sites. Urban land development consists
of two interrelated processes—that of spontaneous growth and that of self-organised
growth. The former represents a process that is independent of sequential land use
changes. Land conversions take place according to the demand and supply relation-
ship through development propensity. The latter re� ects a process that results from
the previous development in the immediate neighbourhood. The chance of land
conversion at any place is raised through the clustering of land development in the
neighbourhood. In a CA simulation, the two processes should be appropriately
addressed.

The relationship between development factors and urban spatial structure is
conceptualised by the bid-rent theory in urban economics. The main determinant of
urban land use change, according to the monocentric bid-rent theory, is the distance
to the city centre (Alonso 1964). Along with the increase in the distance to the city
centre, accessibility decreases and transport cost increases. DiVerent land users have
diVerent utility functions, making trade-oVs between land rent and transport cost.
Their ‘willingness to pay’, namely the land bid rent, diVers. In a fully functional land
market, the highest bid will obtain the land. This is, of course, a simpli� ed but
elegant theoretical deduction. The actual land development propensity is more
complicated. In a complex geographical context, land development is aVected by
various attributes, ranging from the physical characteristics of development sites to
planning control and zoning. Practically, land development can be modelled through
a discrete choice framework (Ben-Akiva and Lerman 1985). McMillen (1989) uses
a multinomial logit model in land use changes. Land development thus can be
imagined as particular land users choosing particular land plots. The joint probability
of a particular type of development occurring at a particular site can be estimated
through regressions. This probability should be estimated in diVerent contexts.

The urban land model provides a clue for land development simulation. Rather
than simulate land use changes based on heuristically plausible land development
propensities, it is possible to derive or calibrate land development probability from
the observation of land use changes. This means the rule of the simulation can be
stated simply as a function of development variables, i.e. development prob-
ability=f (development factor 1, development factor 2, .. .). The theory of discrete
choice suggests that the speci� c form is dependent upon the statistical distribution
of an error item and that in the context of a discrete choice it should be in the form
of the logit model/multinomial logit model. In other words, the purpose of calibration
is to establish the relationship between land use change and the factors that aVect
probability of land conversion. The regression can be seen as a process to extract
the coeYcients of the empirical relationships from observations, which is a critical
step towards the development of more procedural and realistic urban CA simulation.
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3. Calibration of development probability
The purpose of calibration is to extract the coeYcients or parameter values of

the rules from the observation of land use pattern at time t and t+1 (� gure 1).
Mathematically, this is generalised as the estimation of the probability of particular
state transition y occurring at a particular location (i, j) through a function of
development factors (x1 , x2 , . . .xn ). In the case of binary land use changes (being
developed into urban use or remaining in the current state), a logistic model can be
developed to calculate the probability of development. Speci� cally, the model assumes
that the attractiveness of a site is a function of the independent variables such as the
travel distance to the city, land elevation and slope. The dependent variable is a
binary (categorical ) one, namely whether the land has been developed or not in the
observed period. Note that in this case both dependent and independent variables
are grids derived in a GIS environment and subsequently exported to � t a regression
model. According to the logistic model, the probability of a site experiencing land
conversion can be computed as:

pg (sij=urban)=
exp(z)

1+exp(z)
=

1

1+exp( - z)
(1)

Where, pg is the observed global probability, sij is the state of the cell ij , z is a
vector that describes the development features of the site:

z=a+å
k

bkxk

where a is a constant, bk are coeYcients of the regression model; xk is a set of site
attributes.

It must be noted that the probability is estimated globally and does not change
according to simulation and local situations, it is thus without time denomination
(although the probability is estimated from sequential data) . The probability is
estimated from the comparison of land use changes in a time period longer than one

Figure 1. Calibration of the global probability surface from sequential land use data.
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iteration used in CA. The direct application of the probability to cell state transition
will be problematic, as it ignores the interlocking eVect of land development. This is
particularly important in microscopic simulation, as grid-based simulation diVers
from the zonal system in that the latter is based on aggregation of data. This
diVerence can be seen in � gure 2. In the zonal system, land development is represented
as an aggregated ‘density’ indicator, while in a grid system, land development is
de� ned as discrete conversions of individual cells. Both grids shown in the � gure
conform to the density requirement in the zonal system. But the left grid presents a
totally unrealistic urban morphology, as studies of urban morphology show that
land development follows a particular space-� lling property, namely fractal (Batty
and Longley 1994). It is more likely that the right grid shown in � gure 2 below
represents a more realistic morphology.

While it can be justi� ed that the purpose of stochastic simulation is not to
reproduce the exact pattern of urban structure, the urban morphology simulated
from global probability by this random process is unrealistic (see the results and
discussion later). The connectivity of developed sites and undeveloped areas is much
lower in the simulation based on global probability. The problem of applying global
statistical properties to a microscopic level is that this ignores the path-dependent
and self-organising nature of land development. In other words, land development
not only follows the static attractiveness measured as a geographic location and
other physical attributes but is also conditioned by the sequence of development

(a)

(b) (c)

Figure 2. The zonal-based and grid-based spatial analysis units measured in density and
morphology. (a) Zonal system measured in density; (b) unrealistic urban morphology
in grid-based system; (c) more realistic urban morphology.
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and the neighbourhood eVect. This suggests that a local probability of development
should be incorporated into the measure of development attractiveness. Theoretically
it would be possible to include neighbourhood measures directly in the regression
to estimate local probability if the land use conversion were observed on a � ne time
scale. However, this often proves to be diYcult, as such data are often unavailable.
Moreover, it is even more diYcult to match the time scale of observation and
simulation. In this application, the time lag between two land use coverages is 20
years while simulation proceeds on a year by year basis. To match the time scale of
simulation with the time scale of development, we use the total quantity of land
conversions. That is, we constrain the quantity of conversion at each iteration to the
quantity of land conversion in one year.

In contrast to macroscopic land modelling, classical CA is a purely microscopic
approach. The notion of microscopic characterisation in essence requires that the
CA model be built upon the basic unit of behaviour. This is plausible because
migration is the behaviour of a household rather than a census tract. Similarly,
land development is the behaviour of a developer rather than a ward or district.
The CA approach reasonably captures the connectivity between development
sites/developers. However, the approach is mainly derived from natural phenomena
(e.g. gas in physics, forest � re in biology) where the local eVect may be strong. In
land development, the in� uence of global development conditions is obvious and
the geography of land development is uneven. This heterogeneous nature of develop-
ment conditions is re� ected in the global probability derived by land-use modelling.
It is therefore plausible to compose a joint probability of land development from
global and local conditions. In this study, the neighbourhood function is calculated
in a conventional ad hoc way, i.e. through a 3×3 (90 m×90 m) kernel. The
neighbourhood potentiality of cell transition is de� ned as:

Wt
ij=

å
3 3

con (sij=urban)

3×3 - 1
(2)

where, Wij is a neighbourhood evaluation function, here referring to the development
density within the 3×3 neighbourhood, con( ) is a conditional function which returns
true if the state sij is urban land use. In this simulation, the neighbourhood is de� ned
as 8 immediately neighbouring cells. It must be noted that W is denominated by the
time t, which means that neighbourhood density changes along with the simulation.

The joint probability can be calculated as the product of global probability, cell
constraint, and neighbourhood potentiality. Cell constraint refers to factors which
exclude land development on the cells such as a body of water, a mountainous area
and planning restriction zones. It is possible to use an evaluation score of land
suitability instead of a binary one (suitable/unsuitable) . The joint probability is stated
as:

pt
c=pgcon(stij=suitable)Wt

ij (3)

where con( ) converts the state of suitable land into a binary variable. Again, please
note that the joint probability pc is denoted with time t, indicating it changes along
with iterations.

In sum, this study derives the initial/global probability surface of land develop-
ment from calibrated logistic regression and constantly updates this probability
surface using local conditions of development in a kernel throughout the simulation
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iteration. This combination of global and local factors will generate better simulation
results, as will be shown later.

3. Stochastic CA simulation
Based on the joint probability, a Monte Carlo process is launched to generate

the result of simulation. However, updating the global probability with local condi-
tions creates additional complications. Whereas the global probability, derived from
land use data, would produce the quantity of land conversions which conform to
the observed one, the joint probability may not be guaranteed to do so, because the
constraining of global probability with the local one has changed the property of
distribution. Intuitively, this means that the restriction of land use may eventually
reduce the total land conversions. In contrast, the introduction of local agglomeration
eVect may also create too many potential sites. The problem is, therefore, to constrain
the amount of cell transition according to land demand or projected land demand.
This means that computationally the pseudo joint probability needs to be
transformed into one that will produce the required quantity of state transitions.

As mentioned earlier, the joint probability is a dynamic one. Thus, the transforma-
tion requires the comparison of the probability at each iteration with the best site
at that particular iteration. In essence, this means that the best site available at the
particular time, rather than the ideal site, should be used as a benchmark. The form
proposed in this simulation is an exponential distance-decay function, a non-linear
one as the sites with higher evaluation scores are more likely to be developed. The
probability of site conversion is transformed by comparing its value with the
probability of the best site.

pt
t=pt

c exp[ - d(1 - pt
c/max( pt

c )] (4)

where, max( ) returns the maximum value of pt
c from the whole grid, d is a dispersion

parameter. The higher is the value of d, the steeper the distance-decay gradient. The
range of the dispersion parameter d is usually from 1 to 10 (it has no units as it
serves as a coeYcient in the distance-decay function). The value 5 usually generates
a quite stringent distance constraint. The dispersion parameter controls the shape
of the skewed probability curve. The items inside the exponential function return
the ‘distance’ between the scores of the best site and the site under evaluation. For
the best site, 1-pt

c/max( pt
c ) gives a distance of zero.

The Monte Carlo simulation uses the method proposed by Hägerstrand (1965).
First, a cell in the grid is randomly picked and its probability is compared with a
random number uniformly distributed within 0 to 1. Because the probability is
extremely small, it would take an extremely long time to identify a successful
transition. To produce a large number of sites requires heavy computation. In other
words, in the case of an N×N grid, the algorithm is very computationally intensive.
Therefore, the algorithm must be adapted to a grid-based system. Alternatively,
development sites can be evaluated simultaneously. This means multiple random
number comparisons, which greatly speeds up the simulation. However, the adapta-
tion does create a diYculty in the control of the total number of development in a
speci� c time period, for example one year. Multiple comparisons mean each land
parcel is evaluated individually and simultaneously without feedback from other
sites. This could lead to a large number of sites developed at each iteration, exceeding
the projected demand. In reality this would not happen because the competition
among these sites will scale down the chance of development. Thus, the probability
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of conversion needs to be further transformed if multiple evaluations take place at
the same time. The probability that will lead to only one cell being converted is:

pt
s (ij )=pt

t/å
ij

pt
t (ij) (5)

where pt
s is the scaled probability that will lead to one expected conversion over the

N×N grid.
The scaling of probability allows the expected quantity of development to be

controlled according to the projected land demand. The expected total number of
conversions in the grid when the pt

s grid is simulated with a random grid of values
in the range 0 to 1 is one. This transformation in fact constitutes an additional
constraint to the joint probability. As a result, the scaled probability is composed of
three probabilities: (1) the probability of development measured on global factors,
(2) the probability of development measured on local factors, and (3) the probability
of cell selection according to the projected land demand. The scaled probability that
can generate the expected land conversion is speci� ed by:

pt
s (ij )=qpt

t (ij)/å
ij

pt
t (ij) (6)

where q is the number of cells to be converted according to projected land conversion
at each iteration. The value of the right-hand should be limited at 1.0 to ensure that
the probability is within the range of 0 to 1. The grid pt

s is then directly compared
with a random grid with uniform distribution from 0 to 1 to decide whether the cell
is to be converted at time t+1:

st+1 (ij)=Gurban, pt
s(ij )>rand (ij )

rural, pt
s (ij )4rand (ij ) (7)

where rand (ij) is a uniform 0–1 random distribution grid. The Monte Carlo process
can be repeated many times. Each generates a diVerent set of developed sites. These
development sets may locate at diVerent places in diVerent simulations. But the
distribution of development sites conforms the observed pattern and the total number
of cells converted equals the number of expected developed sites.

In sum, the proposed CA model is a truly stochastic one as it follows the Monte
Carlo procedure used in Hägerstrand (1965). By composing the � nal probability
from three probabilities, namely global land development distribution, local probabil-
ity due to neighbourhood agglomeration, and probability of site selection, this
simulation ensures that the total quantity of development be constrained to the
projected demand, thus bridging the macroscopic site selection with the microscopic
CA dynamics.

5. Implementation in rural-urban land conversion
The above procedure was applied to simulate rural–urban land conversion in

the city of Guangzhou in South China. Sequential land use data were used. Through
the overlay of land use layers of 1973 and 1993 in ARC/INFO GIS, land use changes
in this period were identi� ed. The changes were then examined through spatial
analysis, in particular the relationship between the distribution of developed sites
and their physical and location characteristics. These characteristics are described
by a number of ‘contextual’ development attributes, which include the travel distance
to the edge of the city, the oV-road distance to the nearest settlement, topographic
elevation and slope, the variation of elevation and slope in a 90 m×90 m kernel, and
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dummy pre-development land use indicators (cultivated land, orchard, or wood).
These attributes were measured by GIS operations and exported to a statistical
package. The probabilities were then transformed and stochastically run through
the Monte Carlo method. DiVerent combinations of the probability and development
constraints ( local agglomeration) were tested. The results of the simulation were
veri� ed through pro� les of land use distribution and urban morphology such as the
extent to which diVerent land uses are mixed and connected.

5.1. Data
The study area covers the Tianhe District, a suburban district of Guangzhou.

Accelerated urban sprawl has caused a problem of urban land encroachment on the
best quality agricultural land in the Pearl River Delta region (Yeh and Li 1997,
1999; Li and Yeh 2000). The main data consist of two land use coverages derived
from 1973 and 1993 topographic maps and an elevation contour coverage. The
coverage was digitised from 1:10 000 survey topographic maps. The digital detrain
model (DEM) was then created from the digitised contours. From the triangulated
irregular network (TIN), the slope grid was measured. The original land coverage
records eight land use classes: arable land, orchard, wood, rural residential (settle-
ments), urban area, industrial, transport, water body, and unused land. Since the
purpose of this study is to test the procedure and it focuses on the rural–urban land
conversion, these classes were generalised into three major categories: developed,
and undeveloped land and water body. The land uses in 1973 and 1993 are shown
in � gures 3 and 4. The resolution of the grid is 30 m×30 m, giving a total size of 546
rows and 629 columns.

The edge of the main urban area has been digitised and then rasterised. From
the edge image, a diVusion function has been used to calculate the travel distance
to the city. On-road speed (50 km hour

- 1 ) and oV-road speed (5 km hour
- 1 ) are

used to develop a travel time surface. A cost friction coeYcient was added to the
measurement of oV-road travel according to the slopes (table 1). Similarly, the travel
distance to the nearest rural settlements was calculated. To describe local variations
of physical conditions, a 3 cell×3 cell kernel was applied to the elevation and slope
grids derived from DEM. The ranges of elevation and slope variations in the kernel
were measured cell by cell. In order to assess the potential of undeveloped land,
three dummy indicators are used to � ag cultivated land, orchard, and wood. The
development probability was then assessed by the comparison with that of non-
agricultural land. In sum, the attributes used in the simulation are presented in table 2.

5.2. Development probability and simulation
Development probability was calibrated through a logistic regression using SPSS.

The dependent variable is binary (whether the land use changed from 1973 to 1993)
and independent variables are described by table 2. The result of the regression is
presented in table 3. Two models, both signi� cant at 0.001, show some regularity in
land development. For example, land development probability decreases along with
the increase in the distance to the city centre, as the sign of the coeYcient of
CITYDIST is negative. The full model (model II) is used to calculate the probability
of land development. The function z is calculated as:

z= - 8.1277 - 0.0437* CIT YDIST - 0.0204* SET T DIST - 0.0032*SL OPE

- 0.0112* DEM - 0.0160* DEMRNG - 0.0075*SL OPERNG

+9.2319* USE*+8.9502* USE2+9.99246* USE3 (8)



Calibration of stochastic cellular automata 805

Figure 3. The developed and undeveloped land use in the Tianhe district of Guangzhou in
1973.

The regression produces an overall classi� cation accuracy of 79.4% and a highly
signi� cant model Chi-Square. The model should be regarded as an eVective descrip-
tion of the land use conversions, as only a limited number of explanatory variables
are used and land use conversions are usually distributed in a complicated way.

The probability calculated is shown in � gure 5. The probability of development
is higher at the immediate urban fringe, gradually fading away in the rural areas.
The developed land (existing built-up area) has a probability of zero as further
development is not modelled. The transformation probability must be speci� ed with
the particular rules used and the particular time. Figure 6 shows the transformation
probability pt

s at the time of 1985 in simulation 3 (see below).
The initial state of simulation starts from land use in the year 1973. Three

simulation experiments were tested, each corresponding to a diVerent combination
of probabilities. Simulation 1 uses probability based on global conditions, thus
Wt

ij=1; Simulation 2 uses probability based on local conditions, thus pg=1;
Simulation 3 uses the combination of local and global conditions, thus pg and Wt

ij
are calculated accordingly. All three simulations were constrained by the dynamic
land use change (i.e. developed land will no longer be transformed):

con(stij )=G0 if s=urban land

1 otherwise
(9)
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Figure 4. The developed and undeveloped land use in the Tianhe district of Guangzhou in
1993.

Table 1. The friction coeYcient used in the measure of oV-road travel distance.

Slope Friction coeYcient

0–6° 1.0
6–15° 1.5

15–30° 2.5
30–50° 3.0
>50° 5.0
Water 10.0

Equation (9) means the model does not take redevelopment into account, i.e.
developed land could not be redeveloped. However, there is no technical reason for
not allowing redevelopment. The condition can be modi� ed. For example, after a
certain period of development redevelopment is allowed. The total area of the
converted land use has been controlled according to the expected growth rate (2368
cells converted per year, equivalent to 213 ha). The simulation reproduced land uses
in 1993. Simulated land use was then compared with the actual land use so as to
assess the model’s performance. The model can be re-run from the actual land use
in 1993 to simulate land use in 2010 and can be projected according to estimated



Calibration of stochastic cellular automata 807

Table 2. Development attributes used to compute land development probability.

Variable Meaning Measured in GIS

CITYDIST Travel distance to the edge of the city, Road network, land use,
measured in minutes. This is composed by topographical features
on-road and oV-road travel speeds (slope), plus cost distance

function

SETTDIST OV-road distance to the nearest settlement Topographical features
(including villages and communities) plus cost distance

function

DEM Land elevation measured in meters Built from TIN and in
turn from topographical
contour lines

SLOPE The largest downward slope to adjacent land Derived from DEM

DEMRNG A contextual variable measuring the range of
variation of elevation in a 30 m×30 m kernel

SLOPERNG A contextual variable measuring the range of GRID focal function
slope variation in a 30 m×30 m kernel

USE1 A dummy indicator if the land use is GRID reclassi� cation
cultivated land

USE2 A dummy indicator if the land use is orchard GRID reclassi� cation

USE3 A dummy indicator if the land use is wood GRID reclassi� cation

The baseline land use is non-agricultural land use, coded by USE1=USE2=USE3=0.
The meaning of coeYcient of U1, U2, U3, is therefore that compared to non-agricultural land
uses, the contribution to the likelihood of development from being cultivated land, orchard,
and wood respectively. Despite similar coeYcients, the model suggests that woodland is the
most likely type to be developed, while cultivated is the least likely type.

Table 3. The probability of land use changes calibrated from the logistic regression models.

Variable Model I B S.E. Model II B S.E.

CITYDIST - 0.0363 0.0005 - 0.0437 0.0006
SETDIST - 0.0204 0.0008
SLOPE - 0.0044 0.0007 - 0.0032 0.0012
DEM - 0.0071 0.0003 - 0.0112 0.0004
SLOPERNG - 0.0075 0.0009
DEMRNG - 0.0160 0.0021
USE1 9.2319 0.5384
USE2 8.9502 0.5390
USE3 9.9246 0.5385
Constant 0.2434 0.0112 - 8.1277 0.5384
PCP 72.31 79.37
- 2LL 180 019.681** 139 739.556**

Note: PCP=percentage correctly predicted; - 2LL= - 2 log likelihood at convergence;
B=coeYcient; S.E.=standard error; **=signi� cant at 0.001.

land demand. The land development simulated from 1993 to 2010 is not reported
here as the purpose of this paper is to see how the calibrated CA performs. The
results of three experiments are shown in � gures 7, 8 and 9 respectively.
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Figure 5. The development probability calibrated from the logistic regression model
(Model II).

5.3. Analysis of model performance
The model performance is assessed in three ways: namely, spatial overlay which

generates a tabulation and visualisation, spatial statistics which measure connectivity
and morphology, and structural measurement which assesses the goodness-of-� t
according to the special domain of interest.

5.4. Cross-tabulation
The land use of 1993 generated by simulation was compared with the actual land

use. This produces three cross-tabulation tables, from which the accuracy of each
simulation can be assessed (see tables 4, 5, and 6).

The accuracy measured from cross-tabulation is as follows. Simulation 1 has an
overall 72.9% correct prediction. The � gure increased to 74.9% in Simulation 2,
which is higher than expected. Intuitively, the transition rule that only takes account
of the local probability should not be able to reproduce the land use pattern in 1993,
as development factors are not considered. However, because the starting state of
the simulation is based on the actual land use pattern of 1973, development factors
were embedded in the distribution of land uses. The simulation allocated projected
land demand to sites adjacent to existing urban areas through the neighbourhood
function. Thus, the simulation produced a pattern very similar to the historical one.
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Figure 6. The transformed probability of conversion measured dynamically at the time of
1985 in Simulation 3 (see text for de� nition of Simulation 3).

Simulation 3 has the highest accuracy, which is 79.5%, among the three simulations.
The simulation predicts developed and undeveloped land uses at an accuracy of
76.6% and 81.6%. Please note that cross-tabulation produces a stringent test of
simulation as it measures on a cell-by-cell basis.

5.5. Spatial overlay
The cross-tabulation analysis discussed above compares the goodness-of-� t on a

one-to-one cell basis. In other words, we assess the correspondence between the
observed and simulated land use by individual cells at the same co-ordinates of
grids, while their spatial distribution (such as how diVerent land uses are connected)
is ignored. Therefore, a high correspondence rate does not ensure that simulation
produces a plausible urban morphology. On the other hand, a low correspondence
rate does not necessarily mean poor spatial agreement because the simulated and
observed land use patterns may be similar to each other in terms of spatial structures.
The analysis of conformity should therefore be extended to the measurement of the
spatial relationship between developed and simulated sites.

Visually, the simulated urban structure can be compared with the observed one
through GIS overlay. For each pair of land use images, four categories have been
produced. These include: undeveloped land predicted as undeveloped land, and
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Figure 7. The result of Simulation 1 (based on global development conditions).

developed land predicted as developed land, undeveloped land predicted as developed
land, developed land predicted as undeveloped land. The � rst two classes are correct
predictions, while the latter two are errors. The results of the three simulations are
shown in � gures 7, 8 and 9. The error of Simulation 1 is distributed ‘randomly’ (the
black dots representing unpredicted developed sites). This is not surprising because
the calibrated land use model describes the trend of land use change without
considering unknown errors (residuals in regression) . However, the morphology of
urban spatial structure simulated here is totally unrealistic . Such a scattered land
development pattern cannot be realised in the real world and is not possible even
in the form of urban sprawl. Development sites have to be connected in order to
develop infrastructure and service facilities. This suggests that land use modelling is
more appropriate at the aggregated scale than at microscopic scales. By using large
spatial units such as urban districts, wards and transport zones, the model does not
require an explicit description of interactions within units. Local interactions should
be introduced into the model if it is applied to the grid system.

Simulations 2 and 3 introduced the local eVect in land development simulation.
Both simulations produced realistic land use patterns. But Simulation 2 obviously
over-predicts land development (the dark grey shaded area) in remote rural areas.
This is because in Simulation 2 no global factor (such as distance to the city centre)
has been taken into account. Therefore, a place near to a small rural settlement is
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Figure 8. The result of Simulation 2 (based on local development conditions).

seen as equally attractive as one close to the edge of the city. This is obviously not
the case in urban development because accessibility as well as the physical character-
istics of development sites (such as the slope), are important. As a result, Simulation
2 under-estimates development in areas near to the edge of the city and places with
better development conditions.

The result of spatial overlay clearly indicates that Simulation 3 has produced the
best spatial prediction of land development. Both simulations, however, did not
predict the development of some large land parcels, because these large developments,
supported by state investment in the era of the planned economy, broke away from
the development trajectory. This is not unique to the socialist economy. In a market
economy, extraordinary development events are inevitable and cannot be ‘predicted’
by modelling and planning.

5.6. Spatial statistics
The spatial overlay suggests that structural conformity is important in the assess-

ment of simulation results. This conformity between observed and simulated land
uses can be analysed through spatial statistics. Moran I, for example, is a spatial
statistical indicator that re� ects the degree of spatial autocorrelation (Goodchild
1986). The indicator is used to reveal the pattern of the clustering of the same type
of use at adjacent cells and, therefore, the extent to which developed sites (coded as
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Figure 9. The result of Simulation 3 (based on the joint probability of global and local
development conditions).

Table 4. The result of Simulation 1 (based on global development factors) compared with
observed land development in number of cells.

Simulated

Observed Developed Not developed % correct

Developed 47 356 21 348 68.9
Not developed 23 797 72 506 75.3
Overall 71 153 93 854 72.6

Table 5. The result of Simulation 2 (based on local conditions) compared with the observed
land development in number of cells.

Simulated

Observed Developed Not developed % correct

Developed 49 474 19 413 71.8
Not developed 22 097 74 842 77.2
Overall 71 571 94 255 74.9
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Table 6. The result of Simulation 3 (based on the joint probability) compared with the
observed land development in number of cells.

Simulated

Observed Developed Not developed % correct

Developed 52 647 16 057 76.6
Not developed 17 720 78 583 81.6
Overall 70 367 94 640 79.5

1) and undeveloped sites (coded as 0) are mixed. The absolute concentration of land
uses within a kernel generates a Moran I close to unity, while a more even distribution
than can be expected by chance gives a value below zero. Although the absolute
value of Moran I may not correspond to a � xed scale of spatial clustering, the
indicator can be used to compare how close the simulated land use pattern is to the
observed one. The Moran I function provided by Arc/Info measures immediately
adjacent cells. The value thus only indicates land use patterns at the � nest possible
scale and does not describe the clustering of land uses as spatial objects or at a
structural level. The more macroscopic assessment of spatial structures will be
discussed later.

The Moran I function, which is applied to the observed pattern of land develop-
ment, returned a value of 0.829. The values of Moran I for the three simulations are
respectively 0.396, 0.898, and 0.894. This is fairly consistent with visual comparison.
The second and third simulations are morphologically more similar to each other,
while the � rst simulation stands out quite diVerently. While the diVerence is quite
obvious in this case, spatial statistics is still useful in that it probably provides a
quanti� ed measure for more subtle cases. The quanti� ed measurement is particularly
important in the development of automated � ne-tuning of a simulation model.

5.7. Structural measurement
As mentioned earlier, the structural measure is needed to assess the distribution

of simulated land development in a larger area. Structural conformity has been
measured through the pro� le of development that gives a meaningful indicator of
how the simulated pattern matches the observed one in terms of spatial structures,
for example land use distribution measured by travel time to the edge of the built-
up area. The study has divided the whole simulation area into twenty-six 5-minute
travel time zones. The total number of developed cells in each zone was counted.
The percentage of development in each zone can be plotted against the travel time,
producing a pro� le of development. The observed and simulated development pro� les
are shown in � gure 13. The percentages can be cross-tabulated with the expected
percentages to produce a x2 value. The indicator is used to assess the deviation of
simulation from the expected frequency of observation. The x2 of three simulations
are 0·21, 0·22 and 0·62. Clearly, Simulations 1 and 2 produced a rather similar
pattern of distribution to the observation, while Simulation 3 slightly overestimates
in the area near to the urban edge and underestimates in the rural areas far away
from the city. Simulation 2 overestimates the development in the remote rural areas.
It is not too surprising that Simulation 1, i.e. the simulation based on calibrated
probability predicts better. This is because information about the urban structure
has been fully taken into consideration without the disturbance of other factors.
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Figure 10. The comparison of Simulation 1 with the observation through spatial overlay.

Similarly, other structural measures can be adopted, depending upon the purpose of
the simulation.

6. Conclusion
There have been persistent eVorts to understand urban land use changes and

urban spatial structure since the time of the Chicago School. However, conventional
urban models are spatially aggregated, paying less attention to the interaction
between land development factors at the local level. Recently there has been a surge
of heuristic land development simulations. Most of these models rely on the capacity
of computation and especially the spatial data analysis functionality of GIS. The
process-based models can be divided into two major categories: analogy models
which make an analogy of land development to a physical process such as diVusion
limited aggregation (DLA) (Batty and Longley 1994) and the ecology of species
diVusion (Burrough 1998), and behavioural models which use development rules
that are deemed plausible (Batty and Xie 1994, Batty 1998, Clarke et al. 1997, Clarke
and Gaydos 1998, Li and Yeh 2000, 2001, Portugali and Benenson 1995, White and
Engelen 1993, 1997, Wu and Webster 1998). Both categories of modelling are con-
fronted with a serious computational demand—unless the model adopts a simple
mathematical form it would be very diYcult to investigate all possible parameter
ranges. Seemingly it is not a question of theoretical purity but rather a reliable
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Figure 11. The comparison of Simulation 2 with the observation through spatial overlay.

calibration method that matters. Neoclassical land bid-rent models and the Chicago
model of social areas should be seen more as conceptual models rather than empirical
ones. The need for a simulation method for empirical land use analysis is increasingly
acute because of urban sprawl in both developed and developing countries.

This research is based on the development of a procedure which calibrates the
initial global probability surface from sequential land use data and then modi� es
the global probability with the local probability that is updated at each simulation
iteration. In addition, the probability of site selection is incorporated into the joint
probability to constrain the quantity of simulated conversions to projected land
demand. The result suggests that this joint probability has produced the best perform-
ance. This paper also emphasises the need to validate the model through both
structural and cross-tabulation measures. In zone-based land use simulation, the
accuracy issue is not a problem because aggregation of spatial units removes the
internal diVerentiation. In grid-based microscopic simulation, the result needs to be
presented in cells rather than in census tracts, enumeration districts or urban wards,
thus imposing the need to validate simulation through spatial indicators. Moreover,
the result of simulation should not be validated on a cell by cell basis. Land
conversion involves interactions among actors who have bounded rationality and
are aVected by many unknown political, cultural and economic factors. However,
the in� uence of these factors cannot be manifested in equations. As a result, the
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Figure 12. The comparison of Simulation 3 with the observation through spatial overlay.

Figure 13. The development pro� les by the travel distance to the edge of the city.
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distribution of land development should be better portrayed through observation.
The development of initial global probability surface serves this purpose. The use-
fulness of land use simulation lies in the prediction of general urban development,
i.e. the trajectory of development. It has been suggested that the trajectory that
involves both the global and local dynamics of land development is most likely to
be captured by calibrated CA simulation. Moreover, if we ‘calibrate’ the CA simula-
tion through the desired pattern of changes, then we may incorporate the desired
relationship into future development evaluation to simulate alternative scenarios. By
doing so, simulation becomes more than a simple projection based on past trends.
Future research should be carried out to study the desired pattern of rural-urban
land conversions.
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